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Abstract

Interpolation by analytic radial basis functions like the Gaussian and inverse mul-
tiquadrics can degenerate in two ways: the radial basis functions can be scaled to
become “increasingly flat”, or the data points “coalesce” in the limit while the radial
basis functions stays fixed. Both cases call for a careful regularization. If carried out
explicitly, this yields a preconditioning technique for the degenerating linear sys-
tems behind such interpolation problems. This paper deals with both degeneration
cases. For the “increasingly flat” limit, we recover results by Larsson and Fornberg
together with Lee, Yoon, and Yoon concerning convergence of interpolants towards
polynomials. With slight modifications, the same technique also allows to handle sce-
narios with coalescing data points for fixed radial basis functions. The results show
that the degenerating local Lagrange interpolation problems converge towards cer-
tain Hermite-Birkhoff problems. This is an important prerequisite for dealing with
approximation by radial basis functions adaptively, using freely varying data sites.
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1 Introduction

Since our analysis will have close connections to multivariate polynomial inter-
polation, we shall start with the latter. Then we turn to multivariate meshless
kernel-based interpolation problems and focus on the “increasingly flat kernel”
case, because it partially solves the “coalescing points” case also, as will turn
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out in section 8. Following (1), we shall explicitly precondition the degenerat-
ing interpolation problem in such a way that the limit of the preconditioned
systems can be analyzed and calculated. For the “increasingly flat” case, this
recovers results by (2; 3) concerning sufficient criteria for convergence of the
interpolants to polynomials. Then we focus on the case of coalescing data to
be interpolated by a fixed radial basis function. Though the limit will usually
not be a polynomial, our technique applies with certain modifications, and it
proves that the Lagrange problems on coalescing data points always converge
towards certain Hermite interpolation problems.

2 Polynomial Interpolation

For multivariate polynomial interpolation on a set X := {x1, . . . , xN} in IRd

there are a few important quantities to be defined a-priori. To this end, we use
multi-indices α ∈ ZZd

0 in the standard way, defining the monomials xα ∈ IRd

for x ∈ IRd and the nonnegative integer |α| := ‖α‖1 as usual. A polynomial

p(x) :=
∑

α∈ZZd
0

aαxα

with finitely many nonzero coefficients and degree ∂p is an interpolant to data
y1, . . . , yN on X, if p(xk) = yk, 1 ≤ k ≤ N . Furthermore, the space IP d

k of

polynomials of degree at most k in d variables has dimension
(

k+d
d

)
. Only in

rare cases will the number N of given data be equal to one of these numbers.
Anyway, there always is an integer k1 = k1(X) with

(
k1 − 1 + d

d

)
< N ≤

(
k1 + d

d

)
(1)

which is a rough guess for the expectable degree of an interpolating polyno-
mial, if the N data are well-situated in IRd. However, even in case N =

(
k1+d

d

)
it is not at all clear whether the monomial basis {xα : |α| ≤ k1} is linearly
independent on X. Therefore one has to look at monomial or Vandermonde
matrices formed by entries xα

j , where we let the row index be j, 1 ≤ j ≤ N
and the column index be the multi-index α. We order multi-indices α, β ∈ ZZd

0

polynomially by defining α < β if either |α| < |β| or |α| = |β| with α < β
lexicographically. This way, we can define the infinite monomial matrix

IM<∞ = (xα
j )1≤j≤N,α∈ZZd

0
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with N rows, where the columns are formed by multi-indices in ascending
polynomial order. Finite partial monomial matrices are, for instance,

IM≤β = (xα
j )1≤j≤N,α∈ZZd

0 ,α≤β

IM|.|≤k = (xα
j )1≤j≤N,α∈ZZd

0 ,|α|≤k

with N rows also. Existence of an interpolant of degree k for arbitrary data
on X is ensured if the monomial matrix IM|.|≤k has rank N . Thus, a crucial
number associated to polynomial interpolation on X is

k2 := k2(X) := min{k : rank(IM|.|≤k) = N},

leading to existence of interpolating polynomials of degree at most k2 for
any data on X. We have k2 ≤ N − 1, because the nonzero Lagrange-type
polynomials

Li(x) :=
∏

1≤j≤N, i6=j

(x− xj)
T (xi − xj)

‖xi − xj‖2
2

have degree at most N − 1 and are linearly independent on X. The matrix
IM|.|≤k2 has N linearly independent columns which cannot all occur already in
IM|.|<k2 . Note that the bound k2 ≤ N − 1 is sharp in one-dimensional cases,
and clearly k1 ≤ k2 holds because of (1).

