
Interpolation with piecewise quadraticvisually C2 B�ezier polynomialsRobert SchabackAbstract. For data satisfying certain generalized convexity conditions, the existence anduniqueness of a piecewise quadratic curvature continuous parametric spline interpolant inIR2 is proved. Convexity is preserved by the interpolation, and the numerical construction ofthe interpolant can be carried out e�ciently. The interpolation is 4{th order accurate, anda number of examples shows both the applicability and the limitations of this interpolationscheme.1 IntroductionFor given data pointsf1; . . . ; fn; n 2 IR2; n � 2; fi 6= fi+1 for 1 � i � n � 1 (1)we want to construct a continuous interpolating curves : I ! IR2; I � IR a closed intervalwhose pieces are of class C2 and whose tangent direction and curvature vary continuously.This property is called \visual" or \geometric" C2 continuity and is abbreviated by GC2 (seee.g. [Boehm et. al., '84] and [Farin, '82]). The interpolant should be convexity preservingin order to avoid unwanted oscillations. Since nonparametric strictly convex or concaveC2 functions have no in
ection points and nonvanishing curvature, we introduce a naturalcommon generalization of convexity/concavity to the parametric situation:De�nition 1.1 A GC2 curve s in IR2 is (strictly) nonin
ecting, if the curvature of snowhere vanishes.If the cross{product for planar vectors is de�ned asx� y = �x1y2 + x2y1 for x = � x1x2 � ; y = � y1y2 � ;the (signed) curvature of a planar GC2 curve f is f 0(t) � f 00(t)=kf 0(t)k3 at f(t). The signof the curvature indicates whether the osculating circle lies to the \left" or \right" of thecurve in the sense of a moving observer looking into the direction of the tangential vector.Reversing the parametrization will change the sign of this form of curvature.The following theorem shows that parametric quadratic splines are appropriate tools forconstructing nonin
ecting curves: 1



Theorem 1.1 A visual C2 parametric quadratic spline curve is strictly nonin
ecting or astraight line.Proof. It is easy to verify that a quadratic polynomial in B�ezier form either has identicallyzero curvature (in case it is a straight line) or has nonvanishing curvature.The sign of the curvature of a quadratic polynomial s(t) in B�ezier form with control pointsb0; b1; b2 in IR2 and s(t) = b0(1� t)2 + 2b1t(1 � t) + b2t2; t 2 [0; 1]is determined by the position of b1 relative to b0 and b2. If b1 is collinear to b0 and b2, thecurve is linear. Otherwise, b1 lies in the \left" or \right" half{space de�ned by the orientedline L(b0; b2), thus determining the sign of the curvature.2 Solvability conditionsIn the following we shall construct the interpolating curve by patching together n�1 quadrat-ic polynomials in B�ezier form with control points fi = b2i; b2i+1; b2i+2 = fi+1 for 1 � i � n�1.The interior control points b2i+1 will be determined by continuity requirements only. As aresult of the above discussion, we can assume for the rest of this paper that the curve isalways \turning to the right". For \left{turning" data the indexing can be reversed to get\right{turning" data (positive curvature). Then the points b2i+1 have to be constructed onthe \left" side of the oriented lines L(b2i; b2i+2) = L(fi; fi+1), except for the trivial case thatall data points fi are collinear, which we exclude from now on.Since each quadratic piece has two degrees of freedom and visual C2 continuity imposestwo conditions on each breakpoint f2; f3; . . . ; fn�1, we have to �x two additional parametersvia boundary conditions. This can be done by adding two points b0 6= b2 and b2n+2 6= b2nde�ning tangent directions at b2 and b2n, respectively. The complete interpolation problemthen will be as follows:Construct a visually C2 curve consisting piecewise of quadratic polynomials in B�ezierform with control points fi = b2i; b2i+1; b2i+2 = fi+1 1 � i � n � 1, and satisfyingboundary conditions b3 � b2 = �1(b2 � b0); �1 > 0 arbitrary;b2n � b2n�1 = �n(b2n+2 � b2n); �n > 0 arbitrary;by �nding suitable control points b2i+1; 1 � i � n� 1.Since curvature continuity is a nonlinear condition and no additional degrees of freedom areavailable, the problem is equivalent to a nonlinear system of equations (see (2)). It is notalways solvable (see Figure 1), even if the data form a piecewise linear curve that is a limit ofnonin
ecting curves. We therefore must look for a weak su�cient condition for solvability.Furthermore, we shall see that unicity of the interpolant requires an even stronger conditionthan the one that will be used for the existence proof.2
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Figure 1: Unsolvable problem, n = 3To discuss solvability conditions we introduce tangents Ti at interpolation points fi = b2i,1 � i � n, where the boundary conditions force T1 and Tn to coincide with the lines L(b0; b2)and L(b2n; b2n+2). respectively. Then b2i+1 is the intercept of Ti with Ti+1. The problemposed in Figure 1 is unsolvable, because T2 has to intersect both T1 and T3 in �nite pointsb3 and b5 which must lie on the \left" of the lines L(b2; b4) and L(b4; b6), respectively.
