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Abstract

Introducing a suitable variational formulation for the local error of scattered data interpolation
by radial basis functions ¢(r), the error can be bounded by a term depending on the Fourier
transform of the interpolated function f and a certain “Kriging function”, which allows a
formulation as an integral involving the Fourier transform of ¢. The explicit construction of
locally well-behaving admissible coefficient vectors makes the Kriging function bounded by
some power of the local density h of data points. This leads to error estimates for interpolation
of functions f whose Fourier transform f is “dominated” by the nonnegative Fourier transform
b of ¥(z) = ¢(||z||) in the sense [ |f|2;/3_1dt < oo. Approximation orders are arbitrarily high
for interpolation with Hardy multiquadrics, inverse multiquadrics and Gaussian kernels. This
was also proven in recent papers by Madych and Nelson, using a reproducing kernel Hilbert
space approach and requiring the same hypothesis as above on f, which limits the practical
applicability of the results. This work uses a different and simpler analytic technique and
allows to handle the cases of interpolation with ¢(r) = r° for s € IR, s > 1, s ¢ 2IN, and
o(r) = r*logr for s € 2IN, which are shown to have accuracy O(h*/?).

1 Introduction

Radial basis function interpolation to scattered data (z;, f;) € IR"*! for pairwise distinct points

(“centres”) x1,...,zam € IR" uses a function ¢ : IR>q — IR and the space IP, of polynomials
on IR™ with total order not exceeding ¢ to construct the interpolant
M Q
s() = Y asllle — )+ 3 bipi(a) (1)
=1 =1
via the linear system
M Q
Y ad(lle; —aill) + > bipilw)=f, 1<j<M
=1 =1
" (1.2)
> api(;) =0, 1<i<Q= (""",
7=1
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where py,...,pg is a basis of IP,. For a wide choice of functions ¢ and polynomial orders ¢,

including the case ¢ = @ = 0, the nonsingularity of the (M + Q) x (M + Q) system (1.2),

written as (IfT g) (Z) _ (g) (1.3)

in matrix notation, has been established by Micchelli [8] and Powell [12]. Following [8], we
assume ['(r) = ¢(1/r) to be conditionally strictly positive definite of order ¢, which implies
that A is positive definite on the subset of vectors u € IRM satisfying PTu = 0. We handle the
case of conditionally strictly negative definite functions ¢(y/r) by going over to the function

—¢(\/r). For ¢ > 0 the additional condition
ple;)=0,1<j <M for pe IP, implies p=0 (1.4)

on ¢ and the positions of data points is required. The numerical problems of (1.3) can be
overcome by preconditioning methods (see Dyn, Levin and Rippa [5], and Dyn [4]), making the
radial basis function approach a promising tool for multivariate interpolation.

We consider interpolation of values f; = f(x;) of a smooth function f on a domain @ C IR".
There are no further conditions on €. The sampling points x; are allowed to be irregularly
distributed over 2 under the restriction (1.4). For local error estimation, we measure the
“density” of centres x; near some x € Q by

ho(w) = hax | min, ly — ;]

for some fixed p > 0, where K,(z) = {y € IR" ‘ |z — y|| < p}, using the Euclidean norm ||.||
(see also [9], [10], [11]).

Our goal is to prove local error bounds of the following form: Given constants p € IR, q €
IN>q, a radial basis function ¢ and a certain function space Fj to be described below, we want
to show the existence of positive constants & > m, k, m € IN, hy, C € IR such that for any
distribution of points x; € IR", 1 < j < M, any function f from Fj, and any point € () with
h,(x) < ho the inequality

|50 () = fW ()] < ¢p - C - by () (1.5)

holds for the error and its u—th derivatives for 0 < |u| < m, where the constant ¢; depends on
f, ¢, and F, only. Then we call (1.5) a local error bound of order k. Here and in the sequel
we use the standard multi-index notation with |u| := > p; for p € IN™.

