
Lower Bounds for Norms of Inverses ofInterpolation Matrices for Radial Basis FunctionsRobert SchabackAbstract: Interpolation of scattered data at distinct points x1; . . . ; xn 2 IRd by linear combi-nations of translates �(kx� xjk2) of a radial basis function � : IR�0 ! IR requires the solution of alinear system with the n by n distance matrix A := (�(kxi� xjk2). Recent results of Ball, Narcowichand Ward, using Laplace transform methods, provide upper bounds for kA�1k2, while Ball, Sivaku-mar, and Ward constructed examples with regularly spaced points to get special lower bounds. Thispaper proves general lower bounds by application of results of classical approximation theory. Thebounds increase with the smoothness of �. In most cases, they leave no more than a factor of n�2 to begained by optimization of data placement, starting from regularly distributed data. This follows fromcomparison with results of Ball, Baxter, Sivakumar, and Ward for points on scaled integer latticesand supports the hypothesis that regularly spaced data are near-optimal, as far as the condition ofthe matrix A is concerned.Keywords: Radial basis functions, multiquadrics, scattered data interpolation, lower bounds,condition numbers.Classi�cation: 65D05, 41A05, 41A631 IntroductionLet � : IR�0 ! IR be a scalar (\radial") function, and let n distinct points (\centres")x1; . . . ; xn 2 IRd be given, forming a set X := fx1; . . . ; xng. As reported by Hardy [8] andFranke [7], interpolation of real values yi; 1 � i � n, at the centres xi by linear combinationss(x) := nXj=1 �j�(kx� xjk2); �j 2 IR; x 2 IRd (1:1)of translates of �(k:k2) can produce very good numerical results, if � is the \multiquadric"�c(r) = (c2 + r2)1=2, for instance. The interpolation problem for a function of the form (1.1)requires the solution of the linear systemnXj=1 �j�(kxi � xjk2) = yi; 1 � i � n: (1:2)In some cases the n functions �(k � �xjk2) are augmented by a basis of the space IP dm of alld-variate polynomials of total degree less than m. Let� := �(m;d) := �m� 1 + dd �; m � 1; �(0; d) := 0 (1:3)0File : campaper.tex, TEXed May 18, 1994, Status : Revised for J. Approx. Th.1



denote the dimension of IP dm, and let a basis be given by q1; . . . ; q�. From now on, we suppressthe dependence of � on m and d to keep the notation simple. For m > 0 we additionally assumeq1; . . . ; q� to be linearly independent over the set X = fx1; . . . ; xng of centres, which impliesn � �. Then the (n + �) by (n+ �) matrixA := � �(kxi � xjk2) qk(xi)qk(xj) 0 �1�i;j�n; 1�k�� (1:4)which occurs in the generalizationnXj=1 �j�(kxi � xjk2) + �Xk=1 �kqk(xi) = yi; 1 � i � nnXj=1 �jqk(xj) + 0 = 0; 1 � k � � (1:5)of the system (1.2) is called a (generalized) distance matrix. It is nonsingular in the cases�(r) = (c2 + r2)�; �; c > 0; � =2 2ZZ; m � 0(Multiquadrics for � = 1=2)�(r) = (c2 + r2)��; �; c > 0; m � 0(Inverse Multiquadrics for � = 1=2)�(r) = r2� log r; � = m� d=2 > 0; d 2 2IN(Thin-plate splines)�(r) = log(c2 + r2); c > 0; m � 0�(r) = r2�; � = m� d=2; m > d=2; d 2 2IN � 1; or� 2 (0; 1); d 2 2IN � 1; m � 0; or� = 1=2; n � 2; m � 0�(r) = exp(��r2); � > 0; m � 0; (Gaussians).This follows from the work of Micchelli [9] and Schoenberg [15] (see also Dyn [5] and Powell [14]for highly useful surveys of known results). Furthermore, condition numbers of A were oftenobserved to be quite large. Special preconditioning strategies for solving the system (1.5) weresupplied by Dyn, Levin, and Rippa [6] in a variety of special cases.Some very interesting upper bounds for the spectral norm kA�1k2 of A were given by Ball [1],and Narcowich and Ward [10] [11] [12], using