
Local Error Estimatesfor Radial Basis FunctionInterpolation of Scattered DataZong{min Wu and Robert SchabackAMS classi�cations: 41A05, 41A63, 41A25, 65D05Keywords: Multivariate interpolation, orders of convergence, Kriging, Multiquadrics, thinplate splines.AbstractIntroducing a suitable variational formulation for the local error of scattered data interpolationby radial basis functions �(r), the error can be bounded by a term depending on the Fouriertransform of the interpolated function f and a certain \Kriging function", which allows aformulation as an integral involving the Fourier transform of �. The explicit construction oflocally well{behaving admissible coe�cient vectors makes the Kriging function bounded bysome power of the local density h of data points. This leads to error estimates for interpolationof functions f whose Fourier transform f̂ is \dominated" by the nonnegative Fourier transform ̂ of  (x) = �(kxk) in the sense R jf̂ j2 ̂�1dt < 1. Approximation orders are arbitrarily highfor interpolation with Hardy multiquadrics, inverse multiquadrics and Gaussian kernels. Thiswas also proven in recent papers by Madych and Nelson, using a reproducing kernel Hilbertspace approach and requiring the same hypothesis as above on f̂ , which limits the practicalapplicability of the results. This work uses a di�erent and simpler analytic technique andallows to handle the cases of interpolation with �(r) = rs for s 2 IR; s > 1; s =2 2IN , and�(r) = rs log r for s 2 2IN , which are shown to have accuracy O(hs=2).1 IntroductionRadial basis function interpolation to scattered data (xi; fi) 2 IRn+1 for pairwise distinct points(\centres") x1; . . . ; xM 2 IRn uses a function � : IR�0 ! IR and the space IPq of polynomialson IRn with total order not exceeding q to construct the interpolants(x) := MXi=1 ai�(kx� xik) + QXi=1 bipi(x) (1:1)via the linear systemMXi=1 ai�(kxj � xik) + QXi=1 bipi(xj) = fj; 1 � j �MMXj=1 ajpi(xj) = 0; 1 � i � Q = �q+n�1n �; (1:2)0File : usr/nam/rschaba/tex/fertig/wu rs 1 mod 2.tex, TEXed February 27, 1992, Status : 2nd revision1



where p1; . . . ; pQ is a basis of IPq. For a wide choice of functions � and polynomial orders q,including the case q = Q = 0, the nonsingularity of the (M + Q) � (M + Q) system (1.2),written as � A PP T 0 � � ab� = � f0� (1:3)in matrix notation, has been established by Micchelli [8] and Powell [12]. Following [8], weassume F (r) = �(pr) to be conditionally strictly positive de�nite of order q, which impliesthat A is positive de�nite on the subset of vectors u 2 IRM satisfying P Tu = 0. We handle thecase of conditionally strictly negative de�nite functions �(pr) by going over to the function��(pr). For q > 0 the additional conditionp(xj) = 0; 1 � j �M for p 2 IPq implies p = 0 (1:4)on q and the positions of data points is required. The numerical problems of (1.3) can beovercome by preconditioning methods (see Dyn, Levin and Rippa [5], and Dyn [4]), making theradial basis function approach a promising tool for multivariate interpolation.We consider interpolation of values fi = f(xi) of a smooth function f on a domain 
 � IRn.There are no further conditions on 
. The sampling points xi are allowed to be irregularlydistributed over 
 under the restriction (1.4). For local error estimation, we measure the\density" of centres xj near some x 2 