Convergence of interpolation on regular grids has been studied extensively by Buhmann (see
e.g: [1] for a comprehensive treatment) and others. For the case of scattered data Duchon
[3] treated the thin—plate spline case ¢(r) = r?logr, while Jackson [6] proved a general, but
non—quantitative convergence result. The dissertation of Wu [13] of 1986 contained a rather
general Hilbert space theory for Kriging and related radial basis function methods in the case
of a single variable, including error estimates and convergence results. Recently, Madych and
Nelson [9], [10] developed a reproducing kernel Hilbert space approach to get error bounds of
arbitrarily high order for multiquadrics and inverse multiquadrics, i.e.: for ¢(r) = (c? + r?)*/?
with ¢ € IRvo, s € IR, s ¢ 2IN, s > —n and ¢ > s/2 if s > 0.



This paper is based on the approach of Wu [13] and generalizes it to the multivariate case.
There are some background connections to the work of Madych and Nelson which will be
explained at the appropriate places. Like Madych and Nelson we require the restrictive
condition [ |f|2;/3_1dt < oo for ¢ (x) := ¢(||z||) and show that & in (1.5) can be arbitrarily large
for Gaussians ¢(r) = exp(—cr?), multiquadrics ¢(r) = Vr? + ¢2, and inverse multiquadrics
é(r) = 1/Vr?2 + ¢, ¢ > 0. For these cases our error bounds are equivalent to those of Madych
and Nelson. But our technique also yields the convergence order k& = s/2 for m < s/2 < ¢
in case of the radial basis functions ¢(r) = r* with s € IRso, s ¢ 2IN, and ¢(r) = r*logr
with s € 2IN. Compared to the work of Madych and Nelson the methods of this paper are
somewhat simpler and more direct, but do not provide or require additional information about
the Hilbert space background. They generally imply that the order k in (1.5) is attained, if the
Fourier transform ;/A) satisfies

0 < (1) < O(|[t]| ™)

for [|t|| — oo.

2 Variational formulation

Since the equations (1.2) are solvable under the hypotheses of the preceding section, there is a
Lagrange—type representation

M

s() =Y flaus(), uj(x:) =85, 1 < i j < M, (2.1)

j=1
of the solution. Introducing vectors

R(z) = (o(lle —xi]),... o(lle — xnl])”
S(x) = (p(z),....polx))T,
we assert

Theorem 2.2 The vector U(x) := (ui(2),...,up(z))? formed by the values of the Lagrange
basis functions uy, ..., up of (2.1) at & € IR" coincides with the solution U.(x) of the conditional
minimization problem

min{U"T AU — 2U" R(z) 4+ ¢(0) | U € IRM, PTU = S(x)}. (2.3)

Proof: If (2.3) is solved by Lagrange multiplier techniques, and if the solution is written in
matrix form, there exists a vector V.(z) = (v1(2),...,vg(x))T of Lagrange multipliers such that

(o) (V)= (5) 2

holds for the solution U.(z) of (2.3), which is unique since (2.4) has the same coefficient matrix
as (1.3). For a single © = x;, 1 < j < M, the right-hand side of (2.4) coincides with the j-th
column of the coefficient matrix. Since the system is uniquely solvable, the vector U.(x;) must
coincide with U(x;), the j-th unit vector. But as the components of U, (x) are of the form (1.1),
we have U(x) = U,(x) for all x € IR". O



Remarks: Cardinal interpolants like the wu; defined in (2.1) normally are constructed via the
system (1.3) with data ¢;; for u;. But (1.3) would yield the coefficients of u;, not the vector
U(z) of values uy(x),...,up(x) at a fixed & € IR". Furthermore, the value ¢(0) in (2.3) will
be required later, but could here be replaced by any other constant. While the approach of
Madych and Nelson poses a variational problem in an infinite-dimensional Hilbert space, our
approach uses the finite-dimensional conditional minimization problem (2.3).