Laplace transform methods. These bounds arein terms of the \separation distance"h := min1�i 6=j�n kxi � xjk2 (1:6)and hold for arbitrary placements of centres xj; 1 � j � n. Recently, a paper by Ball,Sivakumar, and Ward [2] derived lower bounds for kA�1k2 for special regular choices of centresby a similar technique. Furthermore, Baxter [4] has investigated the case of centres on subsetsof the integer lattice. Using the Toeplitz structure of A, he derived bounds for kA�1k2 fora wide class of radial basis functions including multiquadrics. His bounds are asymptoticallyoptimal in the sense that their behaviour for n ! 1 is best possible up to a constant factor.2



Since the existing lower bounds of kA�1k2 only hold for data on �nite regular grids, the valueof kA�1k2 might be decreased by irregular placements of centres.This paper complements the work of Ball, Baxter, Narcowich, Sivakumar, and Ward by pro-ducing general lower bounds for kA�1k2, independent of the distribution of centres and in-dependent of the separation distance, via a completely di�erent approach. Combined with theother results, they provide a bound for the possible gain by optimizing the placement of centreswith respect to the condition of A. The �ndings of this paper are roughly of the formkA�1k2 � 1nE(2(d!n=2)1=d � 1;K;�) ;where E(`;K;�) denotes the error of best Chebyshev approximation by polynomials of degreeless than ` to the function �(pr) on the interval [0;K2] de�ned via the diameterK := max1�i;j�nkxi � xjk2 (1:7)of the data set in the Euclidean norm. This relates the bound to the smoothness of � and thedimension d of the space, and in a very remarkable way indeed: the bound tends to be smaller,if the smoothness of the radial basis functions is decreased. The results can be generalized toother matrix norms than the spectral norm to which the other bounds in the literature arecon�ned.2 Basic ResultsWe assume that the radial function �, the n � 2 centres xj 2 X := fx1; . . . ; xng, the spacedimension d, and the polynomial order m are such that the matrix A in (1.4) is nonsingular.For an arbitrary polynomial p 2 IP 1̀ we de�ne the matrixAp := � p(kxi � xjk22) qk(xi)qk(xj) 0 �1�i;j�n; 1�k�� (2:1)as an approximation to A. Note that A and Ap di�er only in their upper n by n submatriceswith entries �(kxi�xjk2) and p(kxi�xjk22), respectively. Thus a good approximation of �(pr)by a polynomial p 2 IP 1̀ on the set T of all real values tij := kxi � xjk22 will produce a goodapproximation of A by Ap.We now pick two arbitrary norms k:kr and k:ks on IRn+� and de�ne the usual operator normkBkr;s := sup � kBxkr=kxks j x 2 IRn+� n f0g 	 : (2:2)By the theorem of Weierstrass, there will be some p 2 IP 1̀ for ` large enough such thatkA�Apks;r � kA�1kr;s < 1 (2:3)holds. We now assert that (2.3) is a su�cient condition for Ap to be nonsingular. In fact, forarbitrary vectors x; y with Apx = y we �ndkxkr = kA�1Axkr = kA�1(y + (A�Ap)x)kr� kA�1kr;skyks + kA�1kr;skA�Apks;rkxkr;3



and reordering yields a bound for kA�1p kr;s.Now, whenever Ap is nonsingular, the n+ � polynomialsp(k � �xjk22); 1 � j � n = jXjqk(�); 1 � k � � (2:4)span the n-dimensional space C(X), because the n �rst rows or columns of Ap are linearlyindependent. For any univariate polynomial p 2 IP 1̀ we can de�ne a subspacePp := ( �Xk=1�kqk + nXt=1tp(k � �xtk22) : nXt=1tqk(xt) = 0; 1 � k � �) (2:5)of the space IP d2`�1, and whenever Ap is nonsingular, we have dimPp � n, because the polyno-mials in (2.4) span the n-dimensional space C(X). If we de�ne��(`) := ��(X; `;m; d) := maxp2IP 1̀ dimPp; (2:6)we conclude that ��(`) � jXj = n (2:7)holds, if ` is