Interpolation with piecewise quadratic
visually C? Bézier polynomials

Robert Schaback

Abstract. For data satistying certain generalized convexity conditions, the existence and
uniqueness of a piecewise quadratic curvature continuous parametric spline interpolant in
IR? is proved. Convexity is preserved by the interpolation, and the numerical construction of
the interpolant can be carried out efficiently. The interpolation is 4-th order accurate, and
a number of examples shows both the applicability and the limitations of this interpolation
scheme.

1 Introduction

For given data points
fivooisfam €IRE, n>2, fi # fiqrfor1 <i<n—1 (1)
we want to construct a continuous interpolating curve
s: 1 — IR*, I C IR a closed interval

whose pieces are of class C? and whose tangent direction and curvature vary continuously.
This property is called “visual” or “geometric” C'? continuity and is abbreviated by GC? (see
e.g. [Boehm et. al., ’84] and [Farin, '82]). The interpolant should be convexity preserving
in order to avoid unwanted oscillations. Since nonparametric strictly convex or concave
C? functions have no inflection points and nonvanishing curvature, we introduce a natural
common generalization of convexity/concavity to the parametric situation:

Definition 1.1 A GC? curve s in IR? is (strictly) noninflecting, if the curvature of s
nowhere vanishes. [ ]

If the cross—product for planar vectors is defined as

T
T Xy = —x1ys + a2y for $:<x;>a ?J:<Z;>a

the (signed) curvature of a planar GC? curve fis f'(¢) x f"()/||f/(D)|° at f(t). The sign
of the curvature indicates whether the osculating circle lies to the “left” or “right” of the
curve in the sense of a moving observer looking into the direction of the tangential vector.
Reversing the parametrization will change the sign of this form of curvature.

The following theorem shows that parametric quadratic splines are appropriate tools for
constructing noninflecting curves:



Theorem 1.1 A visual C? parametric quadratic spline curve is strictly noninflecting or a
straight line.

Proof. It is easy to verify that a quadratic polynomial in Bézier form either has identically
zero curvature (in case it is a straight line) or has nonvanishing curvature. ]

The sign of the curvature of a quadratic polynomial s(¢) in Bézier form with control points

bo, bl, bg in RZ and
s(t) = bo(1 — ) +2b1t(1 — ) + bot*, € [0,1]

is determined by the position of b; relative to by and b,. If by is collinear to by and by, the
curve is linear. Otherwise, by lies in the “left” or “right” half-space defined by the oriented
line L(bg, b2), thus determining the sign of the curvature.

2 Solvability conditions

In the following we shall construct the interpolating curve by patching together n—1 quadrat-
ic polynomials in Bézier form with control points f; = bo;, bojr1,b2i40 = fixr for 1 <2 <n—1.
The interior control points by; 41 will be determined by continuity requirements only. As a
result of the above discussion, we can assume for the rest of this paper that the curve is
always “turning to the right”. For “left—turning” data the indexing can be reversed to get
“right—turning” data (positive curvature). Then the points bg; 11 have to be constructed on
the “left” side of the oriented lines L(by;, boiya) = L(fi, fi41), except for the trivial case that
all data points f; are collinear, which we exclude from now on.

Since each quadratic piece has two degrees of freedom and visual C'? continuity imposes
two conditions on each breakpoint fs, f3,..., f._1, we have to fix two additional parameters
via boundary conditions. This can be done by adding two points by # by and by,10 # b,
defining tangent directions at by and by, respectively. The complete interpolation problem
then will be as follows:

Construct a visually C'? curve consisting piecewise of quadratic polynomials in Bézier
form with control points f; = by, boir1, 62400 = fiz1 1 <72 < n — 1, and satistying
boundary conditions

bs — by = p1(by — bo), p1 > 0 arbitrary,
bgn — bgn_l = pn(an—I—Q — bZn)7 Pn >0 arbitrary,

by finding suitable control points bg;11, 1 <2 <n — 1.

Since curvature continuity is a nonlinear condition and no additional degrees of freedom are
available, the problem is equivalent to a nonlinear system of equations (see (2)). It is not
always solvable (see Figure 1), even if the data form a piecewise linear curve that is a limit of
noninflecting curves. We therefore must look for a weak sufficient condition for solvability.
Furthermore, we shall see that unicity of the interpolant requires an even stronger condition
than the one that will be used for the existence proof.



