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Within kernel–based interpolation and its many applications, it is a well–documented but unsolved prob-
lem to handle the scaling or the shape parameter. We consider native spaces whose kernels allow us to
change the kernel scale of a d–variate interpolation problem locally, depending on the requirements of the
application. The trick is to define a scale function c on the domain Ω ⊂ Rd to transform an interpolation
problem from data locations x j in Rd to data locations (x j,c(x j)) and to use a fixed–scale kernel on Rd+1

for interpolation there. The (d + 1)–variate solution is then evaluated at (x,c(x)) for x ∈ Rd to give a
d–variate interpolant with a varying scale. A large number of examples show how this can be done in
practice to get results that are better than the fixed–scale technique, with respect to both condition and
error. The background theory coincides with fixed–scale interpolation on the submanifold of Rd+1 given
by the points (x,c(x)) of the graph of the scale function c.
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1. Introduction

A symmetric kernel
K : Ω ×Ω → R

defined on a domain Ω ⊂Rd is very useful for a variety of purposes from interpolation or approximation
to PDE solving, if certain nodes or centers x1, . . . ,xN ⊂ Rd are used to define kernel translates K(·,x j)
as trial functions. If the kernel is positive (semi–) definite, i.e. the kernel matrices with elements
K(xi,x j), 1 6 i, j 6 N are positive (semi–) definite for all choices of nodes, there is a native Hilbert

†Email: mira.bozzini@unimib.it
‡licia@mi.imati.cnr.it
§Corresponding author. Email: milvia.rossini@unimib.it
¶Email: schaback@math.uni-goettingen.de



2 of 21 M. BOZZINI ET AL.

space H in the background in which the kernel is reproducing, i.e.

f (x) = ( f ,K(·,x))H for all x ∈ Ω , f ∈ H .

The use of reproducing kernels in Hilbert spaces leads to various optimality properties and plenty of
applications, but we leave details to the background literature [1, 6, 25, 23, 11].

If the kernel is translation–invariant on Rd , it is of the form K(x,y) =Φ(x−y) for all x,y∈Rd . In a geo-
statistical context, kernels are viewed as covariances of spatial ramdom variables, and then translation–
invariant kernels are called stationary. If the kernel is radial, i.e. of the form K(x,y) = ϕ(∥x−y∥2) for a
scalar function ϕ : [0,∞)→ R, the function ϕ is called a radial basis function. There also are compactly
supported kernels which vanish outside the unit ball, e.g. the very useful Wendland kernels [24, 25].

Kernels on Rd can be scaled by a positive factor c by going over to the new kernel

Kc(x,y) := K(x/c,y/c) for all x,y ∈ Rd . (1.1)

In case of a radial kernel supported on the unit ball, the support of the scaled kernel now has support
radius c. Large c increase the condition of kernel matrices, while small c let the translates turn into sharp
peaks which approximate functions badly, if separated too far from each other.

The choice of a scaling or shape parameter c of a kernel or radial basis function is a problem that is
around for more than two decades [15, 20, 4, 5, 10, 13]. There are purely experimental reports on the
behavior of kernel–based methods under scaling, and there are optimization techniques that try to find
a good compromise between bad condition and good reproduction quality. A special case of scaling is
the flat limit c → ∞ which is not considered here [9, 12, 18, 19, 21, 22].

Users would like to have the scale of a kernel translate vary with the translation. This means working
with trial functions ϕ(∥x−x j∥2/c j), 16 j 6N in the radial case, but it is easy to come up with examples
that let interpolation in the nodes fail for certain nonuniform choices of scale.

This paper mimics the case of varying scales by letting the scale parameter be an additional coordinate.
This allows varying scales without leaving the firm grounds of kernel–based interpolation. It turns
out that this approach can be fully understood as the standard single–scale method applied to a certain
submanifold of Rd+1, and some numerical examples show that the method works quite satisfactorily in
cases that are spoiled by excessive instability of the standard method.

2. Basics

Let K be a positive definite kernel on Rd+1. We assume readers to be familiar with this notion and with
the standard examples of radial kernels, see e.g. [25].

Definition 1 If a scale function c : Rd → (0,∞) is given, we can define a variably scaled kernel on Rd

by
Kc(x,y) := K((x,c(x)),(y,c(y))) for all x,y ∈ Rd . (2.1)

Note that this definition is different from (1.1). We explain the differences below for special cases
of radial kernels.