But uniqueness usually is more complicated and will not hold without further
assumptions. Of course, one can always select N multi-indices α1 < . . . < αN

with |αi| ≤ k2 such that the monomial matrix with entries xαk

j , 1 ≤ j, k ≤ N is

nonsingular. Then there is a unique interpolant in the span of xαj
, 1 ≤ j ≤ N ,

but any other choice of multi-indices with the above property will lead to a
different interpolant. The parameter describing uniqueness is

k0 := k0(X) := max{k : p ∈ IP d
k , p(X) = {0} ⇒ p = 0}

defined as the maximal k such that any polynomial from IP d
k vanishing on X

must be identically zero. Equivalently, k0 is the maximal polynomial degree
for which interpolants, if they exist, are unique. The monomial matrix IM|.|≤k0

must then have rank
(

k0+d
d

)
≤ N , and we finally get

0 ≤ k0 ≤ k1 ≤ k2 ≤ N − 1 (2)

as a fundamental relation between the problem parameters. Note that in case
of N data on a line in IRd we have

0 = k0 ≤ k1 ≤ k2 = N − 1, (3)

the intermediate k1 being ridiculously dependent on the dimension d of the
embedding space. This is why, in contrast to (2; 3), we consider k1 as much less
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relevant for analysis than the other parameters, and ignore it from now on.
Note that the classical geometric situation of data points in “general position”
with respect to IRd is the case of maximal k0, and this case can be described
by k0 = k1 = k2 in case N =

(
k1+d

d

)
, while k0 = k1 − 1 = k2 − 1 in case

N <
(

k1+d
d

)
.

The cited papers (2; 3) prove convergence of increasingly flat radial basis
function interpolants towards polynomials if the condition

0 ≤ k2 − k0 ≤ 2

holds, the intermediate k1 being irrelevant. As examples show, this inequality
is sharp as a sufficient condition for convergence. The proofs of (2; 3) are
done by an ingenious application of various linear equation systems connecting
polynomial coefficients to moments. However, this paper uses techniques of (1)
to arrive at the same result and provide additional information fopr the case
of degeneration by coalescing data points.

In contrast to (2; 3) we use the concept of a moment basis as in (1), repeating
part of the preconditioning technique used in the final section of that paper.
There is a nonsingular lower triangular N×N moment matrix M = (mij), 1 ≤
i, j ≤ N, a unique set of integers

0 = t0 ≤ t1 ≤ . . . ≤ tN = k2 (4)

and a set of ordered multi-indices

α1 < α2 < . . . < αN (5)

with the moment conditions

i∑
j=1

mijx
α
j = 0 for all α < αi, 1 ≤ i ≤ N,

i∑
j=1

mijx
αi

j 6= 0, 1 ≤ i ≤ N,

|αi| = ti, 1 ≤ i ≤ N.

(6)

Such a matrix can be generated by applying pivoted Gaussian elimination on
the monomial matrix IM|.|≤k2 , but we leave computational details to section
11.
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3 Function Expansions

Following (4; 1; 2), we assume an analytic radial basis function

φ(r) = f(r2) =
∞∑

n=0

f2n(−1)nr2n, 0 ≤ r < R ≤ ∞

with strictly positive f2n, n ≥ 0 to be given and scale it into

φε(r) := φ(εr) = f(ε2r2) =
∞∑

n=0

f2n(−1)nε2nr2n, 0 ≤ r < R ≤ ∞.