large enough to satisfy (2.3) for some p 2 IP 1̀.We now turn this argument upside down. Clearly the function ��(`) is (weakly) monotonic in` and has the obvious bounds � � ��(`) � jXj+ �:Our argument above implies existence of the maximum in the de�nition of`� := `�(X;m; d) := maxf` � 0 j ��(`) < jXjg :This yields ��(`�) < jXj = n; (2:8)which will be needed in the proof ofTheorem 2.1 The inverse of A, if it exists, satis�eskA�1k�1r;s � inf �kA�Apks;r j p 2 IP 1̀�(X;m;d)	 (2:9)where Ap is de�ned by (2.1).Proof: Take any polynomial p 2 IP 1̀� and assume Ap to be nonsingular. Then the n + �polynomials (2.4) span the space C(X). Since they are in the space Pp occurring in (2.6), theinequality (2.8) is violated. Thus Ap must be singular for all p 2 IP 1̀� . But then the inequality(2.3) cannot hold because it would imply the nonsingularity of Ap, as was shown above. Thisproves the assertion. 2Theorem 2.1 relates lower bounds for kA�1kr;s to a somewhat peculiar matrix-valued approxi-mation problem. The error matrix is zero except for the upper left n by n submatrix of A�Apwith entries �(kxi � xjk2)� p(kxi � xjk22); 1 � i; j � n:4



Thus it involves an approximation of �(pr) by polynomials of order at most `� on the set T ofall real values tij := kxi�xjk22 such that the function values are arranged in n�n matrix formand such that the approximation error is measured via the matrix norm k:ks;r from (2.2). Theactual form of the approximation problem is thus determined by the matrix norm chosen. Forthe spectral norm kA�Apk2;2 we get a rather nasty approximation problem, but for the normkBk1;1 = max1�i;j�njbijj (2:10)we can use Chebyshev approximation on T . Here, we interpreted the norms k:kr and k:ksof (2.2) as the usual Lr and Ls norms, but this is by no means mandatory. Studying linearapproximation problems for peculiar norms like the spectral matrix normmay be of independentinterest in approximation theory.We want to give good asymptotic lower bounds for kA�1kr;s in case n ! 1, and we wantto compare the bounds with those of Ball, Baxter, Narcowich, Sivakumar, and Ward for thespectral norm kA�1k2;2. We saw the latter to be rather inconvenient for our approach while goodasymptotics are mainly available for Chebyshev approximation on real intervals. Therefore wetry to get as far as we can with best Chebyshev approximation to the function �(pr) on thereal interval [0;K2] by polynomials of order `. Note that this is equivalent to a best Chebyshevapproximation of order 2` � 1 to the function �(jrj) on [�K;+K], which, by uniqueness andsymmetry, must be a polynomial of maximal order ` in r2. Then we denote the error byE(`) := E(`;K;�) := minp2IP 1̀ max0�r�K2j�(pr)� p(r)j= minp2IP 1̀k�(jrj)� p(r2)k1;[�K;K];writing the Chebyshev norm of continuous functions on a real interval [a; b] by k:k1;[a;b].Theorem 2.2 The inverse of A, if it exists, satis�eskA�1k1;1 � 1E(`�) (2:11)and kA�1k2;2 � 1n � E(`�) : (2:12)Proof: Inequality (2.11) readily follows from Theorem 2.1 and (2.10). Then we conclude (2.12)simply from (2.11) and kBk1;1 � n � kBk2;2for arbitrary n by n matrices B. 2Unfortunately, our approach yields a factor of n�1 in the bound for the spectral norm; thecomparisons at the end of the paper will indicate that we often seem to miss the actualbehaviour of kA�1k2;2 for regular data asymptotically by just this factor. But there appearto be no other handy links between the spectral norm for matrices and the Chebyshev normfor the matrix entries. The factor does not arise if we use (2.11) or replace E in (2.12) by the(unknown) error of best approximation by polynomials in the spectral norm.5