The following is easy to prove.
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Theorem 1 If K is positive (semi–) definite, so is Kc.
If K and c are continuous, so is Kc.

If K is positive definite, interpolation of values f1, . . . , fN on X := {x1, . . . ,xN} proceeds via solving
a linear system

Ac,X a = f ∈ RN

with the kernel matrix Ac,X := (Kc(x j,xk))16 j,k6N , which is positive definite. The coefficient vector
a ∈ RN then allows the solution function to be written as

sc,X , f (x) :=
N

∑
j=1

a jKc(x,x j) =
N

∑
j=1

a jK((x,c(x)),(x j,c(x j))). (2.2)

2.1 Radial Kernels

If the kernel is radial, i.e. K(x,y) = ϕ(∥x− y∥2
2), then the kernel matrix entries are

ϕ(∥x j − xk∥2 +(c(x j)− c(xk))
2)

and the interpolant is

sc,X , f (x) :=
N

∑
j=1

a jϕ(∥x− x j∥2
2 +(c(x)− c(x j))

2).

It is identical to the standard kernel interpolant if the scale function is constant.

2.2 Power Kernels

Consider K to be a radial power kernel ϕ(r) = rβ . Then

Kc(x,y) =
(
∥x− y∥2

2 +(c(x)− c(y))2
)β/2

= |c(x)− c(y)|β
(

∥x− y∥2
2

(c(x)− c(y))2 +1
)β/2

is close to (but not identical) to a scaled multiquadric kernel. The interpolants take the form

sc,X , f (x) :=
N

∑
j=1

a j
(
∥x j − x∥2

2 +(c(x j)− c(x))2)β/2

and are similar to scaled multiquadrics, while identical to power interpolants if the scale function is
constant.

2.3 Multiquadrics

Consider K to be the standard multiquadric. Then

Kc(x,y) =
(
∥x− y∥2

2 +(c(x)− c(y))2 +1
)β/2

and the interpolants take the form

sc,X , f (x) :=
N

∑
j=1

a j
(
∥x j − x∥2

2 +(c(x j)− c(x))2 +1
)β/2

.

which can be seen as a variably scaled multiquadric.
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2.4 Gaussian

Consider K to be the Gaussian. Then

Kc(x,y) = exp(−∥x− y∥2
2)exp(−(c(x)− c(y))2)

and the interpolants take the form

sc,X , f (x) :=
N

∑
j=1

a j exp(−∥x j − x∥2
2)exp(−(c(x j)− c(x))2)

which can be seen as a superposition of Gaussians of the same scale but with varying amplitudes for
evaluation.

2.5 Compactly Supported Radial Kernels

Consider K to be a radial kernel K(x,y) = ϕ(∥x− y∥2
2) with compact support in the unit ball of Rd+1.

Then the sparsity of the kernel matrix can be modified by the scale function c via

Kc(x,y) = ϕ
(
∥x− y∥2

2 +(c(x)− c(y))2
)
.

Since the interpolants take the form

sc,X , f (x) :=
N

∑
j=1

a jϕ
(
∥x j − x∥2

2 +(c(x j)− c(x))2),
the support radius can be influenced via c.

3. Theoretical Analysis

The map
C : x 7→ (x,c(x)) (3.1)

maps Rd into a d-dimensional submanifold C(Rd) of Rd+1. A set X = {x1, . . . ,xN} ⊂ Ω ⊂ Rd of nodes
goes into C(X)⊂C(Ω)⊂C(Rd)⊂Rd+1. On Rd+1 and the point set C(X), interpolation by the unscaled
kernel K takes place, and the resulting interpolant (2.2) takes the form

sc,X , f (x) = s1,C(X), f (x,c(x)) = s1,C(X), f (C(x))

with the interpolant s1,C(X), f at scale 1 of the data of f in the points (x1,c(x1)), . . . ,(xN ,c(xN)) of C(X).
This means that in Rd+1 the kernel (2.1) is used, and if we project points (x,c(x))∈Rd+1 back to x∈Rd ,
the projection of the kernel Kc on Rd+1 turns into a varying shape kernel on Rd whenever c(x) is not
constant.