 byh�(x) := maxy2K�(x) min1�j�M ky � xjkfor some �xed � > 0 , where K�(x) = fy 2 IRn �� kx � yk � �g, using the Euclidean norm k:k(see also [9], [10], [11]).Our goal is to prove local error bounds of the following form: Given constants � 2 IR>0; q 2IN�0, a radial basis function � and a certain function space F� to be described below, we wantto show the existence of positive constants k � m; k; m 2 IN; h0; C 2 IR such that for anydistribution of points xj 2 IRn; 1 � j �M , any function f from F� and any point x 2 
 withh�(x) < h0 the inequality js(�)(x)� f (�)(x)j � cf � C � hk�j�j� (x) (1:5)holds for the error and its �{th derivatives for 0 � j�j � m, where the constant cf depends onf , �, and F� only. Then we call (1.5) a local error bound of order k. Here and in the sequelwe use the standard multi{index notation with j�j :=Pi �i for � 2 INn.Convergence of interpolation on regular grids has been studied extensively by Buhmann (seee.g: [1] for a comprehensive treatment) and others. For the case of scattered data Duchon[3] treated the thin{plate spline case �(r) = r2 log r, while Jackson [6] proved a general, butnon{quantitative convergence result. The dissertation of Wu [13] of 1986 contained a rathergeneral Hilbert space theory for Kriging and related radial basis function methods in the caseof a single variable, including error estimates and convergence results. Recently, Madych andNelson [9], [10] developed a reproducing kernel Hilbert space approach to get error bounds ofarbitrarily high order for multiquadrics and inverse multiquadrics, i.e.: for �(r) = (c2 + r2)s=2with c 2 IR>0; s 2 IR; s =2 2IN; s > �n and q > s=2 if s > 0.2



This paper is based on the approach of Wu [13] and generalizes it to the multivariate case.There are some background connections to the work of Madych and Nelson which will beexplained at the appropriate places. Like Madych and Nelson we require the restrictivecondition R jf̂ j2 ̂�1dt <1 for  (x) := �(kxk) and show that k in (1.5) can be arbitrarily largefor Gaussians �(r) = exp(�cr2), multiquadrics �(r) = pr2 + c2, and inverse multiquadrics�(r) = 1=pr2 + c2; c > 0. For these cases our error bounds are equivalent to those of Madychand Nelson. But our technique also yields the convergence order k = s=2 for m < s=2 < qin case of the radial basis functions �(r) = rs with s 2 IR>0; s =2 2IN , and �(r) = rs log rwith s 2 2IN . Compared to the work of Madych and Nelson the methods of this paper aresomewhat simpler and more direct, but do not provide or require additional information aboutthe Hilbert space background. They generally imply that the order k in (1.5) is attained, if theFourier transform  ̂ satis�es 0 <  ̂(t) � O(ktk�n�2k)for ktk !1.2 Variational formulationSince the equations (1.2) are solvable under the hypotheses of the preceding section, there is aLagrange{type representations(x) = MXj=1 f(xj)uj(x); uj(xi) = �ij; 1 � i; j �M; (2:1)of the solution. Introducing vectorsR(x) := (�(kx� x1k); . . . ; �(kx� xMk))TS(x) := (p1(x); . . . ; pQ(x))T ;we assertTheorem 2.2 The vector U(x) := (u1(x); . . . ; uM(x))T formed by the values of the Lagrangebasis functions u1; . . . ; uM of (2.1) at x 2 IRn coincides with the solution U�(x) of the conditionalminimization problemminfUTAU � 2UTR(x) + �(0) �� U 2 IRM ; P TU = S(x)g: (2:3)Proof: If (2.3) is solved by Lagrange multiplier techniques, and if the solution is written inmatrix form, there exists a vector V�(x) = (v1(x); . . . ; vQ(x))T of Lagrange multipliers such that� A PP T 0 � �U�(x)V�(x)� = �R(x)S(x)� (2:4)holds for the solution U�(x) of (2.3), which is unique since (2.4) has the same coe�cient matrixas (1.3). For a single x = xj; 1 � j � M , the right-hand side of (2.4) coincides with the j-thcolumn of the coe�cient matrix. Since the system is uniquely solvable, the vector U�(xj) mustcoincide with U(xj), the j-th unit vector. But as the components of U�(x) are of the form (1.1),we have U(x) = U�(x) for all x 2 IRn. 23