We now do the same thing for derivatives. If ¢ is differentiable of order || on (0,00) and of
order 2|u| around zero, and if we define () = ¢(||z]|), the solution U*(“)(:L') of the problem

U e IRM, }

PTU = $W)(z) (2:5)

min {UTAU —2UTRW () + 4(0) ‘

uniquely exists and satisfies a nonsingular linear equation system like (2.4), which formally

coincides with the system
A P U(u)(x) _ R(M)(x) (2.6)
PT 0 V(z) ) 7\ SW(x) :

obtained by differentiation of (2.4). Thus the derivatives ") of U/(z) and V) of V(z) exist and
satisfy (2.6), while U (z) coincides with the solution U*(“)(:L') of (2.5) by the same argument
as above. It might be worth noting that (2.6) and (2.5) always imply polynomial reproduction

up to order ¢ in the sense
M

Sl ) play) = p(x) 2.7)

i=1

for all p € IP,. The special choice of the additive constant in (2.5) will become apparent in
(3.2); it will make the minimum value nonnegative, which is required for the following

Definition 2.8 Let F(r) = ¢(\/r) be conditionally strictly positive definite of order ¢, and
assume ¢ € CH(0,00), ¢ € CM around zero for y € INZ,. Then, for any distribution of

centres x1,...,xn satisfying (1.4), the nonnegative function function /43((1“) defined by
2 . .
(/4;5”(:1;)) := min {UTAU — ZUTR(“)(:L‘) + @/J(z“)(()) ‘U € [&;“)(:1;)}

with the set

[’(M)(:E) = {U = (U17...7UM)T = RM

Z up(z;) = p(x)  for allp € ]Pq} (2.9)

7=1
of admissible vectors is called the Kriging function at z.

As we shall see later, the Kriging function is the norm of the representer of the interpolation
error functional on a reproducing-kernel Hilbert space. However, the next steps will directly
prove the following facts:

a) The interpolation error can be bounded by the Kriging function,

b) The Kriging function can be expressed by a nonnegative integral.

4



Furthermore, section 5 will show that

c¢) there are admissible vectors from [&'5“)(:1;) for (2.5) which allow the integral (and thus the
Kriging function) to be bounded by some power of h,(x).

The first two steps will involve Fourier transforms which are not classically feasible unless we

produce sufficiently “nice” admissible vectors U € K;M(:p) for (2.5). From here on, we consider

i, q, and x as being fixed and do not always indicate dependence on these symbols in the

notation.

3 Fourier transforms

If the hypotheses of Definition 2.8 hold and ¢ (z) = ¢(|[z[) is an absolutely integrable function
with a nicely behaving nonnegative Fourier transform 1 satisfying

_ _ 1 ei(y,t)A n
o) = ollvl) = o [ i v e 1 (31)

we can use identities like

M
> wiwre(|lw; — xi])

]kl

wkez Tj—Tk, t 772)( )

s O t)dt

and ” o1
@ —l) = L=z o)y (1) dt
Grolle—nl) = oo /R ()
1 Zl’ X n
to get
UTAU — 20T RW () + +»21(0)
1 i”: oy ol (3.2)
= w; e\ (it)"e e ;/)( )dt
(277)”/71 = J

for arbitrary U = (uq,...,up) € IRM, expressing the Kriging function via an integral. This
explains the choice of /(27)(0) as the additive constant in (2.5).

For most of the interesting radial basis functions ¢, however, we have to use generalized Fourier
transforms in (3.1) and (3.2). If (3.1) is interpreted as a generalized Fourier transform (e.g.: in
the sense of [7]), the same interpretation applies to (3.2). Fortunately, we can circumvent these
peculiarities, because the function

Zu] iyt — (it)"e “ot) (3.3)



(for U, x;, x, and p fixed) has special properties which make the integral (3.2) well-defined in
the classical sense for most of the interesting cases, provided that U = (uy,...,up )T lies in the

admissible set Ké“)(:z;) of (2.9). To prove this, we start with

Lemma 3.4 For every admissible vector U € Kéu)(:z;) the function gu(t) has the property

o(l[t]|*)  for [t} — 0
gu(t)] < : (3.5)
Ot for [t]| — oo

Proof. lLet
e’ = pq(l‘) + xqrq(x)v Py € ]qu |rq($)| < €|x|

be the Taylor expansion of €” to order ¢, and let U € [&'5“)(:1;) be admissible for (2.5). For ¢ >0
we use (2.9) to get

ﬁ;uy‘pq(i@j — 1) = ( il )y:qu(z(y —z,1))

dy»
= (it)"p(0)
_ @y 0<|ul<qg—1
- 0 else '
Then (3.3) yields
M
gU(t)e—i(ac,t) Z ujez(acj z,t) (Zt)u
7=1
M
= > upia; — 1)) — (it)"
7=1
M
+Z ui(ifa; — @, 1)) re(iz; — . 1))
=1
y
= > uli{r; — o, 0)) rg(ila; — x,1))
7=1

for 0 < |u] < ¢ — 1. This proves (3.5), if (3.3) is used directly for ||t|| — oo. The cases ¢ =0
and |p| > ¢ now are easy.