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1b2b0Figure 2: Partially unsolvable problemAnother example is given by Figure 2. This problem is unsolvable for px + py < 2p10.The piecewise linear interpolant of b0; b2; . . . ; b10 takes two successive 90� turns and fails tosatisfy the second part of 3



De�nition 2.1 A data set b0; b2; . . . ; b2n+2 is called nonin
ecting, if all angles
i := 6 (b2i+2 � b2i; b2i � b2i�2); (1 � i � n);measured in counterclockwise direction, are in (0; 180�) or in (180; 360�) (i.e. the data arealways \turning right" or always \turning left"). If the sum of two consecutive angles 
ialways is in (0; 180�) or in (180; 360�), the data set is called nonre
ecting.Note that any nonre
ecting and nonin
ecting data set admits n�1 \accompanying triangles"formed by b2i; b2i+2 and the intercept gb2i+1 of the lines L(b2i�2; b2i) and L(b2i+2; b2i+4) for1 � i � n� 1 (see Figure 4). Each accompanying triangle must contain a control point b2i+1of the solution, if the latter exists. The main existence result of this paper will beTheorem 2.1 For any nonin
ecting and nonre
ecting data set there is at least one visuallyC2 interpolant by a parametric quadratic spline.The proof is contained in the next two sections.Note that Figure 2 can be made into a solvable problem by small perturbations of b2 and b8.However, as Figure 3 shows, a perturbed problem with nonin
ecting and nonre
ecting datamay have multiple solutions. To get uniqueness, we therefore need additional conditions.De�nition 2.2 A nonre
ecting and nonin
ecting data set is called nondegenerate, if allaccompanying triangles have obtuse angles at the points gb2i+1.An equivalent form of this condition isEither all 
i satisfy 
i 2 (0; 90�) and 
i + 
i+1 < 90�or all 
i satisfy 
i 2 (270�; 360�) and 720� � 
i � 
i+1 < 90�;and in short: A nondegenerate data set� always turns to the left or always turns to the right,� the direction changes only by acute angles,� two successive direction changes sum up to an acute angle.We remark that this form of nondegeneracy is a natural notion:Theorem 2.2 An ordered and su�ciently dense sample of su�ciently many points from anonin
ecting C2 curve will form a nondegenerate data set.Our main result concerning uniqueness will beTheorem 2.3 A nondegenerate data set has a unique visually C2 piecewise quadratic inter-polant. 4



@@@ ���(2:5;�2:5)b0b2 (0; 0)(1; 10)b4 (10; 10) b6(10:1; 0) b8(7:6;�2:5)b10Figure 3: Data with two solutions (a third solution is suppressed)3 Principles of constructionConsider part of a nonin
ecting and nonre
ecting data set as in Figure 5. We introducetangents Ti at b2i forming angles �i with b2i+2� b2i. The intercept b2i+1 of Ti and Ti+1 mustlie in the accompanying triangle b2ib2i+2 gb2i+1 to avoid unwanted in
ection points. Curvatureat b2i is (up to a constant factor) equal to��i = dist (b2i�2; Ti)kb2i�1 � b2ik22 from the left and�+i = dist (b2i+2; Ti)kb2i+1 � b2ik22 from the right(see e.g. [Boehm et. al., '84, p. 11]).Using the obvious identities dist (b2i+2; Ti)hi = sin �idist (b2i�2; Ti)hi�1 = sin (
i � �i)5
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5Figure 4: Accompanying trianglesdist (b2i�2; Ti)kb2i�2 � b2i�1k2 = sin �i�1 = sin(
i � �i + �i�1)dist (b2i; Ti�1)kb2i�1 � b2ik2 = sin �i�1we can express curvature continuity at b2i; 2 � i � n� 1, by the equation1hi sin �i sin2(
i+1 � �i+1 + �i)sin2(
i+1 � �i+1) = 1hi�1 sin(