Remarks: Cardinal interpolants like the uj de�ned in (2.1) normally are constructed via thesystem (1.3) with data �ij for uj. But (1.3) would yield the coe�cients of uj, not the vectorU(x) of values u1(x); . . . ; uM(x) at a �xed x 2 IRn. Furthermore, the value �(0) in (2.3) willbe required later, but could here be replaced by any other constant. While the approach ofMadych and Nelson poses a variational problem in an in�nite-dimensional Hilbert space, ourapproach uses the �nite{dimensional conditional minimization problem (2.3).We now do the same thing for derivatives. If � is di�erentiable of order j�j on (0;1) and oforder 2j�j around zero, and if we de�ne  (x) = �(jjxjj), the solution U (�)� (x) of the problemmin�UTAU � 2UTR(�)(x) +  (2�)(0) ���� U 2 IRM ;P TU = S(�)(x) � (2:5)uniquely exists and satis�es a nonsingular linear equation system like (2.4), which formallycoincides with the system � A PP T 0 � �U (�)(x)V (�)(x)� = �R(�)(x)S(�)(x)� (2:6)obtained by di�erentiation of (2.4). Thus the derivatives U (�) of U(x) and V (�) of V (x) exist andsatisfy (2.6), while U (�)(x) coincides with the solution U (�)� (x) of (2.5) by the same argumentas above. It might be worth noting that (2.6) and (2.5) always imply polynomial reproductionup to order q in the sense MXj=1 u(�)j (x) � p(xj) = p(�)(x) (2:7)for all p 2 IPq. The special choice of the additive constant in (2.5) will become apparent in(3.2); it will make the minimum value nonnegative, which is required for the followingDe�nition 2.8 Let F (r) = �(pr) be conditionally strictly positive de�nite of order q, andassume � 2 C j�j(0;1); � 2 C2j�j around zero for � 2 INn�0. Then, for any distribution ofcentres x1; . . . ; xM satisfying (1.4), the nonnegative function function �(�)q de�ned by��(�)q (x)�2 := minnUTAU � 2UTR(�)(x) +  (2�)(0) ��U 2 K(�)q (x)owith the setK(�)q (x) := (U = (u1; . . . ; uM)T 2 IRM ����� MXj=1 ujp(xj) = p(�)(x) for all p 2 IPq) (2:9)of admissible vectors is called the Kriging function at x.As we shall see later, the Kriging function is the norm of the representer of the interpolationerror functional on a reproducing-kernel Hilbert space. However, the next steps will directlyprove the following facts:a) The interpolation error can be bounded by the Kriging function,b) The Kriging function can be expressed by a nonnegative integral.4



Furthermore, section 5 will show thatc) there are admissible vectors from K(�)q (x) for (2.5) which allow the integral (and thus theKriging function) to be bounded by some power of h�(x).The �rst two steps will involve Fourier transforms which are not classically feasible unless weproduce su�ciently \nice" admissible vectors U 2 K(�)q (x) for (2.5). From here on, we consider�, q, and x as being �xed and do not always indicate dependence on these symbols in thenotation.3 Fourier transformsIf the hypotheses of De�nition 2.8 hold and  (x) = �(kxk) is an absolutely integrable functionwith a nicely behaving nonnegative Fourier transform  ̂ satisfying (y) = �(kyk) = 1(2�)n ZIRn eihy;ti ̂(t)dt; y 2 IRn; (3:1)we can use identities like MXj;k=1wjwk�(kxj � xkk)= 1(2�)n ZIRn MXj;k=1wjwkeihxj�xk ;ti ̂(t)dt= 1(2�)n ZIRn