With Lemma 3.4 and some additional assumptions on ;/A) the integral in (3.2) can now be shown
to exist classically:

Theorem 3.6 Let the generalized Fourier transform of ¢(x) = ¢(||z||) exist and coincide with
a continuous function ¥ on R"\ {0} satisfying

0 < L/Z(t) < c{ [[t]|7m for ||t|| — 0 } (3.7)

7= for ] — o0
with constants ¢ € IRsg, so, Seo € IR, where we additionally assume

2|p| < 800 and sg < 2g. (3.8)
Then for all U € [&’5“)(:1;) we have (3.2) with a well-defined integral.

6



Proof: From Lemma 3.4, (3.8), and (3.7) we get the classical existence of the integral in
(3.2). With (3.3) and the theorem on monotone convergence, (3.2) equals

m=ca (27lr)n /R lgur (1) [P M/ (1)t

lim

(3.9)

with the test functions
2 2
G (1) = |gu(t) P /m

using the definition of the generalized Fourier transform for tempered distributions. Further-
more, the Fourier transform G,,(z) of (,, can be explicitly calculated up to a constant oy,

_ _ _ 2,2
S wjuge e IP?

as

7,k
— 2w (= 1)) up DM (eI lemmlEmt

k
+ mnD2u(e—||Z||2m2/4)7

where D denotes differentiation with respect to z. Insertion into (3.9) yields (3.2), using the
properties of the delta sequence o,,,m"e~lFIFm?*/4, a

The reproducing kernel Hilbert space approach of Madych and Nelson [9] [10] uses a different
method of regularization of integrals of the form (3.2): they consider a space of test functions
modulo Ly—orthogonality to polynomials and have to go all through a specific theory of dis-
tributions to make their variational problem well-defined. Note that in our approach there
are no problems with the variational formulation; the specific integral representation needed
elaboration. We now can write the Kriging function as an integral:

Theorem 3.10 Under the assumptions of Theorem 3.6 the Kriging function has the represen-

tation
1 - i
(1) () - i / eiEt) (i yreiled ;Z?(t)dt (3.11)
kM (x min uje it)'e :
(RO = ot T o | 22
with K, ,(x) defined as in (2.9), and the integral exists in the classical sense. O

4 Error bounds

If the data (2, f;) stem from a smooth and absolutely integrable real-valued function f on IR"

with a nicely behaving Fourier transform ]/C\ satisfying

1 o
T / St e IR
we can use the solution U (z) = (ugu)(:p), . .,ug\g)(:p))T of (2.6), which coincides with the

derivatives of the Lagrange interpolation functions from (2.1), to find the error representation

1 M , . A
(2r) /R (Zu;%)ew - <z’t>“e2<x’f>) f(ydt

7

2

|50 (2) = [P (@) =

(4.1)




of the interpolant s to f in the form (2.1), as far as it is feasible to take derivatives. Note
that the bracketed function in (4.1) can be viewed as the Fourier transform of the representer
of the error functional in some Hilbert space. It also is a special instance of a function of the
form (3.3), but with optimal coefficients with respect to the minimization problem (2.5). The
right-hand side of (4.1) is very similar to the Kriging function, and to relate the two we assume

= e [ VOPG0) < o0 12)

in addition to the hypotheses of Definition 2.8 and Theorem 3.6. Then, using the Cauchy—
Schwarz inequality,

[s@ (@) = W (2)* <

M
1 : .
g [ Do e — iy
j=1

= (@),

and the error of interpolation is pointwise bounded by the Kriging function.