i � �i) sin2(
i � �i + �i�1)sin2 �i�1 (2)involving only constants hj ; 
j and the variables �j . This gives n� 1 nonlinear equations forthe unknowns �2; . . . ; �n�1; we use �1 = 
1 and �n = 0 to satisfy the boundary conditions.The approach via the system (2) is used later for e�cient numerical treatment of the problem.It does not yield much insight for the proof of existence and uniqueness of a solution.For the latter we theoretically investigate a numerically hazardous \shooting strategy":Start. Choose an arbitrary point b3 between b2 and eb3 on T1.Iteration. For 2 � i � n� 1, if b2i�1 and Ti are given, construct b2i+1 on Ti by usingcurvature continuity at b2i in the formkb2i+1 � b2ik22 = dist (b2i+2; Ti)dist (b2i�2; Ti) kb2i�1 � b2ik22:If this quantity comes out to be too large, b2i+1 moves out of the accompanying triangleformed by b2i; b2i+2; gb2i+1, and the process can not be repeated. Otherwise the tangentTi+1 is �xed by b2i+1 and b2i+2, and the next value of i can be used.6



���������b2i�4 b2i�2 b2ihi�1 gb2i�1]
i�1Ti ��HH Ti�1CC��O �i�1 b2i�1W�i�1 JJJJJJJJJb2i+2hi gb2i+16 
i ��HH��ib2i+1Ti+1��i������b2i+4Figure 5: Local constructionThis process tries to get through to the triangle b2n�2 b2n gb2n�1 and to hit the line L(b2n; gb2n�1)to produce a curvature continuous solution. It is comparable to the \single shooting" methodfor solving a boundary value problem in ordinary di�erential equations. Its (theoretical) suc-cess is equivalent to the solvability of the problem, but experience shows that it is numericallyextremely sensitive. There are simple nondegenerate data sets for which 32{bit precision doesnot su�ce to �nd some b3 to shoot through to the last triangle. Replacement by a \multipleshooting" method is equivalent to solving the system (2), which is recommended for practicalpurposes (see section 6).4 Existence proofWe now proceed to study the topological properties of a single step of the shooting methodde�ned in the last section.Let two lines L1 and L2 intersect in some point S with an angle � of less than 180 degrees.This angle forms two open cones C1 and C2; let A1 6= S and A2 6= S be points on L1 andL2, respectively, but on di�erent sides of S (see Figure 6).De�nition 4.1 A continuous curve z : [0; 1]! IR2 is \transversal in C1", if (see Figure 6)7



��������������������������HHHHHHHHHHHHHHHHHHHHHHHHHHSL2 L1C1 C2�AAA1 ��A2z(t)Figure 6: Transversal curvea) z((0; 1)) � C1,b) z(0) = A1,c) z(1) 2 L2,d) z(1) 6= S.De�nition 4.2 On the con�guration of Figure 6 we de�ne a mapping F : C1 ! C2 bya) F (x) 2 C2 lies on the line L(x) through x and Sb) dist (A1; L(x))kx� Sk22 = dist (A2; L(x))kF (x)� Sk22This de�nition makes sure that the piecewise quadratic polynomial de�ned in B�ezier form bycontrol points A1; x; S and S;F (x); A2 is curvature continuous at S. Therefore F correspondsto a single step of the shooting method.If we introduce polar coordinates as in Figure 7, we get for the image F (r; ') = (R(r; '); ')of (r; ') the expression R2(r; ') = h2h1 sin 'sin (�� ') r2 (3)which shows that F is a smooth function.This follows from h1r2 = h2R2 ; h1 = h1 sin(�� '); h2 = h2 sin ':Lemma 4.1 Let z be a transversal curve in C1. Then:8