Figure 1: Unsolvable problem, n = 3

To discuss solvability conditions we introduce tangents T; at interpolation points f; = by,
1 <@ < n, where the boundary conditions force Ty and T), to coincide with the lines L(bg, bs)
and L(bay,, banya). respectively. Then by4q is the intercept of T; with T;11. The problem
posed in Figure 1 is unsolvable, because T, has to intersect both T} and T3 in finite points
bs and bs which must lie on the “left” of the lines L(bs, bs) and L(by4, bg), respectively.
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Figure 2: Partially unsolvable problem

Another example is given by Figure 2. This problem is unsolvable for \/z + \/y < 2V/10.
The piecewise linear interpolant of by, b, ..., b1o takes two successive 90° turns and fails to
satisfy the second part of



Definition 2.1 A data set by, by, ..., by,12 is called noninflecting, if all angles
Vi 1= L (baiza — boi, by — boia), (1 <i<n),

measured in counterclockwise direction, are in (0,180°) or in (180,360°) (i.e. the data are

always “turning right” or always “turning left”). If the sum of two consecutive angles v
always is in (0,180°) or in (180,360° ), the data set is called nonreflecting.

Note that any nonreflecting and noninflecting data set admits n—1 “accompanying triangles”
formed by by, bairo and the intercept bg;yq of the lines L(byi_s,be;) and L(baiq2, bzita) for
1 << n—1 (see Figure 4). Each accompanying triangle must contain a control point by, 1
of the solution, if the latter exists. The main existence result of this paper will be

Theorem 2.1 For any noninflecting and nonreflecting data set there is at least one visually
C? interpolant by a parametric quadratic spline.

The proof is contained in the next two sections.

Note that Figure 2 can be made into a solvable problem by small perturbations of by and bs.
However, as Figure 3 shows, a perturbed problem with noninflecting and nonreflecting data
may have multiple solutions. To get uniqueness, we therefore need additional conditions.

Definition 2.2 A nonreflecting and noninflecting data set is called nondegenerate, if all
accompanying triangles have obtuse angles at the points by;iq.

An equivalent form of this condition is
Either all 5; satisfy v; € (0,90°) and ~; + vi41 < 90°
or all v; satisfy v; € (270°,360°) and 720° — ~v; — vi41 < 90°,
and in short: A nondegenerate data set
o always turns to the left or always turns to the right,
o the direction changes only by acute angles,
e two successive direction changes sum up to an acute angle.
We remark that this form of nondegeneracy is a natural notion:

Theorem 2.2 An ordered and sufficiently dense sample of sufficiently many points from a
noninflecting C* curve will form a nondegenerate data sel. [ ]

Our main result concerning uniqueness will be

Theorem 2.3 A nondegenerate data set has a unique visually C* piecewise quadratic inter-
polant.
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Figure 3: Data with two solutions (a third solution is suppressed)

3 Principles of construction

Consider part of a noninflecting and nonreflecting data set as in Figure 5. We introduce
tangents T; at by; forming angles a; with by; 19 — by;. The intercept by of T; and T;1; must
lie in the accompanying triangle 622'622'4_26;2:1 to avoid unwanted inflection points. Curvature
at by is (up to a constant factor) equal to

- dist (bgi_Q,Ti)

S = from the left and
C b — baill3

K

/{_J_ B dlSt (bQH_Q,TZ')

C b — bail3

(see e.g. [Boehm et. al., 84, p. 11]).

from the right

Using the obvious identities

dist (bzit2, T7)
h;
dist (bzi—2,T})
hiy

= sin o;

= sin (y; — o)
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Figure 4: Accompanying triangles

dist (bzi_g, Tz)

||62i—2 — bZi—lHZ
dist (bgi, Ti—l)

[[62i—1 — b2

sin 6,1 = sin(vy; — a; + a—1)

= sin 6;_y

we can express curvature continuity at by, 2 <12 < n — 1, by the equation

1. sin?(Yip1 — a1 + @) o sin(y; — a; + @i_y)
— sin «; — = sin(y; — ;)
h; s (%’+1 - Oéi+1) hiy

(2)

sin? a4

involving only constants h;,v; and the variables ;. This gives n — 1 nonlinear equations for
the unknowns ay, ..., a,_1; we use a; = 1 and «,, = 0 to satisfy the boundary conditions.

