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Abstract

This paper applies difference operators to conditionally positive def-
inite kernels in order to generate kernel B—splines that have fast decay
towards infinity. Interpolation by these new kernels provides better
condition of the linear system, while the kernel B—spline inherits the
approximation orders from its native kernel. We proceed in two dif-
ferent ways: either the kernel B—spline is constructed adaptively on
the data knot set X, or we use a fixed difference scheme and shift
its associated kernel B—spline around. In the latter case, the kernel
B-spline so obtained is strictly positive in general. Furthermore, spe-
cial kernel B—splines obtained by hexagonal second finite differences of
multiquadrics are studied in more detail. We give suggestions in order
to get a consistent improvement of the condition of the interpolation
matrix in applications.
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1 Introduction

The reconstruction of multivariate functions from discrete data by using the
reproducing kernel of some semi-Hilbert space is an increasingly popular
[9, 3, 4] technique. For computational efficiency, one should look for cheaply
available kernels with good decay at infinity, and for other practical reasons
certain unbounded kernels like the multiquadrics or the thin—plate spline
are useful. To overcome this apparent contradiction, the situation on the
infinite grid [3] and certain preconditioning techniques [6] suggest to take
linear combinations of unbounded kernels in order to generate new kernels
with strong decay properties.

Applying difference operators to linear systems arising from kernel in-
terpolation problems is a well-known strategy for preconditioning (see [3]
and references there). In particular, we recall the paper by Dyn et al. [5]
in which the bidimensional discretization Aj, of the Laplacian operator is
used, and the paper by Powell [7] in which it is observed that the use of Ap
provides a difference operator annihilating all linear polynomials. However,
we do not apply differences to linear systems. Instead, we use new kernels
defined by difference operators acting on the original kernels. These two
strategies are closely related, but the latter allows direct application of all
powerful tools for kernel analysis.

In §2 and in §3 we define kernel B-splines via differences of conditionally
positive definite kernels. This reduces the order of a possible singularity
of their Fourier transform at the origin and turns increasing kernels into
decaying kernels, if the difference order is large enough. Using this technique,
we prove sharp results on the decay of our kernel B—splines at infinity in
the case of multiquadrics and of polyharmonic splines. The construction
of the required differences proceeds via linear combinations of local point
evaluations that annihilate all polynomials of some order k greater than the
order of conditional positivity of the kernel.

In §5 we take a fixed local difference scheme and apply it twice to a
translation—invariant kernel to define a new B-spline kernel which turns
out to be (strictly) positive definite, if the order of the difference scheme is
large enough. This leads to strongly decaying kernels with good approxima-
tion and stability properties. In contrast to [3] on the grid, we assume no
regularity of the data here.

2 Notation

Let ® : IR? — IRY be a translation-invariant [10] kernel used on two
arguments z,y € IR? as ®(x — y) conditionally positive of order m on IR%
and let X,Y,... denote finite subsets of separated points of IR?. We let the
space dimension d be fixed and remove it from further notation. The space



of d—variate polynomials up to order at most k£ will be denoted by [P, its
dimension is q(k) = (k+g_1), and a basis is denoted by pi,...,pep). If X is
a point set in IR? consisting of M := | X| elements, we define the | X| x g(k)
matrix
Px = (pj(l'i))xiexggqu(k)
and the space
Vi = {a e R . P;}ka = O} . (1)

We generally assume k > m, |X| > q(k) > q(m), and
rank Py j = q(k). (2)

Note that for K = m this is the standard additional condition on the point
locations, ensuring solvability of the interpolation problem on X for a con-
ditionally positive definite kernel of order m. For any two finite sets X and
Y we use the notation

for the | X| x |Y| matrix of values of the kernel ® on X and Y.

Definition 2.1 For each |X| C IRY, each k with q(k) < |X| and each
a € Vx i we call a function

ux kolz) = Y oj®(x—z ) (3)
l‘jEX
a kernel B-spline based on ® with knot set X and annihilation order k.