��������������������������HHHHHHHHHHHHHHHHHHHHHHHHHHSL2 L1C1 C2�AAA1 ��A2                                L(x)DDDDF (x)RDDDDx r 'DDDD DD  h1 DDDDDD DD  h2h2h1Figure 7: Construction of F (x) in polar coordinatesa) u(t) := F (z(t)) is a continuous curve on (0; 1) in C2.b) u(1) := S makes u continuous on (0; 1].c) limt!0 ku(t)k2 =1.d) limt!0 dist(u(t); L1) = 0.Proof. Everything follows easily from elementary continuity arguments using the propertiesof z and F described in the polar coordinate system of (3) and Figure 7.We now observe that in the con�guration of Figure 8 two instances of Figure 7 are inter-twined. A transversal curve zi�1 in the cone C�i will map by Lemma 4.1 into a curve zi inthe cone C+i . This curve starts in b2i and has the line L(b2i�2; b2i) as an asymptote. Nowthe intersection of this curve with the accompanying triangle b2i b2i+2 gb2i+1 is transversal inthe cone C�i+1. Applying Lemma 4.1 again we get a curve zi+1 in the cone C+i+1 and so on.The shooting process starts with z1 being part of T1.To prove Theorem 2.1 we now use induction on the statement\There is an open nonvoid interval on the line L(b2; eb3) that maps uniquely onto acurve zi in C+i that starts from b2i and has the line L(b2i�2; b2i) as an asymptote."This statement follows from the previous lemma for i = 2, and the discussion illustrated byFigure 8 gives the induction step.The resulting curve zn�1 in C+n�1 necessarily intersects the line Tn given by the boundarycondition at b2n at least once. This proves existence of a solution.Uniqueness is not guaranteed, because zn�1 might intersect Tn in several points. This canbe actually observed by plotting the curves zi, and this is how the solutions of Figure 3 werefound. 9
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Figure 8: Shooting method5 UniquenessDe�nition 5.1 A transversal curve z in C1 is strictly monotonic, if in the polar coordi-nates of Figure 7, the radius r(') is strictly monotonic.Lemma 5.1a) For the image (R(r('); '); ') of a monotonic transversal curve z = (r('); ') in C1 theradius R(r('); ') is strictly monotonic.b) If B2 6= S is a point on the line L1 and the boundary of C2 such that the angle
 = 6 (A2B2S) is obtuse, the image curve F (z) meets the line L(B2; A2) in exactly onepoint (see Figure 9).Proof. The �rst assertion is a direct consequence of (3). If F (z) meets B2A2 in two pointsP1; P2 with '1 < '2 (see Figure 10), then R(r('); ') is no monotonic function of '.For a nondegenerate data set we can apply Lemma 5.1 in each step of the shooting method,because all angles at gb2i+1 are obtuse. Then the curves constructed in the previous sectionhave unique intersections with the sides gb2i+1 b2i+2 of the triangles b2i gb2i+1 b2i+2. This alsoholds for i = n � 1, proving uniqueness. 10
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Figure 10: Uniqueness6 ConvergenceLet f : [a; b] �! IR2 be a smooth planar curve with positive curvature, parametrized byarclength. This section analyzes the convergence of the interpolation process for data fromf , i.e. for data density tending to zero. We can follow [deBoor et. al., '87] to assume a localtwo{dimensional representation of f around a single point byf(0) = � 00 � ; f 0(t) = � cos �(t)sin �(t) ��(t) = �1t+ �2t2 +O(t3)without loss of generality. Curvature at f(t) is�(t) = �0(t) = �1 + 12�2t+O(t2):11