The approach via the system (2) is used later for efficient numerical treatment of the problem.
It does not yield much insight for the proof of existence and uniqueness of a solution.

For the latter we theoretically investigate a numerically hazardous “shooting strategy”:
Start. Choose an arbitrary point b3 between b, and l;;, on T].

Iteration. For 2 < i < n — 1, if by;_1 and T} are given, construct by; 1 on T; by using
curvature continuity at by; in the form

dist (bQH_Q, Tz)
dist (bgi_g, Tz)

162641 — bau|5 = [1b2i—1 — bail[3-

If this quantity comes out to be too large, by; 11 moves out of the accompanying triangle
formed by by;, boj12, baiy1, and the process can not be repeated. Otherwise the tangent
Ti11 1s fixed by bg; 41 and by 4o, and the next value of ¢ can be used.



-4 bai—1
0i—1 21
W Yie1 o
bai—s hi—y

bZi—4

baiva

Figure 5: Local construction

This process tries to get through to the triangle by, _o o, b;:l and to hit the line L(bsy,, b;jl)
to produce a curvature continuous solution. It is comparable to the “single shooting” method
for solving a boundary value problem in ordinary differential equations. Its (theoretical) suc-
cess is equivalent to the solvability of the problem, but experience shows that it is numerically
extremely sensitive. There are simple nondegenerate data sets for which 32-bit precision does
not suffice to find some b3 to shoot through to the last triangle. Replacement by a “multiple
shooting” method is equivalent to solving the system (2), which is recommended for practical
purposes (see section 6).

4 Existence proof

We now proceed to study the topological properties of a single step of the shooting method
defined in the last section.

Let two lines Ly and L intersect in some point S with an angle « of less than 180 degrees.
This angle forms two open cones C; and Cy; let Ay # S and Ay # S be points on L4 and
Ly, respectively, but on different sides of S (see Figure 6).

Definition 4.1 A continuous curve z : [0,1] — IR? is “transversal in Cy”, if (see Figure 6)



Figure 6: Transversal curve

Definition 4.2 On the configuration of Figure 6 we define a mapping F : C7 — Cy by

a) F(x) € Cy lies on the line L(x) through x and S

b) dist (Aq, L(x)) _ dist (Ag, L(2))
[l = 513 () = S1I3

This definition makes sure that the piecewise quadratic polynomial defined in Bézier form by
control points Ay, x, .S and S, F'(x), Ay is curvature continuous at S. Therefore F' corresponds
to a single step of the shooting method.

If we introduce polar coordinates as in Figure 7, we get for the image F(r,¢) = (R(r, ), )

of (r, ) the expression

h sin
2 _ 2 14 2
R (r7 S‘Q) - hl Sin (O{ o S«Q) r (3)

which shows that [/ is a smooth function.

This follows from

h h
r—21 = R_227 hl = hl Sin(oz — g@), hz = hg Sin P.

Lemma 4.1 Let z be a transversal curve in Cy. Then:



Figure 7: Construction of F'(x) in polar coordinates

a) u(t) := F(z(1)) is a continuous curve on (0,1) in Cs.
b) u(l):= S makes u continuous on (0,1].
¢) limi_o ||u(t)]]2 = oo.

d) lim;_o dist(u(t), L1) = 0.

Proof. Everything follows easily from elementary continuity arguments using the properties
of z and F' described in the polar coordinate system of (3) and Figure 7. ]

We now observe that in the configuration of Figure 8 two instances of Figure 7 are inter-
twined. A transversal curve z;_; in the cone € will map by Lemma 4.1 into a curve z; in
the cone C{". This curve starts in by; and has the line L(bg;_s, by;) as an asymptote. Now
the intersection of this curve with the accompanying triangle by; bo; 4o b;:l is transversal in
the cone C; ;. Applying Lemma 4.1 again we get a curve z;;; in the cone CZT'_'I_I and so on.
The shooting process starts with z; being part of Tj.

To prove Theorem 2.1 we now use induction on the statement

“There is an open nonvoid interval on the line L(bs, l;;,) that maps uniquely onto a
curve z; in C{" that starts from by; and has the line L(by;_2, by;) as an asymptote.”

This statement follows from the previous lemma for « = 2, and the discussion illustrated by
Figure 8 gives the induction step.