Note that this generalizes the standard univariate B—spline definition, but it
will in general not yield a function with compact support. However, it will
in many cases provide a function with strong decay towards infinity, and we
shall address this question in the next section.

3 Properties

First of all we observe that the decay of any kernel to infinity depends on
the behavior of its Fourier transform at the origin. Therefore we take (3)
and evaluate the Fourier transform as

ixpal@) = woxral)
Oxhalw) = D aje . (4)
CE]‘EX

The condition in (1) yields

x ha(w) = O(||wl5) near w =0,



following from Taylor expansion of the exponential around zero (see e.g.
[11]). Thus the second factor in the Fourier transform of the kernel B—
spline modifies the behavior at the origin. When going over from ® to the
B-spline kernel ux j o, the order of the possible singularity of the Fourier
transform reduces by at least k.

To prove somewhat more precise results, consider the identity
Iz —yl3 = [l = 2|3 - (1 + F(z,y,2))
with

Iyl — 215 + 267 ~ 9)
Flows) =

for sufficiently large z and bounded y, z. We shall use the fact that F' is a
quadratic polynomial in y and decays like ||z||;* for £ — oo.

Consider classical multiquadrics first. Then, by expansion of —/1+1
around zero, we get

1/2
—(1+ [lz —z;]13)"

_ 1/2
= —lz =zl (o — 2l5° + 1+ F(z, 25, 2))

o0

_ )

= —llz =zl et ((lle = 2ll5” + F(z, 35, 2))
=0

o0
_ ¢
= crlle — 201572 (1 = ll213 + llz 113 + 227 (2 — =)
£=0

o . .

= Y ale—z5* Y (e) (1= 11213)" s 13 (257 (2 — )"
£=0 do+i1+ia=L

Now let a be a vector that annihilates polynomials on X up to order k as

in (1), and form the multiquadric kernel B-spline with these coefficients.

Then only terms with 241 + 49 > k are left in the sum, and we get a decay

order of at least

1—20+149 =1—24g— 241 —2i9+19 = 1—245— 211 — 1o < 1—-23—k < 1-—k.

Let us now do the same trick with the polyharmonic spline. First we consider
the case of d even, ®(t) = |[t]|>*~%log||t||*> with s € Z,, and we put 2r =
2s —d. We find

Iz — 213 log ||z — ;13
= |z —z;[3" log (= — 2|3 (1 + F(z,;,2)))
= |z — ;13" (loglz — z[13 +log(1 + F(z, ), 2)))
= (o — =3 log ||z — 2[13) + (llz — =;[3" log(1 + F (x, 25, 2))) -

Again, let a be a vector that annihilates polynomials on X up to order k as
in (1), and form the kernel B—spline with these coefficients. We now assume



k> (2r +1) to get rid of the first summand of the above equation, because
it is a quadratic polynomial in z;. We are left with the second one, rewrite
it as
|z — ;13" log(1 + F(=, z;, 2))
=z —2[3" (A + F(z,25,2))" log(1 + F(, 2, 2))

and expand (1 4 ¢)" log(1 + t) around zero to get

|z — 2||3" (1 + F(z, zj,2))" log(1+ F(z,zj,2))

o0

= o — 28y ceF(z,25,2)"
=1
- 2r—2¢ 2 2 T t
= Y alls— 2037 (13 - 1213 + 257 (2 - )
=1

I / i . ;
= Salz-2F* > () (—11213) " N2 13" (267 (2 — =)
=1

t0+i1+ia=~

With the same argument as for the multiquadric, we now get a decay order
of at least 2r — k for k > 2r + 1.

In the case of d odd, the polyharmonic spline is defined as ||¢]|?*~¢ with
s € Z4; by proceeding as before, we obtain a decay order of at least 2s—d—k
for k>2s—d+ 1.

Theorem 3.1 Ifk is the annihilation order of its coefficient vector, a kernel
B-spline based on a classical multiquadric has decay order 1 — k at least at
infinity, for k > 2 . A kernel B-spline based on a classical polyharmonic
spline has decay order 2s — d — k at least, for k> 2s —d + 1.