Theorem 2.2 relates lower bounds of kA�1k to the error of best Chebyshev approximations to�(jrj) by polynomials of order `� in the variable r2, and we shall see below that `� behavesapproximately like at least n1=d for large n. Altogether, our lower bounds will grow astronom-ically with n, if �(jrj) can be extended to an entire function in the complex plane C (e.g.:for Gaussians). They will be of polynomial growth, if �(jrj) has only �nitely many continuousderivatives, which is the case for thin{plate splines and positive non-even rational powers of r.However, they will still grow exponentially for all �(jrj) which are analytic in C around [0;K],e.g.: for multiquadrics and inverse multiquadrics, if c is �xed. To get around this, c must tendto zero for n tending to in�nity, moving the singularity of � towards the real axis. The detailsare worked out in the rest of the paper, but due to classical Jackson{Bernstein theorems thelower bounds for kA�1k are directly related to the smoothness of �: they get larger, if thesmoothness increases.3 Auxiliary ResultsThe remaining task now is to evaluate E(`�(X;m; d);K;�) for the functions listed in theintroduction. Since the quantities E(`;K;�) can be estimated using classical results of approx-imation theory (this will be done in the following section), we �rst prove something about ��(`)and `� as de�ned in the beginning of the preceding section. For this, we suppose X, m, and dto be �xed, and we �rst look for an upper bound for �� from (2.6).To derive simple results, the crude bound��(`) � dimIP d2`�1 = �(2` � 1; d)for 2` > m su�ces. It follows easily from (2.5) and uses the general de�nition of �(�; d) from(1.3). But there is an improvement of this bound:Lemma 3.1 Let p be a univariate polynomial of order � `, where ` � m+1. Then the subspacePp, as de�ned in (2.5), is a subspace of IP d2`�1�m and has dimension at mostdim IP d̀ + dim IP d̀�1 � dimIP dm = �(`; d) + �(` � 1; d) � �(m;d): (3:1)Furthermore, ��(`) � �(`; d) + �(` � 1; d) � �(m;d):Proof: By expansion of the translatepy(x) := p(kx� yk22) = `�1Xk=0 �kkx� yk2k2of p into sums of products of simpler terms we get the representationpy(x) = `�1Xk=0�k(xTx� 2xTy + yTy)k= `�1Xj=0 (�2xTy)j`�j�1Xi=0 (xTx)i `�1Xk=i+j�k� kj �� k � jk � j � i � (yTy)k�j�i:6



Thus an arbitrary function taken from Pp in (2.5) can be written as�Xk=1�kqk(x) + nXt=1tp(kx� xtk2)= �Xk=1�kqk(x)+ nXt=1t `�1Xj=0 (�2xTxt)j `�j�1Xi=0 (xTx)i `�1Xk=i+j� kj �� k � jk � j � i ��k(xTt xt)k�j�i= �Xk=1�kqk(x)+ `�1Xj=0 `�j�1Xi=0 (xTx)i `�1Xk=i+j� kj �� k � jk � j � i ��k nXt=1t(�2xTxt)j(xTt xt)k�j�iand we note that the sum over t yields zero whenever j+2(k� i� j) � m� 1. Thus the rangeof i and j can be restricted to m+ j + 2i � 2` � 2, and the function will be contained in thesubspace Q = IP dm + span �(xTy)j(xTx)i j 0 � j � `� 1; 0 � i � ` � 1 � jm+ j + 2i � 2` � 2; y 2 IRd �of IP d2`�1�m. But the number of spanning functions can be further reduced. We assert that Qlies in the subspaceeQ = IP d̀ + span �(xTy)j(xTx)`�1�j j m � j � `� 2; y 2 IRd	 : (3:2)The terms (xTx)i(xTy)j for 2i+ j � `� 1 lie directly in IP d̀. Those with i+ j = ` � 1 that arenot in IP d̀ will have j � ` � 2, and the restriction m + j + 2i � 2` � 2 implies j � m. Thusthese terms clearly lie in eQ. For the remaining cases we can de�ne r := ` � 1 � i� j > 0 andsplit the terms as (xTx)i(xTy)j = (xTx)i�r(xTx)r(xTy)j:We now use that each factor (xTx)r(xTy)j, being a homogeneous polynomial in IP d2r+1+j, canbe represented via terms of type (xTy)2r+j. This leads to terms of the form (xTx)i�r(xTy)2r+j,and these are in eQ, as an easy check of the