<

2 ) | o y |
p(t)dt - ) / PP @) e (4.3)

This argument is feasible, whenever the Fourier transform ]/C\of f allows all intermediate integrals
to exist classically. To cope with generalized Fourier transforms, we proceed as in the previous
section:

Definition 4.4 A function f: IR" — IR is dominated by a radial basis function ¢ salisfying
(3.7) and (3.8) on R"\ {0}, ¢ff f has a generalized Fourier transform [ coinciding on R*\ {0}
with a continuous function satisfying (4.2) for (x) = o(||z]]).

Remarks. The set I} of functions dominated by ¢ may be completed to form a Hilbert space
with inner product

b= [ RORO )

which was thoroughly studied by Madych and Nelson in [9], [10]. This is why the rather
restrictive condition (4.2) occurs there, too, while (4.2) does not appear in [3] and [6]. We
do not want to make direct use of Hilbert space properties here, but proceed directly to an
estimate of /i(g“)(x) in the next section. The application of the Cauchy-Schwarz inequality to
(4.1) allows the error bound to be factored into a term ¢; depending on f, but not on the data
distribution, while the other factor consists of the Kriging function, which is independent of f
but incorporates the sampling points. This is how the special form of (1.5) is obtained, and
this is why we need (4.2). Of course, equation (4.3) shows that the Kriging function /i(g“)(x) is
nothing else than the norm of the representer of the error functional on Madych and Nelson’s
Hilbert space. But knowledge of this fact does not improve the situation; a tight upper bound
on /i(g“)(x) is still to be constructed. This can be done by inserting special admissible vectors
U e [&’5“)(:1:) into (3.11). The next section will perform such a construction. We summarize the
results of this section:

Theorem 4.5 If [ is in the space Fy of functions dominated by a radial basis function ¢
satisfying (3.8) and (3.7), then the interpolation error can be bounded by

[s¥ (@) = fW()] < &Y () - 5 (4.6)
where ¢y is given by (4.2).



Proof: If j is the bracketed function in (4.1), then § W and f/ i are in L*(IR™). Thus the
right-hand side of (4.1) is well-defined and (4.3) implies (4.6). O

5 Construction of admissible vectors for local error
bounds

We start with a fundamental perturbation lemma which bridges the gap between regular and
scattered data sets:

Lemma 5.1 For arbitrary constants p € IRso, k € IN there exist positive real constants
ho, c1, ¢y such that for any distribution of scattered centres x; € Q, 1 <1 < M and arbitrary
points x € ) around which the local density of data points satisfies

= 1 —z < .
ho(x) yéﬂk,é:@)lg&ﬂy zil| < ho (5.2)

and all p € IN3, with 0 < |u| < k — 1 there is a vector U .= (ﬂg“)(:p),...,ﬂg\;)(m))ip in the
admissible set K,g“)(:z;) of (2.9) such that the inequalities

|oj — || < ethy(x) forall j, 1<j <M with it (z)#0 (5.3)

S lal (@)] < exh7 ) (x) (5.4)

i=1

hold.

Proof. The matrix Ry = ()o<|uljaj<k—1 15 a multidimensional form of the classical Van-
dermonde matrix; it is nonsingular because interpolation with polynomials of total order not
exceeding k is possible on the set S} := {a € INZ, ‘ 0 < |a] < k—1}. Here and in the rest
of this section the n-dimensional multi-indices «, 8, , v, and o will always vary in S;'. When
occurring as indices in matrices, we assume a fixed (e.g.: lexicographic) ordering, and the first
index at the brackets in a matrix notation like B = (b,3), s always indicates the row index.
We use p, k, and n to define constants N, ¢y, ¢z, ho by

(a) N = max (L2(k = 1)(2k = D () R )

(b) e = 1+ N(k—1)/n,

() e = 20k = D" R |oes (55)
— P

@ b= g

where ||.]|s is the row-sum matrix norm. Now let the distribution of centres be dense enough
to guarantee (5.2) for @ € IR". Then near all of the points  + Nha with a € S}, which are in
the ball K,(z):={y € IR" | ||y — || < p} by (d) of (5.5), there must be points z, € X with

|za — 2 — Nha|| < h = h,(x). (5.6)

9



Now we get (5.3) for precisely these points z,, if we use (b) of (5.5) for
[za — 2] < h+[[Nhal.