Note that the above technique does not make specific use of radiality, and
it gives decay results for any point configuration.

Moreover, we point out that the stated decay rates can be numerically
confirmed, but there is no mathematical proof yet for optimality of these
rates.

4 Construction and Experiments

This section deals with the numerical construction of kernel B—splines.
Omitting indices k£ and X from (1), we have to construct vectors a with
PTa = 0. These will not be unique, and there may be additional conditions
that we can impose. In what follows, we shall ignore permutations of points
(or, equivalently, columns of P and elements of «). A standard way to
handle the condition PTa = 0 in view of the rank property (2) is to find
an orthogonal basis of the nullspace of PT, as provided by the MATLAB
command B = null(P'). This yields a matrix B of size | X| x (| X| — ¢q(k))
with BTB = I and P"B = 0. Any o = By with some v € IRIX —1) will
do, and we can impose other conditions to restrict -y.



If the standard RBF system for solving an interpolation problem with k& > m
on X is written as

Axxa + PxpB = [x
P;(:,k:a + 0 = 0
we can use the matrix B for solving
BYAxxBy = B'fx
a = By (5)

PxiB = fx—Axxa
instead.

We did many experiments in 2D with the multiquadric and the thin plate
spline, respectively, using the matrix B as above and looking at the condi-
tion of BT A x,xB. The experiments show that when using a radial basis
function ®(r) in the usual way, we have a better condition for BT Ax x B
than for Ax x. About the dependence on k, we found that as k increases,
the condition Ky(BT A x,xB) decreases. Here are some examples in 2D, for
M = 100 scattered data points.
e For thin—plate splines, we found K2(Ax x) = 8.29 x 10°, while for
k = 2 we have ICQ(BTAX,XB) = 2.42 x 10% and for k = 6 we get
Ko(BTAx xB) = 8.84 x 10%; for k = 13 the largest value such that
q(k) < M, we have Ko(BT Ax xB) = 8.16.

e On the same X and using the scaled multiquadric —/1 + (22 + y?) /62
with § = 0.01, we get K2(Ax x) = 4.22 x 10% and Ky(BTAx xB) =
1.20 x 10° for k = 1; we get Ko(BT Ax xB) = 3.52 x 10* for k = 6,
and for £k = 13 we get ICQ(BTAX,XB) = 7.72. For 6 = 1: we
get Ko(Ax x) = 3.83 x 108, Ko(BTAx xB) = 8.23 x 106 with
k = 1; we get Ko(BTAx xB) = 3.27 x 10'? with k¥ = 6, and we
get Ko(BT Ax xB) = 2.62 x 10* with k = 13.

We note also that when choosing the polynomial order less or equal
than the order m of the conditionally positive definite radial basis, the [2-
conditioning is not modified essentially.

The construction along (5) fits the data (X, fx) by a combination of
radial basis functions constrained to have a decay that is function of k, let
us say Fy(k), and then it calculates the polynomial of order & that fits the
residual in the least squares sense. In general, as k increases, features of f are
shifted from the combination of the radial basis function part constrained
to decay as Fy(k), and they are captured by the polynomial instead. It
is known that the combination of the radial part, plus the polynomial of
minimal order that guarantees strict positivity, can fit f with full accuracy,
but the polynomial of large order might present undue oscillations in regions



with scarce data and in particular at the boundary, so in general it is not
recommended to take the largest k such that g(k) < M.

Our experience shows that k should not be larger than six for smooth
bivariate functions, when M is of the order of one hundred. However, values
of k larger than six can provide accurate results when f is well fitted by a
polynomial (with the multiquadric and with § large enough, we usually have
an improvement of many orders of Ko(BT A x,x B) with respect to Ko(Ax x)
in this case) or, when using uniformly scattered data, we have in addition
a good information at the border. Here we provide examples. We use the
multiquadric with suitable choices of § and k such that the results are accu-
rate both in terms of error and of graphical appearance. The discrete root
mean squared error es and the discrete maximum error ey, both computed
at the points of a uniform grid 61 x 61, are provided.