j MXj=1 wjeihxj;tij2 ̂(t)dtand d�dx��(kx� xjk) = d�dx� 1(2�)n ZIRn eihx�xj ;ti ̂(t)dt= 1(2�)n ZIRn(it)�eihx�xj;ti ̂(t)dtto get UTAU � 2UTR(�)(x) +  (2�)(0)= 1(2�)n ZIRn ����� MXj=1 ujeihxj;ti � (it)�eihx;ti�����2  ̂(t)dt (3:2)for arbitrary U = (u1; . . . ; uM) 2 IRM , expressing the Kriging function via an integral. Thisexplains the choice of  (2�)(0) as the additive constant in (2.5).For most of the interesting radial basis functions �, however, we have to use generalizedFouriertransforms in (3.1) and (3.2). If (3.1) is interpreted as a generalized Fourier transform (e.g.: inthe sense of [7]), the same interpretation applies to (3.2). Fortunately, we can circumvent thesepeculiarities, because the functiongU (t) := MXj=1 ujeihxj;ti � (it)�eihx;ti (3:3)5



(for U , xj, x, and � �xed) has special properties which make the integral (3.2) well-de�ned inthe classical sense for most of the interesting cases, provided that U = (u1; . . . ; uM)T lies in theadmissible set K(�)q (x) of (2.9). To prove this, we start withLemma 3.4 For every admissible vector U 2 K(�)q (x) the function gU (t) has the propertyjgU (t)j � 8<: O(ktkq) for ktk ! 0O(ktkj�j) for ktk ! 1 9=; : (3:5)Proof. Let ex = pq(x) + xqrq(x); pq 2 IPq; jrq(x)j � ejxjbe the Taylor expansion of ex to order q, and let U 2 K(�)q (x) be admissible for (2.5). For q > 0we use (2.9) to getMXj=1 ujpq(ihxj � x; ti) = � d�dy��y=x pq(ihy � x; ti)= (it)�p(�)q (0)= � (it)� 0 � j�j � q � 10 else � :Then (3.3) yields gU (t)e�ihx;ti = MXj=1 ujeihxj�x;ti � (it)�= MXj=1 ujpq(ihxj � x; ti)� (it)�+ MXj=1 uj(ihxj � x; ti)qrq(ihxj � x; ti)= MXj=1 uj(ihxj � x; ti)qrq(ihxj � x; ti)for 0 � j�j � q � 1. This proves (3.5), if (3.3) is used directly for ktk ! 1. The cases q = 0and j�j � q now are easy.With Lemma 3.4 and some additional assumptions on  ̂ the integral in (3.2) can now be shownto exist classically:Theorem 3.6 Let the generalized Fourier transform of  (x) = �(kxk) exist and coincide witha continuous function  ̂ on Rn n f0g satisfying0 <  ̂(t) � c� jjtjj�n�s0 for ktk ! 0jjtjj�n�s1 for ktk !1 � (3:7)with constants c 2 IR>0; s0; s1 2 IR, where we additionally assume2j�j < s1 and s0 < 2q: (3:8)Then for all U 2 K(�)q (x) we have (3.2) with a well-de�ned integral.6



Proof: From Lemma 3.4, (3.8), and (3.7) we get the classical existence of the integral in(3.2). With (3.3) and the theorem on monotone convergence, (3.2) equalslimm!1 1(2�)n ZRn jgU (t)j2e�jjtjj2=m2 ̂(t)dt= limm!1 1(2�)n ZIRn Ĝm(z) (z)dz (3:9)with the test functions Gm(t) = jgU(t)j2e�jjtjj2=m2using the de�nition of the generalized Fourier transform for tempered distributions. Further-more, the Fourier transform Ĝm(z) of Gm can be explicitly calculated up to a constant �mnas mnXj;k ujuke�jjz�(xj�xk)jj2m2=4� 2mn(�1)nXk ukD�(e�jjz�(x�xk)jj2m2=4)+ mnD2�(e�jjzjj2m2=4);where D denotes di�erentiation with respect to z. Insertion into (3.9) yields (3.2), using theproperties of the delta sequence �mnmne�jjzjj2m2=4. 2The reproducing kernel Hilbert space approach of Madych and Nelson [9] [10] uses a di�erentmethod of regularization of integrals of the form (3.2): they consider a space of test functionsmodulo L2{orthogonality to polynomials and have to go all through a speci�c theory of dis-tributions to make their variational problem well{de�ned. Note that in our approach thereare no problems with the variational formulation; the speci�c integral representation neededelaboration. We now can write the Kriging function as an integral:Theorem 3.10 Under the assumptions of Theorem 3.6 the Kriging function has the represen-tation ��(�)q (x)�2 = minU2K(�)q (x) 1(2�)n ZIRn ����� MXj=1 ujeihxj;ti � (it)�eihx;ti�����2  ̂(t)dt (3:11)with K�;q(x) de�ned as in (2.9), and the integral exists in the classical sense. 