The resulting curve z,_; in CF | necessarily intersects the line T, given by the boundary
condition at by, at least once. This proves existence of a solution. [ ]

Uniqueness is not guaranteed, because z,_; might intersect 7T}, in several points. This can
be actually observed by plotting the curves z;, and this is how the solutions of Figure 3 were
found.



Figure 8: Shooting method

5 Uniqueness

Definition 5.1 A transversal curve z in Cy is strictly monotonic, if in the polar coordi-
nates of Figure 7, the radius r(y) is strictly monotonic.

Lemma 5.1

a) For the image (R(r(p),¢), @) of @ monotonic transversal curve z = (r(¢), ) in Cy the
radius R(r(¢), @) is strictly monotonic.

b) If By # S is a point on the line Ly and the boundary of Cy such that the angle
v =L (A3BS) is obtuse, the image curve F(z) meets the line L( By, As) in exactly one
point (see Figure 9).

Proof. The first assertion is a direct consequence of (3). If F(z) meets By As in two points
Pr, Py with ¢1 < @9 (see Figure 10), then R(r(¢),¢) is no monotonic function of . ]

For a nondegenerate data set we can apply Lemma 5.1 in each step of the shooting method,
because all angles at by;11 are obtuse. Then the curves constructed in the previous section
have unique intersections with the sides b;:l byi1o of the triangles by; b;:l baiy2. This also
holds for : = n — 1, proving uniqueness. [ ]

10



Figure 9: Monotonicity

Figure 10: Uniqueness

6 Convergence

Let f : [a,b] — IR* be a smooth planar curve with positive curvature, parametrized by
arclength. This section analyzes the convergence of the interpolation process for data from
f, i.e. for data density tending to zero. We can follow [deBoor et. al., ’87] to assume a local
two—dimensional representation of f around a single point by

s=(4) ro= ()

0(t) = 01t + 05° + O(t?)

without loss of generality. Curvature at f(?) is
1
k(L) =0'(t) =0, + 502t + O(t?).

11



The angle a(t) between the tangent at f(0) and the chord

F1= 100 = [ oo = ¢ (il ) o) (4

can be expanded via

30117 + 20,47 + O(t)

tan all) = =g - o)
as 1 1
at) = tan a(t) + O(t%) = 501t + §02t2 + O(t?) (5)

for t — 0. The chord length

(1) = [17(0) = O = 1 — =036 + O(1*)

can replace arc length ¢ up to terms of order O(¢?). This allows expansions like (5) to be
written in terms of chord length & instead of arc length:

Lemma 6.1 The angle o = a(f,t0,t1) between the tangent to a smooth planar curve f at

f(to) and a chord f(t1) — f(to) of length h = ||f(t1) — f(to)|] is
1 1, 2 3
o= 5/4;(t0)h + g/i (to)h™ + O(h”) (6)

for ty > tg,t1 — tg, where k is the curvature of the curve.

The expansion (6) is independent of the parametrization except for the orientation hidden
in the correspondence of " and t; > 5. For t; < 1o, the analogous expansion is
1 L, 2 3
a = —§/£(t0)h + g/i (to)h™ + O(h?), (7)
obtained from Lemma 6.1 by reversing the parametrization and the sign of curvature. Note
that in both cases the angle has to be taken as oriented from the tangent to the chord.

Similarly, one easily verifies expansions of angles between successive chords in terms of the
curvature at the central or a non—central point:

Lemma 6.2 The angle v = ~(f,10,t1,12) between two chords f(ti1) — f(t;),s = 0,1, of a
planar curve f with chord lengths h; = || f(tiz1) — f(t)|| is

£(t)(ho + ha) + 51" (1) (AT — h§) + O(max(hg, b))

¥ =

B [0 [ =

forty > t1 > tg,t3 — tg — 0, where & is the curvature of the curve. The angle between the

tangent at f(t1) and the chord f(t1) — f(to) is

1 2
o= 55@0)]10 + g’f/(to)hg + O(hg) (9)

in terms of the curvature at tg.