Thus the analysis of error and stability of the varying–scale problem in Rd coincides with the analysis
of a fixed–scale problem on a submanifold in Rd+1. If C is assumed to be a diffeomorphism between Ω
and C(Ω), and if Ω is compact, one can see C(Ω) as any other compact d–variate domain. The usual
error and stability analysis focuses on fill distance

h(X ,Ω) := sup
y∈Ω

min
x∈X

∥x− y∥2
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and separation distance
q(X) := min

X∋x ̸=y∈X
∥x− y∥2

in their standard definitions. These will transform with C accordingly, and will roughly be multiplied
by a factor that scales with the norm of the gradient of c or the Lipschitz constant L of c. In particular,

∥C(x)−C(y)∥2
2 = ∥x− y∥2

2 +(c(x)− c(y))2

6 ∥x− y∥2
2(1+L)2

∥C(x)−C(y)∥2
2 > ∥x− y∥2

2

shows that distances will blow up with C, letting separation distances never decrease, thus enhancing
stability. But fill distances will also blow up, increasing the usual error bounds.

This argument shows that one can successfully use the varying–scale (VSK) technique on points x j and
xk that have

∥x j − xk∥2 = q(X)<< h(X ,Ω).

The scales should then vary like

|c(x j)− c(xk)| ≈ h(X ,Ω)>> q(X),

and this should be done for all close–by pairs of centers until one roughly gets that

q(C(X))≈ h(X ,Ω)≈ h(C(X),C(Ω))

holds, i.e. the transformed centers are approximately uniformly distributed.

All of this is a special case of the following general principle. Given a kernel K : Ω ×Ω → R and a
bijective map

C : Ω 7→C(Ω),

the kernel
KC(C(x),C(y)) := K(x,y) for all x,y ∈ Ω

now acts on C(Ω) and inherits the definiteness properties of K. This will also work “backwards”, i.e.
for a bijective map onto Ω .

This gives rise to two native spaces and their properties, i.e.

f (x) = ( f ,K(x, ·))
K(x,y) = (K(x, ·),K(y, ·))

for all x,y ∈ Ω and
g(u) = (g,KC(u, ·))C

KC(u,v) = (KC(u, ·),KC(v, ·))C

for all u,v ∈C(Ω).

Theorem 2 The native spaces for K and KC are isometric.
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Proof: Functions f on Ω will map to functions C ( f ) on C(Ω) via C ( f )(Cx) := f (x), and this map
C is linear. Furthermore, C (K(·,x))(C(y)) = K(x,y) = KC(C(x),C(y)) and thus also C (K(·,x))(·) =
KC(C(x), ·) hold. Thus we get

K(x,y) = (K(x, ·),K(y, ·))
= (C (K(·,x))(C(·)),C (K(·,y))(C(·)))
= KC(C(x),C(y))
= (KC(C(x), ·),KC(C(y), ·))C

for the two inner products, and this means

( f ,g) = (C ( f )(C(·)),C (g)(C(·))) = (C ( f ),C (g))C

for all f ,g in the span of all K(·,x), which are mapped to all C ( f ), C (g) in the span of all C (K(·,x)) =
KC(C(x), ·). This proves that C is an isometry between the two native spaces.

If we apply this to our special situation, we see that the native space for Kc on Ω is isometrically
isomorphic to the native space for K1 on C(Ω) for the C in (3.1).

4. Numerical Examples

We now provide some examples that show the different roles of the variable scale parameter: it may
affect both the stability and the accuracy. In 4.1 we will show how its appropriate choice enhances
stability, while the rest of this section demonstrates that one can significantly improve the recovery
quality, in particular by preserving shape properties in a much better way than for interpolation with
constant scale.

4.1 Stability

4.1.1 Chebyshev Points . For univariate functions on Ω = [−1,+1], interpolation by polynomials
should be done in Chebyshev points x j =−cos(π( j−1)/(N−1)), 1 6 j 6 N rather than in equidistant
points. But the fill distance of these points behaves like 1/N, while the separation distance behaves like
1/N2. If kernel–based methods are used, this leads to a very large condition in the kernel matrices, no
matter which kernel is chosen. To cope with this, we map the interval Ω = [−1,+1] ⊂ R to the semi–
circle C(Ω) ⊂ R2 via C(x) = (x,

√
1− x2). Then the resulting points are equidistant, and we can work

with a single–scale kernel in R2 for interpolation in C(X). The separation distance will now behave like
1/N like the fill distance.

As a specific case, we chose the Gaussian kernel at fixed scale 0.1 ·
√

2 and took 55 Chebyshev points
to work with. For comparison, we also used 55 equidistant points. The L∞ errors for interpolating
the Runge function f (x) = 1/(1+ 25x2) are given in Table 1(tabRunge). If there is no noise, the
single scale methods are still superior. A possible explanation is that linear systems with badly con-
ditioned kernel matrices and interpolation data from functions in the “native” Hilbert space have good
approximate solutions based on a selection of columns, thus avoiding the influence of small separation
distances. If additive random noise of maximal value ±0.001 is added, the above argument fails and the
bad condition spoils the results seriously.