24 Error boundsIf the data (xj; fj) stem from a smooth and absolutely integrable real-valued function f on IRnwith a nicely behaving Fourier transform bf satisfyingf(x) = 1(2�)n ZIRn eihx;tif̂ (t)dt; x 2 IRn;we can use the solution U (�)(x) = (u(�)1 (x); . . . ; u(�)M (x))T of (2.6), which coincides with thederivatives of the Lagrange interpolation functions from (2.1), to �nd the error representationjs(�)(x)� f (�)(x)j2 = ����� 1(2�)n ZIRn  MXj=1 u(�)j (x)eihxj;ti � (it)�eihx;ti! f̂ (t)dt�����2 (4:1)7



of the interpolant s to f in the form (2.1), as far as it is feasible to take derivatives. Notethat the bracketed function in (4.1) can be viewed as the Fourier transform of the representerof the error functional in some Hilbert space. It also is a special instance of a function of theform (3.3), but with optimal coe�cients with respect to the minimization problem (2.5). Theright-hand side of (4.1) is very similar to the Kriging function, and to relate the two we assumec2f := 1(2�)n ZIRn jf̂(t)j2( ̂(t))�1dt <1 (4:2)in addition to the hypotheses of De�nition 2.8 and Theorem 3.6. Then, using the Cauchy{Schwarz inequality,js(�)(x)� f (�)(x)j2 �� 1(2�)n ZIRn ����� MXj=1 u(�)j (x)eihxj;ti � (it)�eihx;ti�����2  ̂(t)dt � 1(2�)n ZIRn jf̂ (t)j2( ̂(t))�1dt= (�(�)q (x))2 � c2f ; (4:3)and the error of interpolation is pointwise bounded by the Kriging function.This argument is feasible, whenever the Fourier transform bf of f allows all intermediate integralsto exist classically. To cope with generalized Fourier transforms, we proceed as in the previoussection:De�nition 4.4 A function f : IRn ! IR is dominated by a radial basis function � satisfying(3.7) and (3.8) on Rn n f0g, i� f has a generalized Fourier transform f̂ coinciding on Rn n f0gwith a continuous function satisfying (4.2) for  (x) = �(kxk).Remarks. The set F� of functions dominated by � may be completed to form a Hilbert spacewith inner product (f1; f2)� = ZIRn f̂1(t)f̂2(t)( ̂(t))�1dtwhich was thoroughly studied by Madych and Nelson in [9], [10]. This is why the ratherrestrictive condition (4.2) occurs there, too, while (4.2) does not appear in [3] and [6]. Wedo not want to make direct use of Hilbert space properties here, but proceed directly to anestimate of �(�)q (x) in the next section. The application of the Cauchy-Schwarz inequality to(4.1) allows the error bound to be factored into a term cf depending on f , but not on the datadistribution, while the other factor consists of the Kriging function, which is independent of fbut incorporates the sampling points. This is how the special form of (1.5) is obtained, andthis is why we need (4.2). Of course, equation (4.3) shows that the Kriging function �(�)q (x) isnothing else than the norm of the representer of the error functional on Madych and Nelson'sHilbert space. But knowledge of this fact does not improve the situation; a tight upper boundon �(�)q (x) is still to be constructed. This can be done by inserting special admissible vectorsU 2 K(�)q (x) into (3.11). The next section will perform such a construction. We summarize theresults of this section:Theorem 4.5 If f is in the space F� of functions dominated by a radial basis function �satisfying (3.8) and (3.7), then the interpolation error can be bounded byjs(�)(x)� f (�)(x)j � �(�)q (x) � cf ; (4:6)where cf is given by (4.2). 8