exponents reveals.We now have to bound the dimension of eQ from above. If Hdj denotes the space of homogeneouspolynomials on IRd of order j, then the space IP d̀ is representable asIP d̀ = span �(xTy)j j 0 � j � `� 1; y 2 IRd	= span �Hdj j 1 � j � ` 	 ; (3:3)and we shall consider the excess of eQ over IP d̀. The representation (3.2) can be rearranged aseQ = IP d̀ + span �Hdj+1(xTx)`�1�j j m � j � ` � 2	 ;and we can repeat the argument used for (3.3) to conclude that the dimension of the second partis bounded from above by dim IP d̀�1� dim IP dm. This proves (3.1), and the second assertion ofthe lemma is obvious because eQ contains IP dm for m � `. 27



If we de�ne `�� := `��(n;m; d) := maxf` � 0 j �(`; d) + �(` � 1; d) � �(m;d) < ng ; (3:4)we have m � `�� � `�: (3:5)Note that `��(n;m; d) is monotonic with respect to n. For `!1 and d �xed, clearly�(`; d) = `dd! +O(`d�1);which implies the asymptotic behaviour`��(n;m; d) = �d!2 n�1=d + O(1) (3:6)for n = jXj ! 1 and �xed values of m and d. This will be su�cient for later use, because (3.5)allows us to work with `��(n;m; d) and (3.6) instead of `�(X;m; d) for large n. Since we are notinterested in cases with very small values of n, we pay no further attention to the unimportantrestrictions n � max(2; �(m;d))and ` � m+ 1.In the one-dimensional case we easily get��(X; `;m; 1) = 2` � 1 for 0 � m � 2`� 1`�(X;m; 1) = b jX j+m2 c;while for d = 2 we �nd ��(X; `;m; 2) � `2 for 0 � m � ``��(jXj;m; 2) = bqjXj � 1 + m(m+1)2 c:4 Approximation OrdersTo get bounds for E(`;K;�) we apply some classical results of approximation theory. We startwithTheorem 4.1 Let f 2 C[a; b] be a real-valued function with a holomorphic extension to anellipse in the complex plane with foci a and b, and let f have a singularity at the boundary ofthe ellipse. If � = R(b � a)=2 is the sum of the two half-axes of the ellipse, thenlim`!1 `�1r infp2IP 1̀kf � pk1;[a;b] = 1R:If, in addition, the absolute value of the real part <(f) of f is bounded by 1 on the ellipse, andif we set a = �1; b = +1 for simplicity, we haveinfp2IP 1̀kf � pk1;[�1;+1] � 8��` : (4:1)8



Proof: The �rst part is due to Bernstein and can be found in [13], p. 194. The re�nedstatement is proven in [16], p. 203. 2To cope with functions like �(r) = r2� we applyTheorem 4.2 For any function f 2 Ck[a; b] with a k-th derivative in the class LipM� we haveinfp2IP 1̀kf � pk1;[a;b] � ck(b� a)k+�`k+� M (4:2)where ck = 126kkkk! �k + 12 �� :If the k-th derivative is continuous, but not contained in any Lipschitz class, then stillinfp2IP 1̀kf � pk1;[a;b] � c̀k (4:3)with a constant c that depends on f , k, and [a; b], but not on `.Proof: This is due to Jackson, see e.g.: [13], p.128.5 Application to MultiquadricsWe �rst treat the case of functions �c(r) = f(c2 + r2) on [�1; 1] for c > 0, where f is analyticin C except for a singularity at the origin. The regularity ellipse of �c then has half-axes oflength p1 + c2 and c, yielding � = c+p1 + c2. If j<�cj is bounded by Cc on the ellipse, then(4.1) implies E(`; 1; f(c2 + r2)) � 8��2`�1Cc;if we approximate �c(r) = f(c2 + r2) by p 2 IP 12`�1 and write the result as a polynomial in r2of order at most `. For functions �c(r) = (c2 + r2)� on [�1; 1] with � > 0 we �ndE(`; 1; (c2 + r2)�) � 8(1 + 2c2)���2`�1and the general case of �c(r) = (c2 + r2)� on [�K;+K] is easily recovered asE(`;K; (c2 + r2)�) � K2� 8(1 + 22)���2`�1with the scaled quantities  = c=K; � =  +p1 + 2;indicating that the relative size  of c and K is crucial.For � < 0 the real part of �c(r) = (c2 + r2)� is unbounded on the regularity ellipse. Thus wehave to use the weaker form of Theorem 4.1 to getE(`;K; (c2 + r2)�) � C�2`�19