(5.7)
< A1+ N(k—=1)\/n)=crh.

We now want to bound the difference of the two Vandermonde matrices V := ((a - N - b)),
and 7 := ((zo — 2)") 40 With respect to regular and scattered data, respectively, using (5.6).
By a straightforward expansion of the monomial t* we find

|| =1
o N
= 0+ < ol ol gy O+ 7ol
and get the bound
(e — ) = (aNBY| < plh{(ex + (k — )N 5.3

for the matrix elements of Z — V. The scaled regular Vandermonde matrix V = ((aNh)*), o
is expressible as

V= ((aNh)") e = (640 - (NR)H), - Ry (5.9)

via the unscaled (integer) Vandermonde matrix Rj,. We now use (5.8) and (5.9) for

V2 =V)lloo = N8 (ua NA)T),a(Z = V)l

_ _ o fn+k—-1
< sl + () -

n

1 n+k—1 i <c_1 B >|M|—1
L N e C T D

With (a) and (b) of (5.5) we find

IA

R R LR (VD)
< 14 (k=11 +n)
< k4 (k=1)vn

IA
™
Eonl
|
—
B

and continue (5.10) to get

kE—1\1 1
Wzl < e (")) e e -y <L G
n

By Neumann’s series, B := Z~'V exists and its norm is bounded by 2. Some elementary matrix
calculations give

(5cw(Nh)|M|)ma = (ZBR;I)MQ
and we can define

pl (BEY),  (Nh)~W if =2,

0 otherwise

10



Note that the values ﬁg“)(:p) vanish except for those points x; for which we have proven (5.7).

This finishes (5.3). We now assert

> il wplag) = p(a)

for all p € IP,, which is equivalent to U := (&g“)(:p), cee ﬂg\g)(l'))T € [’,5“)(:1;) of (2.9) and to

>l (@)pa; — ) = p(0) (5.12)

for all p € IP;. Representing an arbitrary p € [P, in the monomial basis as

=> ny’

lv|<k

we use the elements 7, , = (z, — )" of the Vandermonde matrix Z to get
Zoz - l’ Zpu Zo )y = Z Zl/,ozpu

and prove (5.12) via

pU0) = plpu = (NN " pobys(NR)!

lo|<k

= pl(NB)WY " p, (ZBR,;l)W

= p!(Nh —lﬂli BR;! szpg
= |“|Z BR p Zo — )

= > il @)p(e; — 2).

i=1

Finally, we establish (5.4) using (c) of (5.5) and

S @) < pl(NR)TEY | (BREY),

=1 o
< p(NR)MIBR K
< (k= DRl (R et
where we had to go from the column-sum norm ||.||; to the row-sum norm ||.||ee- O

Now assume p € [R5 and an integer k£ > ¢ to be chosen for Lemma 5.1 such that (5.3) and
(5.4) hold, whenever (5.2) is satisfied. Then the proof technique of Lemma 3.4 yields

‘gﬁ(t)e—z(x,t)‘ — Z ab 2 (zj—m,t) (Zt)u
< thp Wl () ek B (o) [ e et

11



for 0 < |pu| < k, which specializes to
|96/ (1) e 0] < epctet 18]y~ (@)
for h,(x)-||t]| < 1. Direct application of (5.4) to g implies
|9 (1)e 0] < eph V() 4 121 < (ea + D2,
for h,(xz)-[|t]] > 1. Both bounds can be inserted into the Kriging function to get
(+(0) " < chepher V@)K 2k, . By ()
+ (L4 &) Ko(2lpl, v, ()

for 0 < |u| < min(k, so./2) with the abbreviations

Kajosh) = e [ P
7Tn

Kaljoeh) = o [ e
27)" Sz sm

To evaluate Ki(2k, b, h) for b satisfying Theorem 3.6, we make use of (3.8) and s < 2¢ < 2k

to get
. A 1 ,
Ky (2K, 1, ho) + ~ / ([£]|2%25 (¢ ) dt
(27)" Jipo<ii<asn

< O(1) + O(h*="2F)

N

K (2k, 0, h)

for h — 0. Likewise, we find

Ko(2pl, b, h) = O3
using 2|u| < so from (3.8). We summarize:

Theorem 5.14 Let ¢ satisfy the assumptions of Theorem 3.6, and let p € IRso be given.
Then there exist positive real constants hg and C such that for any distribution of centres
z; € IR, 1 <i¢ < M, and any point x € IR™ with (5.2) the Kriging function can be bounded by

/ig“)(x) < Ch;“/z_M(:z;) (5.15)
Jor 0 < |p| < s5.0/2.