Results for other kernels and point sets were similar. If there is no noise and the data are from a smooth
function, single scale methods often work fine even if the condition is beyond the limit. The MATLAB
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Points and scaling Condition no noise 0.001 noise
equidistant, single scale 5 ·1014 7 ·10−5 0.0331
Chebyshev, single scale 1 ·1016 1.1 ·10−5 1.4294

Chebyshev, variable scale 8 ·105 1.3 ·10−4 0.0012

Table 1. Interpolation of Runge function by Gaussians

backslash operator provides good approximate solutions in many cases. But as soon as noise and a
bad condition of the single scale problem occur together, the variable scale tends to save the situation.
In contrast to to polynomial interpolation, the equidistant case often is not seriously inferior to using
Chebyshev nodes.

4.1.2 Monotonic Node Transformation in 1D. For scattered nodes −1 6 x1 < .. . < xN 6 1 in 1D one
can find a transformation C that maps them into points z j ∈ R2 which are equidistant. If h is the fill
distance of the given points, one can guarantee

∥z j+1 − z j∥2
2 = (x j+1 − x j)

2 +(c j+1 − c j)
2 = 4h2

by choosing

c j+1 = c j +
√

4h2 − (x j+1 − x j)2,

starting with c1 = 0. This gives a monotonic sequence, and one can use piecewise linear interpolation
to construct a continuous map C with C(x j) = z j, 1 6 j 6 N of the form C(x) = (x,c(x)) with c being
monotonic.

Experiments with this strategy show a similar behavior like the previous example, but the non–differentiability
of the map C spoils convergence rates. For a setting with 55 scattered points in [−1,+1], Figure 1(figC)
shows the monotonic function c that increases sharply where there are close–by points, while it is flat
over holes in the node set. Table 2(tabC) shows the corresponding conditions and errors, again for the
Runge function. Readers should remember that the variable scale interpolation is a fixed scale interpo-
lation along the curve in Figure 1(figC). The maximal errors are attained in all cases near the gap in
the data near x = 0.1. The example shows that the current method (VSK) is more stable and robust.

Points and scaling Condition no noise 0.001 noise
scattered, single scale 2.6 ·1016 1.3 ·10−5 0.0344

scattered, variable scale 3.8 ·108 0.0126 0.0125

Table 2. Interpolation of Runge function by Gaussians, scattered nodes

4.1.3 Cluster of data. We take N = 47 points xi ∈ [−1,1] so that 41 nodes are equispaced in the
interval and 6 close to 0.4, with mutual distance q = 10−4. As c(x), we consider the skew-Gaussian [17]
depicted in Fig. 2

t(x) := 2 · (x−4.0005 ·10−1)/(3.5 ·10−4)
c(x) := exp(−(t2(x)+5 · (1/π arctan(t(x)+1)+0.5)))

(4.1)
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FIG. 1. Monotonic function c for C(x) = (x,c(x))
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FIG. 2. C(x) = (x,c(x)) with some c(xi) values
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In Table 3, we show the condition numbers and the L∞ errors obtained interpolating the Runge
function by the Gaussian kernel at fixed scale 0.1 ·

√
2 and by the proposed technique. In Fig. 3 the plots

of the absolute error for the two interpolants are depicted.

Points and scaling Condition error 0.001 noise
cluster, single scale 3.5 ·1016 6.02 ·10−5 5.4 ·10−1

cluster, variable scale 6.9 ·1010 9.4 ·10−6 3.0 ·10−3

Table 3. Interpolation of Runge function by Gaussians, cluster nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−5

FIG. 3. No noise case; absolute error for the classic case dotted; absolute error for the VSK-interpolant in full line

4.2 Enhancing reproduction quality

In this section, we deal with the problem of obtaining interpolants which reproduce faithfully the un-
derlying functions. (see e.g. [3], [7]). In the following examples, we compare the classical interpolant
provided by the C2 Wendland kernel with support radius 1 with the VSK interpolation provided by the
d-variate C2 Wendland kernel with support radius µ(C(Ω))1/d , where µ is the length or area of C(Ω).