Example 1: M = 121 mildly scattered data from f(z,y) = (/22 + 3% —
0.6)4 within [0,1] x [0,1]. The results for ¥ = 10 and § = 0.35 are ez =
3.1x1075, eoo = 1x 1072 and Ko(BT Ax x B) = 1.4x 10° while Ky(Ax, x) =
1.7 x 10'°. The graphical output is shown in Fig. 1.

Example 2: M = 161 data of which 121 are mildly scattered within
[0,1] x [0,1] and 40 on the boundary from Franke’s “humps and dips” func-
tion. The results for k = 10 and § = 0.35 are eg = 8.6x107%, eoo = 5.6x1073
and }CQ(BTAX,XB) = 10%. The graphical output is shown in Fig. 2. We
found Ko(Ax,x) = 6.3 x 10'°.

5 Shifted B—Spline Kernels

Theorem 5.1 Let ® be translation—invariant and conditionally positive def-
inite of order m on IR* with m minimal. Furthermore, ® must have a
generalized Fourier transform which is positive almost everywhere on IR%.
Let Y be a discrete set of points around the origin, and let « € IR'Y! be a
nonzero vector with annihilation order k > m on'Y . Then the shifted kernel
B-spline
U(r):= > ojae®(@— (y; — ye))
y; €Y,y €Y

is positive definite on IR®.

The proof is a simple consequence of the relation (4) and of the condition
(1). In fact, the Fourier transform of ¥ is

o) = dw) S ajoe W
y; €Yy €Y

. T
} : oW Y
a]e

ijY

2
= &(w)




and since the singularity of the transform at zero is canceled, the assertion

follows. Here, we made use of the fact [11] that m is the smallest nonnegative

(w)||w|[3™ is integrable around the origin.

A

teger such that ®

11

Figure 1: Example 1: reconstruction.



Remark. If k£ > m is not satisfied, one gets a kernel that still is condi-
tionally positive definite of order m — k.

The above result allows to use shifted kernel B—splines within the stan-
dard setting of interpolation by kernel functions. The decay of the shifted
kernel B—splines is useful for system solving, but it may be necessary to add
polynomials to cope with global trends.

Since the error analysis and stability properties of kernels are dominated by
smoothness properties, as far as orders are concerned, the shifted kernel B—
spline ¥ inherits the properties of ®. Improvements in error and stability
behavior can therefore only be effected via multiplicative constants that
differ from those obtained for the pure kernels. We provide a specific example
later.

The intrinsically bad condition of the matrix A of an interpolation system
is mainly due to the part |A~!|| contributed by the smallest eigenvalue of
A. This part is a function of the separation distance of points, and its order
is not affected by taking linear combinations. Even for quickly decaying
kernels, the norm || A|| will be increasing linearly with the cardinality |X| of
the set X of centers, if the domain is kept fixed. But if the kernel itself is
increasing, one has to expect an additional factor which grows like a power
of the diameter of the domain. This is why an improvement of condition
can be expected when going over from an increasing kernel to a decaying
B-spline kernel.

6 Special B-Spline Kernels

Here we consider two examples in 2D related to the case k = 2. The first
example is a generalization of polyharmonic splines of order m = 2. Let us

consider a scaled multiquadric ®5(z) := /02 + ||z]|3. Then we define as a
Laplacian multiquadric B-spline the function

Uug 1= AP(I)(; = Qp * CI)(;

centered at the origin, where A, is the classical five-point discretization
of the Laplacian with step p occurring in [5]. The parameter p should be
chosen considerably less than ¢ so that the function ugy(z) is close to radial.
In Fig. 3 we show the function normalized to have maximum equal to one,
while the parameters are p = 0.05 and 6 = 1. We recall that the classical
polyharmonic spline is not radial; in fact the directions of the bisectrices of
the axes are privileged.