Proof: If ~g is the bracketed function in (4.1), then ~gq ̂ and f̂=q ̂ are in L2(IRn). Thus theright-hand side of (4.1) is well-de�ned and (4.3) implies (4.6). 25 Construction of admissible vectors for local errorboundsWe start with a fundamental perturbation lemma which bridges the gap between regular andscattered data sets:Lemma 5.1 For arbitrary constants � 2 IR>0; k 2 IN there exist positive real constantsh0; c1; c2 such that for any distribution of scattered centres xi 2 
; 1 � i � M and arbitrarypoints x 2 
 around which the local density of data points satis�esh�(x) := maxy2K�(x) min1�i�M ky � xik � h0 (5:2)and all � 2 INn�0 with 0 � j�j � k � 1 there is a vector ~U := (~u(�)1 (x); . . . ; ~u(�)M (x))T in theadmissible set K(�)k (x) of (2.9) such that the inequalitieskxj � xk � c1h�(x) for all j; 1 � j �M with ~u(�)j (x) 6= 0 (5:3)MXj=1 j~u(�)j (x)j � c2h�j�j� (x) (5:4)hold.Proof. The matrix Rk = (��)0�j�j;j�j�k�1 is a multidimensional form of the classical Van-dermonde matrix; it is nonsingular because interpolation with polynomials of total order notexceeding k is possible on the set Snk := f� 2 INn�0 �� 0 � j�j � k � 1g. Here and in the restof this section the n-dimensional multi{indices �; �; �; �; and � will always vary in Snk . Whenoccurring as indices in matrices, we assume a �xed (e.g.: lexicographic) ordering, and the �rstindex at the brackets in a matrix notation like B = (b��)�;� always indicates the row index.We use �; k; and n to de�ne constants N; c1; c2; h0 by(a) N := max �1; 2(k � 1)(2k � 1)k�n+k�1n �nk=2kR�1k k1� ;(b) c1 := 1 +N(k � 1)pn;(c) c2 := 2(k � 1)!�n+k�1n �2kR�1k k1;(d) h0 := �N(k � 1) ; (5:5)where k:k1 is the row-sum matrix norm. Now let the distribution of centres be dense enoughto guarantee (5.2) for x 2 IRn. Then near all of the points x+Nh� with � 2 Snk , which are inthe ball K�(x) := fy 2 IRn j ky � xk � �g by (d) of (5.5), there must be points z� 2 X withkz� � x�Nh�k � h := h�(x): (5:6)9



Now we get (5.3) for precisely these points z�, if we use (b) of (5.5) forkz� � xk � h+ kNh�k2� h(1 +N(k � 1)pn) = c1h: (5:7)We now want to bound the di�erence of the two Vandermonde matrices V := ((� �N � h)�)�;�and Z := ((z� � x)�)�;� with respect to regular and scattered data, respectively, using (5.6).By a straightforward expansion of the monomial t� we �ndjt� � (t+ y)�j � j�j kyk1�max0���1(kt+ �yk1)�j�j�1and get the bound j(z� � x)� � (�Nh)�j � j�jh((c1 + (k � 1)N)h)j�j�1 (5:8)for the matrix elements of Z � V . The scaled regular Vandermonde matrix V = ((�Nh)�)�;�is expressible as V = ((�Nh)�)�;� = (��� � (Nh)j�j)�;� �Rk (5:9)via the unscaled (integer) Vandermonde matrix Rk. We now use (5.8) and (5.9) forkV �1(Z � V )k1 = kR�1k � (���(Nh)�j�j)�;�(Z � V )k1� kR�1k k1max� (Nh)�j�jj�jhj�j(c1 + (k � 1)N)j�j�1�n + k � 1n �� kR�1k k1�n+ k � 1n � 1N max� j�j �c1N + k � 1�j�j�1: (5:10)With (a) and (b) of (5.5) we �ndc1N + k � 1 = 1N + (k � 1)(1 +pn)� 1 + (k � 1)(1 +pn)� k + (k � 1)pn� (2k � 1)pnand continue (5.10) to getkV �1(Z � V )k1 � kR�1k k1 �n+ k � 1n � 1N � (k � 1)(2k � 1)knk=2 � 12 : (5:11)By Neumann's series, B := Z�1V exists and its norm is bounded by 2. Some elementary matrixcalculations give (���(Nh)j�j)�;� = (ZBR�1k )�;�and we can de�ne ~u(�)i (x) :=8<: �! �BR�1k ��;� (Nh)�j�j if xi = z�0 otherwise 9=; :10