4.2.1 The logistic function. We consider the logistic function

f (x) = (1+2 · exp(p(x)))−0.5, (4.2)

where p(x) = −3 · (10
√

2x2 − 6.7). We take N = 11 nodes with a carefully chosen distribution in the
interval Ω = [0,1]. In particular, we want a higher density where the function changes more quickly and
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a lower density where it is nearly constant. In this case we chose as variable scale c(x) the multiquadric
interpolant sMQ of the given data (with δ = 0.03) multiplied by a tension coefficient. For this example,

c(x) = 2 · sMQ(x), (4.3)

and its plot is shown in Fig. 4, together with the values c(xi) marked.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

FIG. 4. C(x) = (x,c(x))

Note that the classical interpolant (Fig. 5) has near the right boundary an oscillation not consistent
with the underlying function shape, while the VSK interpolant (Fig. 6) is a faithful recovery of (4.2).
The absolute interpolation errors for the two interpolants are shown in Fig. 7.

The L∞ errors are 2.5 ·10−2 for the fixed–scale case and 6.4 ·10−3 for the variable–scale case.



INTERPOLATION WITH VARIABLY SCALED KERNELS 11 of 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

FIG. 5. Classical Wendland interpolant full lined; logistic function dotted
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FIG. 6. VSK-interpolant full lined; logistic function dotted
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FIG. 7. Absolute error for the classic interpolant dotted; absolute error for the VSK interpolant full lined

4.2.2 The sigmoid function. We consider the function

f (x,y) = (1+2 · exp(−3(9
√

x2 + y2 −6.7)))−0.5 (x,y) ∈ Ω = [0,1]2, (4.4)

and a configuration of N = 89 nodes in Ω (see Fig. 8) with higher density where the function changes
most. As in the previous example, we consider the variable scale (see Fig. 9, with marks on the
transformed interpolation points)

c(x,y) = 2.5 sMQ(x,y), (4.5)

where sMQ is the multiquadric interpolant to the given data with δ = 0.15.
The classical interpolant and the VSK-interpolant are shown respectively in Figs. 10, 11 and the

interpolation errors in Figs. 12, 13.
The L∞ errors are 1.3 ·10−1 for the fixed–scale case and 2.5 ·10−2 for the variable–scale case.
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FIG. 8. Given nodes
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FIG. 9. C(x,y) = (x,y,c(x,y))

FIG. 10. Classical interpolation
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FIG. 11. sc,X , f (x)
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FIG. 12. Absolute interpolation error; classical case
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FIG. 13. Absolute error for the VSK-interpolant

4.3 Interpolant with optimal node configuration

In [8], the authors remarked that good node configurations X are those with

q(X)≈ h(X ,Ω).

So our aim is to find a variable scale that transforms the given node set X = {xi}N
i=1 into a set C(X)

satisfying
q(C(X))≈ h(C(X),C(Ω))≈ h(X ,Ω).

Let us consider the well–known humps and dips function by Franke [14] and N = 131 nodes be-
longing to a domain Ω1 ⊃ Ω = [0,1]2. The nodes are more dense in the zones of the maxima and of the
minimum (see Fig. 14). We define the variable scale (see Fig. 15) as

c(x,y) =
N

∑
i=1

pi(x,y), (4.6)

where the functions

pi(x,y) := (1/π · arctan(ai(x− xi))+1/2) · exp(−5 · (y− yi)
2)

increase more steeply at xi with a larger value of ai, if the local density of the data locations is large at
xi. This choice allows us to increase the separation distance q where the node density is high without
increasing too much the fill distance h, achieving or goal this way. In Fig. 16 we show the classical
interpolant performed by using a Gaussian kernel with δ = 0.25 and in in Fig. 17 the VSK-interpolant.
The corresponding interpolation errors are depicted in Figs. 18 and 19. The L∞ errors are 2.1 · 10−1

for the fixed-scale case and 4.2 ·10−2 for the variable–scale case.
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FIG. 14. Given nodes
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FIG. 15. C(x,y) = (x,y,c(x,y))
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FIG. 16. Classical interpolant
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FIG. 17. VSK-interpolant
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FIG. 18. Absolute error for the classical interpolant
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FIG. 19. Absolute error for the VSK-interpolant

5. Conclusions

The examples show how the proper use of the variable scale kernel KC can lead to a more stable and
better shape–preserving interpolant. In particular when the variable scale function c is chosen to depend
on critical shape properties of the data, the interpolant reproduces the underlying phenomenon in a much
more faithful way, and the interpolation error can be reduced in the critical regions to show a much more
uniform behaviour in the whole domain.
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