For the second example, we take the seven points in Y := {yo,y1,...,ys} C
IR? to be the origin 39 = 0 and the six roots of unity yi,...,ys scaled by



the factor p > 0. The coefficient vector is a = %(6, -1,-1,-1,-1,-1,-1),
and it is easy to see that we have annihilation order 2. In fact the Fourier

transform factor in (4) is

olw) = Z aje_i“’Tyf

i=0 \/_ (6)
_ 4 pwi pwav/3 2 .
=1 g cos( 5 5 ) 5 cos(pwi) =: T(pw)

by straightforward computations. It is nonnegative and vanishes only at the

isolated points
4k_7r 4
P V3p

((4k +2)m (40 + 2)7r)

P V3p
for all integers k, ¢, forming a hexagonal grid as an overlay of two standard
grids. Clearly, the expansions around all of these points, including zero,
vanish to second order.

When considering the multiquadric ®5(z) := 1/ + ||z||3, the resulting
hezagonal multiquadric B—spline is not radial, but close to radial for p < 4.
Furthermore, the perturbation theory of [2] applies here, because it can be
easily generalized to the translation—invariant setting.

In Fig. 4 we show the behavior of the close-to-radial hexagonal multi-
quadric B—spline. It was calculated with p = 0.142 and § = 1 and normalized
to have maximum equal to one. The set of functions u;(z) = ug(z — z;) for
z; € X is our basis.

<

) cos(

7 Stability

Theorem 7.1 If g is the minimal separation distance of the data, and if we
take p = 0.142q, the smallest eigenvalue of the interpolation matriz defined
via the hezagonal multiquadric B—spline is at least by a factor of 4/3 larger
than the smallest eigenvalue A4 o of the matriz for unscaled multiquadric
interpolation. With the interpolation matriz A" := {ai;}; j—1 .| x| of the un-
scaled uy basis shifted around on X, and A® = {a%}i,jzl,...\xp the following
holds:
1< Ka(A") <[ X [ p7/2 (3/4X ),

1< Ko(A%) <[ X [ /14| X 3 A

Proof. Following [11] we have the generalized Fourier transform of the 2D

multiquadric as

(L + [[wll2) exp(=|lwll2)
w3

d(w) =

7

10
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Figure 2: Example 2: reconstruction.
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Figure 3: Laplacian multiquadric B-spline.
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up to a constant, which is monotone decreasing and thus attains its minimum

(14 2M)exp(—2M)
8M3

po(M) =

on all [|w|ls < 2M. Note that this function is central in Theorem 3.1 of
[8] for proving stability bounds for the multiquadric. In order to apply this
theorem, we have to evaluate

po(M, p) := ”wHiznst@(w)T(W)

with 7" of (6). We used MAPLE to give a radial local lower bound for T' by

1 V3 2 V3
T(pw) >1— 3 COS(TpIlela) —3 COSQ(TPIlelz) =: G(pllw|l2)

in the range I, := pllw||2 < 2—7; The quantity ®(w)G(p||w|2) is monotone

S

decreasing with respect to ||w||2 for what follows:

DO@IG(pll) = G Glololl) + ()

dG (plwll2)
df|wll2

with the first summand negative and the second summand nonnegative
within the range I,. We consider

dG (pllwll2) |.

R(HwHQ) :| deHg |’

dP(w)
d Glpllwll2) [ /] @(w)

w2

and decompose it as

R(l|lwll2) = Ri(llwll2) - Ra([lwll2),

with
Ry (||lwll2) = (w3 + 3[lwllz +3)/(6(1 + [[wll2))

and

Ry(||wllz) = (tan v3/4 pllwll2)/(V3/4 pllwll2),

both increasing on I,. Because of D(®(w)G(p||lwll2))|w|jz=0 < 0, it follows
that for each ||w||2 € I, the negative first summand is dominating, and so
it follows that D(®(w)G(p||w||2 < 0 in I,. O

Thus we look at ®(2M)G(2Mp) and get the value %(i)(2M) for p =
7/(M+/3). This proves o(M,n/(M+/3)) > 3po(M) for all M.