Note that the values ~u(�)i (x) vanish except for those points xi for which we have proven (5.7).This �nishes (5.3). We now assert MXj=1 ~u(�)i (x)p(xj) = p(�)(x)for all p 2 IPk, which is equivalent to ~U := (~u(�)1 (x); . . . ; ~u(�)M (x))T 2 K(�)k (x) of (2.9) and toMXj=1 ~u(�)i (x)p(xj � x) = p(�)(0) (5:12)for all p 2 IPk. Representing an arbitrary p 2 IPk in the monomial basis asp(y) = Xj�j<k p�y�we use the elements Z�;� = (z� � x)� of the Vandermonde matrix Z to getp(z� � x) =X� p�(z� � x)� =X� Z�;�p�and prove (5.12) via p(�)(0) = �!p� = �!(Nh)�j�jXj�j<k p���;�(Nh)j�j= �!(Nh)�j�jX� p� �ZBR�1k ��;�= �!(Nh)�j�jX� �BR�1k ��;�X� Z�;�p�= �!(Nh)�j�jX� �BR�1k ��;�p(z� � x)= MXj=1 ~u(�)j (x)p(xj � x):Finally, we establish (5.4) using (c) of (5.5) andMXj=1 j~u(�)i (x)j � �!(Nh)�j�jX� j �BR�1k ��;� j� �!(Nh)�j�jkBR�1k k1� (k � 1)!h�j�j�n+k�1n �22kR�1k k1;where we had to go from the column-sum norm k:k1 to the row-sum norm k:k1. 2Now assume � 2 IR>0 and an integer k � q to be chosen for Lemma 5.1 such that (5.3) and(5.4) hold, whenever (5.2) is satis�ed. Then the proof technique of Lemma 3.4 yields��g ~U (t)e�ihx;ti�� = ����� MXj=1 ~u(�)j eihxj�x;ti � (it)������� c2h�j�j� (x)ck1hk�(x)ktkkec1h�(x)ktk11



for 0 � j�j < k, which specializes to��g ~U (t)e�ihx;ti�� � c2ck1ec1ktkkhk�j�j� (x)for h�(x) � ktk � 1. Direct application of (5.4) to g ~U implies��g ~U (t)e�ihx;ti�� � c2h�j�j� (x) + ktkj�j � (c2 + 1)ktkj�j:for h�(x) � ktk � 1. Both bounds can be inserted into the Kriging function to get��(�)q (x)�2 � c22c2k1 e2c1h2k�2j�j� (x)K1(2k;  ̂; h�(x))+ (1 + c2)2K2(2j�j;  ̂; h�(x))for 0 � j�j < min(k; s1=2) with the abbreviationsK1(j; z; h) := 1(2�)n Zktk�1=h ktkjz(t)dt;K2(j; z; h) := 1(2�)n Zktk�1=h ktkjz(t)dt: (5:13)To evaluate K1(2k;  ̂; h) for  ̂ satisfying Theorem 3.6, we make use of (3.8) and s0 < 2q � 2kto get K1(2k;  ̂; h) = K1(2k;  ̂; h0) + 1(2�)n Z1=h0�ktk�1=h ktk2k ̂(t)dt� O(1) +O(hs1�2k)for h! 0. Likewise, we �nd K2(2j�j;  ̂; h) = O(hs1�2j�j)using 2j�j < s1 from (3.8). We summarize:Theorem 5.14 Let � satisfy the assumptions of Theorem 3.6, and let � 2 IR>0 be given.Then there exist positive real constants h0 and C such that for any distribution of centresxi 2 IRn; 1 � i �M; and any point x 2 IRn with (5.2) the Kriging function can be bounded by�(�)q (x) � Chs1=2�j�j� (x) (5:15)for 0 � j�j < s1=2.Proof: Lemma 5.1 allows to pick any k � s1=2 and to apply the above argument, where largevalues of k will lead to small values of h0 and large values of C. Then��(�)q (x)�2 � O(h2k�2j�j� (x)) � (O(1) +O(hs1�2k� (x))) +O(hs1�2j�j� (x))� O(h2k�2j�j� (x)) +O(hs1�2j�j� (x))yields (5.15). 212



6 Special radial basis functionsAll examples of this section are based on Theorems 4.5 and 5.14 when specialized to certainradial basis functions �. We obtain speci�c error estimates of the form (1.5) valid for all func-tions dominated by � in the sense of De�nition 4.4. The attainable orders of the interpolationerror will only depend on the constants s1 for the radial basis functions in question.In case of Gaussians �(r) = e��r2; � 2 IR>0; r 2 IR�0the Fourier transform  ̂(y) = 2�n(��)�n=2e�kyk2=(4�)decays exponentially at in�nity and we have arbitrarily large values of s1, givingTheorem 6.1 For all functions f : IRn ! IR having generalized Fourier transforms f̂(t)satisfying ZIRn kf̂(t)k2ektk2dt <1the error of interpolation by Gaussian radial basis functions has arbitrarily high local order inthe sense of (1.5). 