The angle �(t) between the tangent at f(0) and the chordf(t)� f(0) = Z t0 f 0(�)d� = 16 � 6t� �21t33�1t2 + 2�2t3 �+O(t4) (4)can be expanded via tan�(t) = 3�1t2 + 2�2t3 +O(t4)6t� �21t3 +O(t4)as �(t) = tan�(t) +O(t3) = 12�1t+ 13�2t2 +O(t3) (5)for t! 0. The chord lengthh(t) = kf(t)� f(0)k2 = t� 124�21t3 +O(t4)can replace arc length t up to terms of order O(t3). This allows expansions like (5) to bewritten in terms of chord length h instead of arc length:Lemma 6.1 The angle � = �(f; t0; t1) between the tangent to a smooth planar curve f atf(t0) and a chord f(t1)� f(t0) of length h = kf(t1)� f(t0)k is� = 12�(t0)h+ 13�0(t0)h2 +O(h3) (6)for t1 > t0; t1 ! t0, where � is the curvature of the curve.The expansion (6) is independent of the parametrization except for the orientation hiddenin the correspondence of �0 and t1 > t0. For t1 < t0, the analogous expansion is� = �12�(t0)h+ 13�0(t0)h2 +O(h3); (7)obtained from Lemma 6.1 by reversing the parametrization and the sign of curvature. Notethat in both cases the angle has to be taken as oriented from the tangent to the chord.Similarly, one easily veri�es expansions of angles between successive chords in terms of thecurvature at the central or a non{central point:Lemma 6.2 The angle 
 = 
(f; t0; t1; t2) between two chords f(ti+1) � f(ti); i = 0; 1; of aplanar curve f with chord lengths hi = kf(ti+1)� f(ti)k is
 = 12�(t1)(h0 + h1) + 13�0(t1)(h21 � h20) +O(max(h30; h31))= 12�(t0)(h0 + h1) + 13�0(t0)(2h20 + 3h0h1 + h21) +O(max(h30; h31)) (8)for t2 > t1 > t0; t2 � t0 ! 0, where � is the curvature of the curve. The angle between thetangent at f(t1) and the chord f(t1)� f(t0) is� = 12�(t0)h0 + 23�0(t0)h20 +O(h30) (9)in terms of the curvature at t0. 12



Proof: Expansion (9) simply follows from (8) for t2 = t1; h1 = 0, and the �rst representationof 
 in (6) can be written as the di�erence between (6) and (7). To obtain the non{centralrepresentation, the angle between the chord f(t2)�f(t1) and the tangent at f(t0) is evaluatedas 12�1(h0 + h2) + 13�2(h20 + h0h2 + h22) +O(h32)via an expansion of the chord like (4), using h2 = kf(t2) � f(t0)k. The rest follows easily,using h2 = h0 + h1 +O(max(h30; h31)).We now go over to the interpolation of f at points fi = b2i = f(ti) for 1 � i � n with bound-ary conditions using the directions of f 0(t1) and f 0(tn). The density of knots is measuredby h := max1�i�n�1 hi;hi := kf(ti+1)� f(ti)k; 1 � i � n� 1; h0 := hn := 0;and we consider the asymptotic situation h! 0; n!1: The data{de�ned chord angles 
iand the unknown exact tangent angles ��i are representable as
i = 12�i(hi + hi�1) + 13�0i(h2i � h2i�1) +O(max(h3i�1; h3i ));��i = 12�ihi + 13�0ih2i +O(h3i );using Lemmas 6.1 and 6.2 and setting �i := �(ti); �0i := �0(ti). As a �rst application weeliminate the unknown curvature �i and get numerically available tangent anglesb�i := 
ihi=(hi�1 + hi)= 12�ihi + 13�0ihi(hi � hi�1) +O(h3)= ��i +O(h2) (10)as good approximations of ��i . We therefore recommend (10) for local methods and forstarting Newton's method to solve the system (2).The goal of this section is to proveTheorem 6.1 Global GC2 piecewise quadratic interpolation of data from a smooth planarcurve with nonvanishing curvature has an error of O(h4) for data density h! 0.The proof will be reduced to an application ofTheorem 6.2 If local Hermite interpolation of a smooth planar curve near a point withnonvanishing curvature is done by quadratic polynomials using exact positions and ap-proximate tangent directions with errors O(hk) for k = 2 or 3; the error will be O(hk+1)in terms of the distance h between interpolation points.The proof of this result can be omitted because it is just a slight variation of the argumentgiven by deBoor, H�ollig, and Sabin in [deBoor et. al., '87] to prove their O(h6) result forGC2 cubics.Convergence of order O(h3) for the convexity preserving local Hermite interpolationby GC1 piecewise quadratics using approximate tangent angles b�i de�ned in (10) followsimmediately from Theorem 6.2. To prove O(h4) convergence for the global GC2 method ofthis paper, we have to show e�i = ��i +O(h3); h! 0 (11)13