To provide a lower bound to the smallest eigenvalue X of A, we follow the
line of argument of section 3 in [8] with M := %, where ¢ is the minimal
separation distance of the data locations. This value of M is the optimal

one for bounding the smallest eigenvalue of the multiquadric interpolation

12



matrix from below. Thus for p = 0.142¢g we have an improvement of the
lowest eigenvalue by a factor of 4/3.

To get a comparison for the norms ||A“|| and || A®||, we remark that || A%||
behaves like O(]X|) where | X| is the number of data centers, while ||A®||
will increase like | X |- /1 + p?(€2) where p(f2) is the diameter of the domain
Q. m|

In the case of the Laplacian multiquadric B—spline, there is no improve-
ment of the lowest eigenvalue respect to the one of the multiquadric, but
because of p smaller than in the case of the hexagonal multiquadric B—spline,
the two kernel B—splines can get equivalent stability.

\
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e
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% "::fo SRR
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i

(X0
:‘:“
So30%e8S

Figure 4: Hexagonal multiquadric B-spline.

8 Numerical Experiments with B—Spline Kernels

In this section we show that in numerical applications actually we have a
good stability together with a good recovery of the interpolated function.

In all cases we start with the scaled multiquadric ®5(z) := 1/62 + ||z||% and
then form the hexagonal multiquadric B—spline u = uy, which gave good
results when we approximate a function by few significant points obtained
from a large sample [1]. First of all we consider the condition number of the
interpolation matrix A*%(d) in comparison with the condition number of the
interpolation matrix A®(§) for the classical multiquadric.

We provide the values for the case of 100 scattered data on [0,1] x [0, 1].

e For § = 0.01 we have Ko(A%(8)) = 840 and K2(A%(d)) = 4.2 x 105,

13



e For § = 0.5 we have K2(A%(6)) = 6.9x10° and Ko(A®(5)) = 1.1x 104,
e For § = 1 we have Ko(A%(8)) = 6.8 x10'? and K2(A%®(4)) = 3.8 x 1018.

Now we provide two examples for the recovery of a function. As before we
consider the errors es and ey computed on the uniform grid 61 x 61.

Example 1: M = 101 scattered data (mildly scattered data except for a
cluster of two data) from the function defined as

T:=(zr =z,yr = 0.6 - sin(wz/1.2)) =z €[0.3,0.7]
d(z,y) := minp((z — zr)% + (v — yr)?)
f($ay) =0.1 emp(—d(m,y))

within [0,1] x [0,1]. The results for § = 0.5 are ez = 6.0 x 107°, ex =
4.4 x 107, We have K2(A%(5)) = 4.6 x 10'3 while K2(A®(5)) = 5.6 x 10'7.
The reconstruction is shown in the figure 5.

We get a similar value of the condition when using the kernel B—spline
adapted to X and based on the multiquadric with § = 0.5, but with a slight
loss of accuracy. In fact with k = 5 we get ex = 7.4 x 1075, ey = 7.0 x 1074
and Ko(BTAx xB) = 1.3 x 10*; with k = 6 we get eo = 9.7 x 10~° and
e0o = 1.5 x 1072 and Ko(BTAx xB) = 1.9 x 10%.

Example 2: M = 1024 mildly scattered data from the "peaks” function
in MATLAB. The results for § = 1 are e; = 3.8 x 107°, ey = 1.1 X
1073, We have Ko(A%(d)) = 4.5 x 100 while Ko(A%®(5)) = 2.0 x 10*%. The
reconstruction is shown in the figure 6; by the kernel B—spline adapted to X
and based on ® multiquadric with § = 1 and k = 6, we get ez = 2.3 x 1074
and ey = 7.1 x 1073, and we get BT Ax xB = 2.3 x 10!!.

14
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Figure 5: Example 1: reconstruction.
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