Proof: Lemma 5.1 allows to pick any k£ > s.,/2 and to apply the above argument, where large
values of k& will lead to small values of hy and large values of C'. Then

(+4()

IA

O™ () - (O(1) + Ok () + O™ ()
< Ok () + O (@)

yields (5.15). O
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6 Special radial basis functions

All examples of this section are based on Theorems 4.5 and 5.14 when specialized to certain
radial basis functions ¢. We obtain specific error estimates of the form (1.5) valid for all func-
tions dominated by ¢ in the sense of Definition 4.4. The attainable orders of the interpolation
error will only depend on the constants s, for the radial basis functions in question.

In case of Gaussians

¢(T) = e_w2, a € ]R>0, rE ZRZO

the Fourier transform

Dy) = 277 ()2l 4e)
decays exponentially at infinity and we have arbitrarily large values of s, giving

Theorem 6.1 For all functions f : IR® — IR having generalized Fourier transforms f(t)
satisfying

[ i <
R

the error of interpolation by Gaussian radial basis functions has arbitrarily high local order in
the sense of (1.5). O

In case of multiquadrics
o(r) = (¢ + )" s € IRy, s ¢ 27,

we have generalized Fourier transforms containing a Bessel function of the second kind and
decaying exponentially at infinity like in the Gaussian case, but now with a singularity of type
|ly||7"~* at zero. Thus again s., is arbitrarily large, yielding

Theorem 6.2 For all functions f : IR® — IR having generalized Fourier transforms f(t)
satisfying

[ @R dar < oo
the error of interpolation by multiqumdric radial basis functions
pr) = (P +r)* s€ Ry_,,, s ¢ 27
has unbounded local order in the sense of (1.5).

The above results for special radial basis functions were already obtained by Madych and Nelson
[10] as a result of their reproducing kernel Hilbert space theory. Within the latter, the integral
occurring in (3.2) plays an important part, as was pointed out by N. Dyn in her lucid survey
[4] of Madych and Nelson’s work. There the integral is split at ||| = 1 and not at ||t|| = 1/h,
which makes it impossible to handle the cases that follow.

The radial basis functions

¢(T) = rsv SEZR>1,S¢2]]V,
é(r) = r*logr, s€ 2IN,

have generalized Fourier transforms ;/A)(t) with behaviour like ||¢||7"7* on all of IR". This requires
S00 = 8, ¢ > 5/2 and yields
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Theorem 6.3 For all functions [ : IR" — IR having generalized Fourier transforms satisfying

[ dpd < o
Rn

the error of interpolation by radial basis functions

¢(T) = rsv SE]R>1,S¢2W,

é(r) = r*logr, s € 2IN,

has local order s/2 in the sense of (1.5).

Remarks. The convergence rates obtained so far are quite different from those of Buhmann [1]
for gridded data. Infinite orders, especially for the Gaussian kernel, are unexpected as are the
rather low orders for the functions r* and r*logr. The gridded case is fundamentally different

from the scattered data case in several aspects:

e Convergence orders, as given by our technique, are mainly dominated by the behaviour

of the Fourier transform of ¢ near infinity. However, similar convergence orders are
obtained, if multiquadric interpolation with a fixed constant ¢ is used on a regular grid
(see Buhmann and Dyn [2]).

Our methods require the interpolated functions to have Fourier transforms which are
“dominated” by ¢ in the sense of (4.2). This requirement is not surprising, because a
reasonable local convergence order cannot occur if the “high frequency part” of f exceeds
that of ¢. Interpolation on grids hides this phenomenon.

The “dominance” requirement (4.2) imposes a rather hard restriction on f, which has no
direct counterpart in the infinite grid case. Further research should try to weaken (4.2)
at the expense of smaller (and possibly non—local) convergence orders.
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