on [�K;+K] with a constant C that will depend on c, K, , and �, but not on `. Similarestimates hold for the radial basis function �c(r) = log(c2 + r2).The value �j can be bounded using� =  +p1 + 2 � 1 +  � (1 � =2)�1for 0 �  � 1 to get �j � exp(j=2):Inserting everything into (2.12) we get the lower boundkA�1k2;2 � � exp((2`�� � 1)=2)8nK2� � (1 + 22)�� for � > 0C(c;K; ; �) for � < 0 � (5:1)with exponential growth for �xed  2 [0; 1], where `�� is given by (3.4). Note that (3.6) implieskA�1k2;2 � O 1n exp 2  2�d!2 n�1=d � 1!!! (5:2)for n!1 and �xed ; d. The theory for in�nite grids (see Buhmann [3]) varies c proportionalto the minimal distances of centres. For a �xed �nite domain in IRd with centres forming adense subset, this strategy is resembled by letting  vary like n�1=d. Then the behaviour forn!1 is kA�1k2;2 � O�1n�for � > 0, because the exponential function in (5.2) gets a constant argument due to cancella-tion.6 Application to other radial basis functionsFor �(r) = r2� with 2� = 2p + 1; p 2 IN�0 we again approximate �(jrj) on [�K;K] bypolynomials in IP 12`�1 and take advantage of the symmetry of the best approximation. Sincethe derivatives up to order 2p = 2� � 1 are continuous and the k := 2p-th derivative is in aLipschitz class LipC� with � = 1 and C := (2�)! we can invoke Theorem 4.2 to getE(`;K;�) � c2p(2K)2�(2` � 1)2� (2�)!and the lower bound kA�1k2;2 � (2`�� � 1)2�nc2p(2K)2�(2�)!with the asymptotic behaviour kA�1k2;2 � O �n 2�d �1�for n!1.A similar analysis holds for thin-plate splines of the form �(r) = r2� log r with � 2 IN�1.Derivatives up to order 2� � 1 are continuous, and for `�� � � there is no problem with the10



polynomials that arise when taking derivatives. However, the highest continuous derivative isnot contained in any Lipschitz class. Application of the restricted statement of Theorem 4.2then implies kA�1k2;2 � C(�;K)(2`�� � 1)2��1n = O�n 2��1d �1�for n!1 where C(�;K) is a constant.For Gaussians �(r) = exp(��2r2) we can use the Taylor expansion to getE(`;K;�) � (�K)``! ;providing a disastrous lower bound on kA�1k2;2 for �xed values of �K if n is large.Remark. A variation of our approach would be to approximate �(pr) on [h2;K2] for theseparation distance (1.6) as used by Ball, Narcowich, and Ward. This would make any of theclassical radial basis functions analytic in a neighbourhood of [h2;K2], leading to exponentialdecrease of the approximation error E(`; [h2;K2];�) with respect to polynomials of order `for ` ! 1. The basic estimate has the same form as (5.2), but a detailed analysis revealsthat the exponential term of this bound gets a constant argument because of K � n1=dh and` � n1=d. This corresponds to the cancellation in (5.2) when  or c are scaled to decrease withthe minimal separation distance.For illustration, consider the function (r2)� = t� for t = r2 2 [h2;K2]. After rescaling, itcoincides with the multiquadrict� = �h2 + sK2 � h2K2 �� = �K2 � h2K2 �� � h2K2K2 � h2 + s��with exponent � and c = hK=pK2 � h2 for s 2 [0;K2]. Thus the behaviour of �(r) = r2�, asfar as our lower bounds are concerned, is roughly the same as for multiquadrics with exponent� and a scaling of c � h �  � n�1=d, where the exponential in the bound (5.2) gets a constantargument due to cancellation. For multiquadrics themselves, the e�ect of introducing h justacts like a corresponding increase of c and does not yield any improvement.7 Comparison with other boundsIn general, the upper bounds by Ball [1] and Narcowich, and Ward [10][11][12] provide estimatesof kA�1k2;2 from above in terms of the separation distance h of (1.6). The