The conditions on the f2n are motivated from the standard assumption of
complete monotonicity (5), but we insist on strictly positive constants here.
This includes all standard analytic positive definite cases, e.g. the Gaussian
and inverse multiquadrics.

If we insert r := ‖x−y‖2 into the expansion, we need an expansion of ‖x−y‖2n
2

into monomials xβ and yα. To this end, we define two multi-indices α, β ∈ ZZd
0

to have equal parity, in short (α, β) ∈ ZZ2d
P or EQP (α, β) if all components αj

and βj have equal parity for all j, 1 ≤ j ≤ d. For later use, the reader should
be aware that the boolean-valued predicate EQP satisfies rules like

EQP (α, β) = EQP (α, β + 2γ) = EQP (α + γ, β + γ)

for any choice of multi-indices α, β, γ ∈ ZZd
0 , and likewise for plain integers.
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We use Taylor’s formula twice and the multinomial formula once to get

(−1)n‖x− y‖2n
2 = (−1)n

∑
α∈ZZd

0

(−y)α

α!
Dα‖x‖2n

2

= (−1)n
∑

α∈ZZd
0

∑
β∈ZZd

0

xβ

β!

(−y)α

α!
Dα+β
|0 ‖x‖2n

2

=
∑

α, β ∈ ZZ2d
P

|α + β| = 2n

xβ

β!

yα

α!
(−1)n−|α|n!(α + β)!(

α+β
2

)
!

=
∑

(α, β) ∈ ZZ2d
P

|α + β| = 2n

c(α, β)xβyα

=
∑

α, β ∈ ZZd
0

|α + β| = 2n

c(α, β)xβyα

with the symmetric functions c(α, β) and C(α, β) on ZZd
0 × ZZd

0 defined by

C(α, β) := (−1)
|β|−|α|

2 c(α, β) :=

∣∣∣α+β
2

∣∣∣!(α + β)!(
α+β

2

)
!α!β!

=
Dα+β
|0 ‖x‖|α+β|

2

α!β!
(7)

in case of (α, β) ∈ ZZ2d
P and zero else. By methods of (3), it will turn out in the

following section that the function C above is a positive definite kernel on the
set ZZd

0 . Note that power series with these coefficients have nice convergence
properties, since Neumann’s series yields

1

1 + ‖x− y‖2
2

=
∑

α,β∈ZZd
0

c(α, β)xβyα. (8)

This is why we do not have to worry about local convergence of series expan-
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sions occurring below. Inserting (7) into our expansion, we get

φε(‖x− y‖2) =
∞∑

n=0

f2nε
2n(−1)n‖x− y‖2n

2

=
∞∑

n=0

f2nε
2n

∑
(α, β) ∈ ZZ2d

P

|α + β| = 2n

c(α, β)xβyα

=
∑

(α, β) ∈ ZZ2d
P

f|α+β|ε
|α+β|c(α, β)xβyα

=
∑

α, β ∈ ZZd
0

f|α+β|ε
|α+β|c(α, β)xβyα

where we define fn to be zero for n odd.

4 Expansion Kernels

We now consider symmetric matrices having elements

f|α+β|c(α, β) (9)

for α, β ∈ I from any index set I ⊂ ZZd
0 . Fortunately, following (3), such

matrices are nonsingular under mild assumptions.

Lemma 1 Let Φ() := φ(‖.‖2) be a positive definite radial kernel which is
inverse Fourier transformable on IRd from a generalized Fourier transform
which is nonnegative everywhere and positive on a set of positive measure in
IRd. Then the kernel C of (7) is positive definite, and symmetric matrices
formed by elements of the form (9) are nonsingular.
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Proof: We start with

Φ(x− y) =
∞∑

n=0

f2n(−1)n‖x− y‖2n
2

=
∞∑

n=0

f2n

∑
(α, β) ∈ ZZ2d

p

|α + β| = 2n

f|α+β|c(α, β)xβyα

=
∑

(α,β)∈ZZ2d
p

f|α+β|c(α, β)xβyα

=
∑

α,β∈ZZd
0

(−1)|α|
Dα+βΦ(0)