12



Proof: Expansion (9) simply follows from (8) for t; = ¢;, hy = 0, and the first representation
of v in (6) can be written as the difference between (6) and (7). To obtain the non—central
representation, the angle between the chord f(Z2)— f(#1) and the tangent at f(%o) is evaluated
as

1 1
591(]10 + hy) + gez(hg + hohs + h%) + C’)(h:;’)

via an expansion of the chord like (4), using hy = || f(f2) — f(to)]|. The rest follows easily,
using hy = ho + hy + O(max(hy, h3)). =

We now go over to the interpolation of f at points f; = by, = f(t;) for 1 <7 < n with bound-
ary conditions using the directions of f’(t1) and f’(¢,). The density of knots is measured
by

h = maXi<i<p—1 hs,

h; |f(tig) = fE)|, 1 <i<n—1, ho:=h,:=0,
and we consider the asymptotic situation A — 0,7 — oo. The data—defined chord angles ~;
and the unknown exact tangent angles o are representable as

ki(hi + hio1) + Sk5(h{ — hi_y) + O(max(hi 4, h?)),
/iihi + l/<Jl»h2 + O(h?),

3V '

1
. o 1
O{Z B

/

using Lemmas 6.1 and 6.2 and setting x; := k(t;), &, := &'(f;). As a first application we

eliminate the unknown curvature k; and get numerically available tangent angles

& = yihi/(hic1 + hy)
= grihi + 3rhi(hi — hisa) + O(h?) (10)

as good approximations of af. We therefore recommend (10) for local methods and for
starting Newton’s method to solve the system (2).
The goal of this section is to prove

Theorem 6.1 Global GC? piecewise quadratic interpolation of data from a smooth planar
curve with nonvanishing curvature has an error of O(h*) for data density h — 0.

The proof will be reduced to an application of

Theorem 6.2 [f local Hermite interpolation of a smooth planar curve near a point with
nonvanishing curvature is done by quadratic polynomials using exact positions and ap-
proximate tangent directions with errors O(h*) for k = 2 or 3, the error will be O(LF+)
in terms of the distance h between interpolation points.

The proof of this result can be omitted because it is just a slight variation of the argument
given by deBoor, Héllig, and Sabin in [deBoor et. al., ’87] to prove their O(h®) result for
GC? cubics.

Convergence of order O(h?) for the convexity preserving local Hermite interpolation
by GC' piecewise quadratics using approximate tangent angles @; defined in (10) follows
immediately from Theorem 6.2. To prove O(h*) convergence for the global GC? method of
this paper, we have to show

o}zozf—l—(’)(h?’), h—0 (11)
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uniformly with respect to ¢ for the solution a; of the system (2). This will be done via
Kantorovitch’s convergence theorem for Newton’s method (see e.g. [Ortega—Rheinboldt,
70, p. 421]) applied to a scaled version of the system (2).

To evaluate (2) at the exact tangent angles a* we fix an index ¢ and apply lemmas 6.1 and
6.2 to get the expansions

aiy = ge(t)hiog — 36 (t)hE, + O(R?)
O‘?—l—l = %K(tz)hz — %/i/(ti)hz + O(h?))
Yirr = gh(t)(hi + hiyt) + 6/ (4)(2RF 4 Bhihigy + b)) + O(h?)
vi—af = ga(ti)hiog — e (L), + O(h?)
Yirr — 0fyy = gat)hi + 36/ (1) + O(h7)
vi—oitaiy = w(t)hio—K'(L)hi, + O(h%)

(t:)h:
Yoo — oty b ad = w(l)hi + R ()R 4+ O(R?).

Putting these into (2) yields an O(h?) expression after some calculations. Similar expansions
can be derived for the angles &; replacing o, and (2) comes out to be of order O(h) at a.
This is not surprising, because the approximate angles defined in (10) are exact up to O(h?)
for circular arcs.

To evaluate derivatives, we rescale (2) from the form F(a) = 0 into G(3) = 0 by setting
p:=T(a), G(B):=F(T~'3) with T defined by
-

=5 = _ 2<j<n—1.
ﬂ] ](Oé) miﬂ(h]‘_l, hj)v >J=n
Using B\ :=T(a) and *:=T(a*) we have
F(@) = G(3) = O(h), F(a*) =G(B") = O(h?)

for the scaled version. Now we examine G/ at $* and get

G, - 281112(7 — 052) Slﬂ(% —a; + o, 1) mln(hi—h hi—2)
IBia B sin” o1 hi_q
in(hi_q, hi_
= (g ohy M) o)
i-1
G, _ QSinz(Oﬁ) sin(vi41 — Qi1 + o) min(h_1, hy)
0By sin?’(%j_l }: O‘i-l—};) h;
= (o)™t o),
IG; _ QSiH(% — o+ oq_ll) min(h;_1, hi—2)
Ipi sin cv;_y iy