corresponding lowerbounds of Ball, Sivakumar, and Ward [2] hold for a speci�c regularly distributed set of centresand thus act as strict lower bounds for the worst possible data set with prescribed separationdistance h.In contrast to this, our lower bounds provide best{case estimates of kA�1k2;2 from below,because they hold for every distribution of the data points, including the best possible choice,if the latter should exist. These bounds must necessarily be smaller than the lower bounds ofBall, Sivakumar, and Ward, the di�erence being leeway for optimizing the placement of centres.We start with a comparison of results for multiquadrics on increasing sets of centres withseparation distance 1 in IRd. In this case, the optimal bounds of Baxter [4] for kA�1k2;2 must11



lie between our lower bounds and the upper bounds of Ball, Narcowich, and Ward. WheneverBaxter's bounds coincide with the latter, the conclusion is that regular data asymptoticallyrealize the worst possible distribution with separation distance 1. The di�erence betweenBaxter's bounds and ours may possibly be used for optimization of placements of centres,because we do not make assumptions on the separation distance or regularity of distribution.The optimal bound of Baxter for kA�1k2;2 in the case of centres on integer grids takes the formkA�1k2;2 � �4c 1e�c� + 13e�3c� + 15e�5c� . . . � �4cec�for d = 1 and for multiquadrics �c(r) = (c2+ r2)1=2. The same value arises as the precise limitof kA�1k2;2 for n!1, when the n integer points i 2 IR with 0 � i � n � 1 are taken.Ball, Sivakumar, and Ward [2] get kA�1k2;2 � C ecpdfor n ! 1 and the same data distribution, where the constant C does not depend on c andd. The worst{case upper bound of Narcowich and Ward [10] is constant, too, for n !1 anddata with separation distance 1, while the dependence on c iskA�1k2;2 � Ce4cd:To compare with our results, we consider arbitrary distributions of centres in [0; n] and getkA�1k2;2 � �8n2 exp�n� 1n c2��1 + 2 c2n2��1=2 (7:1)from (5.1) with exponential behaviour for c!1 with n �xed. Thus no other choice of centrescan get rid of this exponential increase of kA�1k2;2 with c.The variation of (7.1) with n for �xed c is o� from Baxter's optimal bound for equidistant databy only a factor of n�2. Note that a factor n�1 may be due to our special combination of matrixnorms, and that there must be at least some leeway to optimize placements of centres, whichis clearly bounded by gaining a factor of n�2.We now compare our bounds with those of Ball [1] and Narcowich and Ward [10] [11] [12] andBall, Sivakumar, and Ward [2] for irregular centres. Since these results are in terms of theseparation distance which does not enter explicitly into our results, we have to make sure thatthe scaling is fair. Thus we can either keep the separation distance �xed and let the centresspread out into all of IRd when their number n tends to in�nity, or we can consider large datasets of centres contained in the unit cube [0; 1]d of IRd, letting the separation distance tend tozero when the number of centres tends to in�nity. We choose the latter possibility because itis somewhat more related to possible applications. The diameter K of the sets of centres weconsider will thus always be bounded by pd, and the Euclidean separation distance h for ncentres in [0; 1]d will be at mosth � pd �n1=d � 1��1 � pd n�1=d; (7:2)12