uniformly with respect to i for the solution e�i of the system (2). This will be done viaKantorovitch's convergence theorem for Newton's method (see e.g. [Ortega{Rheinboldt,'70, p. 421]) applied to a scaled version of the system (2).To evaluate (2) at the exact tangent angles �� we �x an index i and apply lemmas 6.1 and6.2 to get the expansions��i�1 = 12�(ti)hi�1 � 23�0(ti)h2i�1 +O(h3)��i+1 = 12�(ti)hi � 23�0(ti)hi +O(h3)
i+1 = 12�(ti)(hi + hi+1) + 13�0(ti)(2h2i + 3hihi+1 + h2i+1) +O(h3)
i � ��i = 12�(ti)hi�1 � 13�0(ti)h2i�1 +O(h3)
i+1 � ��i+1 = 12�(ti)hi + 23�0(ti)h2i +O(h3)
i � ��i + ��i�1 = �(ti)hi�1 � �0(ti)h2i�1 +O(h3)
i+1 � ��i+1 + ��i = �(ti)hi + �0(ti)h2i +O(h3):Putting these into (2) yields an O(h2) expression after some calculations. Similar expansionscan be derived for the angles b�i replacing ��i , and (2) comes out to be of order O(h) at b�.This is not surprising, because the approximate angles de�ned in (10) are exact up to O(h3)for circular arcs.To evaluate derivatives, we rescale (2) from the form F (�) = 0 into G(�) = 0 by setting� := T (�); G(�) := F (T�1�) with T de�ned by�j := Tj(�) := �jmin(hj�1; hj) ; 2 � j � n� 1:Using b� := T (b�) and �� := T (��) we haveF (b�) = G(b�) = O(h); F (��) = G(��) = O(h2)for the scaled version. Now we examine G0 at �� and get@Gi@�i�1 = 2sin2(
i � �i) sin(
i � �i + �i�1)sin3 �i�1 min(hi�1; hi�2)hi�1= (4 +O(hi�1))min(hi�1; hi�2)hi�1 = 4 +O(h);@Gi@�i+1 = 2sin2(�i) sin(
i+1 � �i+1 + �i)sin3(
i+1 � �i+1) min(hi�1; hi)hi= (4 +O(hi))min(hi�1; hi)hi = 4 +O(h);@Gi@�i = 2sin(
i � �i + �i�1)sin2 �i�1 min(hi�1; hi�2)hi�1�(sin(�i�1) + 3 sin(
i � �i) cos(
i � �i + �i�1))+ 2sin(
i+1 � �i+1 + �i)sin2(
i+1 � �i+1) min(hi�1; hi)hi�(sin(
i+1 � �i+1) + 3 sin(�i) cos(
i+1 � �i+1 + �i))= (8 +O(hi�1))min(hi�1; hi�2)hi�1 + (8 +O(hi))min(hi�1; hi)hi = 16 +O(h)= 2 @Gi@�i�1 + 2 @Gi@�i+1 +O(h): 14



The row{sum norm of G0 at �� then is bounded by 32 +O(h); while the inverse has a normbound of 14 +O(h): A similar calculation proves that all second derivatives of Gi at �� arebounded with respect to h! 0. This is where the special form of the scaling pays o�.Kantorovitch's theorem now implies that there exist r > 0 and h0 > 0 such that there is aunique solution e� of G(�) = 0 for each interpolation problem for f with data density h lessthan h0, satisfying ke����k < r in the sup{norm. Furthermore, the solution is reached withquadratic convergence from every starting point � with k� � ��k < r: Because ofjb�i � ��i j = jb�i � ��i j=min(hi; hi�1)= (13j�0(ti)jhihi�1 +O(max(h3i ; h3i�1))=min(hi; hi�1)the starting value b� will be successful for h! 0; if the ratiomax(hi; hi�1)=min(hi; hi�1) (12)is uniformly bounded.Since G(��) = O(h2), the radius of the existence domain can be (theoretically) chosen as anO(h2) function, and therefore the exact solution e� satis�es ke� � ��k = O(h2): But thene�i = e�i(hi + hi�1) = ��i (hi + hi�1) +O(h3)= ��i +O(h3);as required for O(h4) convergence of the interpolation process.7 Numerical treatmentThe asymptotic considerations of the preceding section suggest a modi�ed Newton{Raphsonmethod for solving the nonlinear system (2). The Jacobians will be tridiagonal, and eachiteration needs only O(n) operations. If (2) is written as F (�) = 0 with F : IRn�2 ! IRn�2,then a simple stepsize control is recommended to make sure thata) kF (�)k2 decreases at each stepb) � stays in the admissible region (e.g. 0 < �i < 