(sin(ai—1) 4 3sin(y; — i) cos(v; — o + @i—1))
sin(vi41 — Qi1 + o) min(hi_1, hy)
sin (724—1 - a2+1) hz
((sin(Yip1 — @ia) + 3sin(a;) cos(yip1 — arpr + @)

— (84 O(hi_l))mm(h]; vhioa) gy O(hi))w =16 + O(h)
i—1 7
oG, aa,
= 2.0 9 T o).
dBicy  0Bin (2)
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The row—sum norm of G at 3* then is bounded by 32 4+ O(h), while the inverse has a norm
bound of i + O(h). A similar calculation proves that all second derivatives of GG; at 3* are
bounded with respect to A — 0. This is where the special form of the scaling pays off.

Kantorovitch’s theorem now implies that there exist r > 0 and ho > 0 such that there is a
unique solution 3 of G(f) = 0 for each interpolation problem for f with data density h less
than hg, satisfying ||§— B*|| < r in the sup—norm. Furthermore, the solution is reached with
quadratic convergence from every starting point 3 with |8 — 8*|| < r. Because of

B — 37| = |&: — 7|/ min(hi, hiy)
— (%|/€/(ti)|hihi_1 + (’)(max(h?, h?—l))/ min(hi, hi—l)

the starting value B\ will be successful for h — 0, if the ratio
max(hi, hi—1)/ min(h;, hi—1) (12)
is uniformly bounded.

Since G(3*) = O(h?), the radius of the existence domain can be (theoretically) chosen as an
O(h?*) function, and therefore the exact solution 3 satisfies |3 — 3*|| = O(k*). But then

@ = Bilhi + hizy) = B7(hi + hizy) + O(R?)
= o + O(h?),

as required for O(h*) convergence of the interpolation process. [ ]

7 Numerical treatment

The asymptotic considerations of the preceding section suggest a modified Newton—Raphson
method for solving the nonlinear system (2). The Jacobians will be tridiagonal, and each
iteration needs only O(n) operations. If (2) is written as F(a) = 0 with F: [R"™? — IR"™?,
then a simple stepsize control is recommended to make sure that

a) ||F(a)||2 decreases at each step

b) « stays in the admissible region (e.g. 0 < «o; < 5; for “right—turning” data or ~; <
a; < 27 for “left—turning” data).

(see [Schaback, ’88] for a comparable situation). Good results are obtained for starting
values (10), because these satisfy (2) up to O(h). A Gauss—Seidel iteration of (2) may be
employed for an existence proof via Brouwer’s fixed-point theorem, but there are examples
where the unique solution of (2) is a repelling fixed point of the Gauss—Seidel iteration.

Newton’s method also works well in cases with multiple solutions and in cases of reflect-
ing data with existing solutions. In cases of nonexisting solutions the method creeps to
the boundary of the admissible domain, using stepsizes tending to zero. There are nonde-
generate data sets where the matrix F” is not diagonally dominant at the solution, but no
nondegenerate case is known where Newton’s method failed to converge. For sufficiently
dense samples of data with density h — 0 and a bounded ratio (12), Newton’s method will
converge quadratically to the solution when started at (10), as the convergence results of
the preceding section show.

15



8 Examples and Concluding Remarks

Figures 11 and 12 show two examples.

Figure 11: Logarithmic spiral, 8 points

For large numbers of data points, the solutions look very nice and closely approximate
functions that supplied the data. If data points are far apart, the solution looks a little “too
straight” at interior knots (see Figure 11). This is due to the fact that the interpolating
parabolic pieces normally attain their curvature maximum in the interior of their domain.

Existence and uniqueness results extend to the case of piecewise rational quadratic curves
with prescribed weights. This modifies the system (2) by some extra factors, but leaves the
geometric proof for existence and uniqueness of solutions unchanged.

In a forthcoming paper we show how to place cubic polynomial pieces at positions where the
data require an inflection point or a GC? continuation into a straight line. Furthermore, the
tangential boundary conditions can be replaced by “not—a—knot-" conditions.
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Figure 12: Letter “O” formed by 15 points

18