as can be easily shown by summing the volumes of su�ciently small disjoint cubes around eachcentre. In the following we shall simply use h = pd n�1=d because we are mainly interested inthe case n!1.For multiquadrics �c(r) = (c2+ r2)1=2 the results of Narcowich and Ward [10], as re�ned in [2]by Ball, Sivakumar, and Ward, yieldkA�1k2;2 � C(d) 1h exp�2d ch�with a constant C(d) not depending on c, h, and n. Due to (7.2) this estimate is always worsethan kA�1k2;2 � C(d) n1=d exp �2cn1=dd�if arbitrary placements of n centres in [0; 1]d are allowed. Regular distribution of centres on ascaled integer lattice will yield h = n�1=d andC(d) n1=d exp�12cn1=dpd� � kA�1k2;2according to Ball, Sivakumar, and Ward [2], which has the same asymptotic behaviour forn ! 1 as the best possible upper bound. Thus, as far as upper bounds in terms of theseparation distance are concerned, the approach of Narcowich and Ward gives a best possibleresult for n regular data with n!1.Our approach allows arbitrary centres in [0; 1]d and provesC1(d) 1npd + 2c2 exp�c2(d!n=2)1=d + C2(d)2pd � � kA�1k2;2with suitable constants depending on d only. In the limit n ! 1, the exponential increasecannot be overcome by optimized placement of centres; there is only a factor of at mostO(n�1�1=d) to be gained.The dependence on c is exponential in all cases, and the exponential behaviour is eliminated,if c � n�1=d is chosen. Then, up to constants C1; C2 not depending on n, we haveC1n�1 � kA�1k2;2 � C2 n1=das the possible variation of kA�1k2;2 with the centres, optimizing from a regular distribution.Note that the factor n�1 occurring above was introduced by solving the matrix approximationproblem of section 2 in the \wrong" norm.For inverse multiquadrics �c(r) = (c2 + r2)�1=2 the lower bound of Ball, Sivakumar, and Ward[2] for regular centres is C(d) c exp�12cn1=dpd� � kA�1k2;2;while we get C(d) 1nc exp c2pd  2�d!2 n�1=d � 1!! � kA�1k2;213



for arbitrary centres, which is smaller by only a factor O(n�1) for n!1.We now consider thin{plate splines with �(r) = r2 log r with d = 2; m = 2. Here, the bestpossible form of the upper bound by Narcowich and Ward [12] iskA�1k2;2 � C(d)n3;while we get C(d)n�1=2 � kA�1k2;2:Numerical experiments indicate that regular data have kA�1k2;2 = O(n1=2) for n ! 1. Thuswe conjecture that our bound is o� by a factor of at most O(n�1) from the actual behaviourof kA�1k2;2 for regular data.For �(r) = r2� with � 2 (0; 1), the best possible upper bound by Narcowich and Ward [11] iskA�1k2;2 � C1(d; �)n2�=d;and regularly distributed centres yieldC2(d; �)n2�=d � kA�1k2;2;as was shown by Ball, Sivakumar, and Ward [2]. Our general bound isC3(d; �)n2�=d�1 � kA�1k2;2for arbitrary centres and � = 1=2, containing a O(n�1) factor again.8 ConclusionsThe results of this paper support the hypothesis that regular placement of centres is a goodstrategy as far as minimization of the condition number of the matrix A is concerned. Thetheoretically possible gain by optimization of placement of centres is not more than a factor ofO(n�2) or O(n�1) for n ! 1 in all cases, and the proof technique indicates that the factorO(n�1) arises for technical reasons only. Possibly the bounds on the Euclidean norm of A�1in the literature can be generalized to hold also for the norm kA�1k1;1, and then the factorO(n�1) can be eliminated.Acknowledgement. The author thanks the two referees for a number of useful suggestionsthat helped to improve the presentation.References[1] Ball, K. M., Invertibility of Euclidean distance matrices and radial basis interpolation,CAT Report 201, Texas A& M University, College Station 1989[2] Ball, K. M., Sivakumar, N., and J. D. Ward, On the sensitivity of radial basis interpolationwith respect to minimal separation distance, CAT Report 240, Texas A& M University,College Station 1989 14
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