2In case of multiquadrics �(r) = (c2 + r2)s=2 s 2 IR>�n; s =2 2ZZ;we have generalized Fourier transforms containing a Bessel function of the second kind anddecaying exponentially at in�nity like in the Gaussian case, but now with a singularity of typekyk�n�s at zero. Thus again s1 is arbitrarily large, yieldingTheorem 6.2 For all functions f : IRn ! IR having generalized Fourier transforms f̂(t)satisfying ZIRn jf̂(t)j2ktkn+sektkdt <1the error of interpolation by multiquadric radial basis functions�(r) = (c2 + r2)s=2 s 2 IR>�n; s =2 2ZZhas unbounded local order in the sense of (1.5).The above results for special radial basis functions were already obtained by Madych and Nelson[10] as a result of their reproducing kernel Hilbert space theory. Within the latter, the integraloccurring in (3.2) plays an important part, as was pointed out by N. Dyn in her lucid survey[4] of Madych and Nelson's work. There the integral is split at ktk = 1 and not at ktk = 1=h,which makes it impossible to handle the cases that follow.The radial basis functions �(r) = rs; s 2 IR>1; s =2 2IN;�(r) = rs log r; s 2 2IN;have generalized Fourier transforms  ̂(t) with behaviour like ktk�n�s on all of IRn. This requiress1 = s; q > s=2 and yields 13



Theorem 6.3 For all functions f : IRn ! IR having generalized Fourier transforms satisfyingZIRn jf̂(t)j2ktkn+sdt <1the error of interpolation by radial basis functions�(r) = rs; s 2 IR>1; s =2 2IN;�(r) = rs log r; s 2 2IN;has local order s=2 in the sense of (1.5).Remarks. The convergence rates obtained so far are quite di�erent from those of Buhmann [1]for gridded data. In�nite orders, especially for the Gaussian kernel, are unexpected as are therather low orders for the functions rs and rs log r. The gridded case is fundamentally di�erentfrom the scattered data case in several aspects:� Convergence orders, as given by our technique, are mainly dominated by the behaviourof the Fourier transform of � near in�nity. However, similar convergence orders areobtained, if multiquadric interpolation with a �xed constant c is used on a regular grid(see Buhmann and Dyn [2]).� Our methods require the interpolated functions to have Fourier transforms which are\dominated" by b� in the sense of (4.2). This requirement is not surprising, because areasonable local convergence order cannot occur if the \high frequency part" of f exceedsthat of �. Interpolation on grids hides this phenomenon.� The \dominance" requirement (4.2) imposes a rather hard restriction on f , which has nodirect counterpart in the in�nite grid case. Further research should try to weaken (4.2)at the expense of smaller (and possibly non{local) convergence orders.References[1] Buhmann, M.D., Multivariable Interpolation using Radial Basis Functions, Ph.D. disser-tation, University of Cambridge, 1989.[2] Buhmann, M.D., and N. Dyn, Error estimates for multiquadric interpolation, in Curvesand Surfaces, P.-J. Laurent, A. LeM�ehaut�e, L.L. Schumaker (eds.), Academic Press 1991[3] Duchon,J., Sur L'erreur d'interpolation des fonctions de plusiers variables par les Dm�splines, RAIRO Analyse Numerique 12 (1978) 325-334.[4] Dyn, N., Interpolation of scattered data by radial functions, in: Topics in MultivariateApproximation, C.K. Chui, L.L. Schumaker, and F.I. Utreras (eds.) Academic Press, 1987[5] Dyn. N, Levin, D., and S. Rippa, Numerical procedures for surface �tting of scattered databy radial functions, SIAM J. Sci. Stat. Comput. 7, 639{659[6] Jackson, I.R.H., An order of convergence for some radial basis functions, IMA J. of Numer.Anal. 1987 14
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