i for \right{turning" data or 
i <�i < 2� for \left{turning" data).(see [Schaback, '88] for a comparable situation). Good results are obtained for startingvalues (10), because these satisfy (2) up to O(h). A Gauss{Seidel iteration of (2) may beemployed for an existence proof via Brouwer's �xed{point theorem, but there are exampleswhere the unique solution of (2) is a repelling �xed point of the Gauss{Seidel iteration.Newton's method also works well in cases with multiple solutions and in cases of re
ect-ing data with existing solutions. In cases of nonexisting solutions the method creeps tothe boundary of the admissible domain, using stepsizes tending to zero. There are nonde-generate data sets where the matrix F 0 is not diagonally dominant at the solution, but nonondegenerate case is known where Newton's method failed to converge. For su�cientlydense samples of data with density h! 0 and a bounded ratio (12), Newton's method willconverge quadratically to the solution when started at (10), as the convergence results ofthe preceding section show. 15



8 Examples and Concluding RemarksFigures 11 and 12 show two examples.
uuu u uuuuFigure 11: Logarithmic spiral, 8 pointsFor large numbers of data points, the solutions look very nice and closely approximatefunctions that supplied the data. If data points are far apart, the solution looks a little \toostraight" at interior knots (see Figure 11). This is due to the fact that the interpolatingparabolic pieces normally attain their curvature maximum in the interior of their domain.Existence and uniqueness results extend to the case of piecewise rational quadratic curveswith prescribed weights. This modi�es the system (2) by some extra factors, but leaves thegeometric proof for existence and uniqueness of solutions unchanged.In a forthcoming paper we show how to place cubic polynomial pieces at positions where thedata require an in
ection point or a GC2 continuation into a straight line. Furthermore, thetangential boundary conditions can be replaced by \not{a{knot{" conditions.References[1] Boehm, W., Farin, G.F., Kahmann, J. (1984), A survey of curve and surfacemethods in CAGD, Computer Aided Geometric Design 1, 1 { 60[2] deBoor, C., H�ollig, K., and Sabin, M. (1987), High Accuracy Geometric HermiteInterpolation, Computer Aided Geometric Design 4, 269{278[3] Farin, G.E. (1982), Visually C2 cubic splines, Computer Aided Design 14, 137 { 139[4] Ortega, J.M., and W.C. Rheinboldt (1970), Iterative Solution of Nonlinear E-quations in Several Variables, Academic Press16



[5] Schaback. R. (1988), Adaptive Rational Splines, NAM{Bericht 60, to appear in Con-structive Approximation 1989. Author's address:Prof. Dr. R. SchabackInstitut f�ur Numerische und Angewandte MathematikLotzestra�e 16{18D{3400 G�ottingen
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Figure 12: Letter \O" formed by 15 points
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