α!β!
xβyα

for x, y ∈ IRd, where the last equality is Taylor’s formula. Since Φ is positive
definite and inverse Fourier transformable, we look at a specific quadratic form
with coefficients bα for all α ∈ I ⊂ ZZd

0 and get

0 ≤
∫

IRd

Φ̂(ω)

∣∣∣∣∣∑
α∈I

bαωα

∣∣∣∣∣
2

dω

=
∑
α∈I

∑
β∈I

bαbβ

∫
IRd

Φ̂(ω)ωα+βdω

=
∑
α∈I

∑
β∈I

bαbβ(−iD)α+βΦ(0)

=
∑

α, β ∈ I

(α, β) ∈ ZZ2d
P

bαbβ(−1)|α+β|/2Dα+βΦ(0)

=
∑
α∈I

∑
β∈I

α! bα β! bβ f|α+β| (−1)
|α|−|β|

2 c(α, β),

where we have used that c(α, β) vanishes if α, β are not of equal parity. There-
fore all matrices with entries f|α+β|C(α, β) based on arbitrary index sets I are
positive semidefinite. But if the above expression is zero, and if we use our
special assumption (which rules out the Bessel kernel), the polynomial in the
first integrand must vanish on an open set, thus all coefficients must be zero.
This proves positive definiteness. As a byproduct, we get positive definiteness
of the C kernel itself, if we use the inverse quadric (8) with f2n = 1 for all n.
Furthermore, all symmetric matrices formed with elements f|α+β| c(α, β) will
be nonsingular. 2

Repeating the proof with complex coefficients bα reveals that all matrices
formed by elements f|α+β| c(α, β) are positive definite over C . In fact, if one
defines gα := bαα!(−1)|α|/2, the sum above runs over gαgβf|α+β| c(α, β).
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5 Expansions of Interpolants

If we solve an interpolation problem on X := {x1, . . . , xN} using φε and data
y1, . . . , yN , the system

N∑
j=1

aj(ε)φε(‖xj − x`‖2) = y`, 1 ≤ ` ≤ N (10)

has a unique solution for all ε > 0 which can be written as a quotient of
determinants by Cramer’s rule. The coefficients aj(ε) come out as rational
functions of ε with a leading term of the form ε−2k. We start by connecting
this k to relevant quantities for polynomial interpolation.

Theorem 1 Under the assumptions of Lemma 1, the coefficients aj(ε) have
expansions starting with ε−2k2.

Proof: We proceed very similarly to the final section of (1) on preconditioning.
From now on, multi-indices α, β will always vary in ZZd

0 , and we only state
additional conditions. Let A(ε) be the matrix arising in (10) and use the matrix
M from (6) to form the matrix MA(ε)MT with the (r, s)-entry

r∑
j=1

mrj

s∑
`=1

ms`φε(‖xj − x`‖2)

=
∑

α, β ∈ ZZd
0

f|α+β|ε
|α+β|c(α, β)

r∑
j=1

mrjx
β
j

s∑
`=1

ms`x
α
`

=
∑

β ≥ αr

α ≥ αs

EQP (α, β)

f|α+β|ε
|α+β|c(α, β)ν(r, β)ν(s, α)

with moments

ν(r, β) :=
r∑

j=1

mrjx
β
j , 1 ≤ r ≤ N, β ∈ ZZd

0 (11)

having the properties

ν(r, β) = 0 for all β < αr, 1 ≤ r ≤ N, in particular

ν(r, αs) = 0 for all 1 ≤ s < r ≤ N,

ν(r, αr) 6= 0, 1 ≤ r ≤ N

(12)
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due to (6). We can collect the terms as

r∑
j=1

mrj

s∑
`=1

ms`φε(‖xj − x`‖2)

= εtr+ts
∑

β ≥ αr

α ≥ αs

EQP (α, β)

f|α+β|ε
|α+β|−tr−tsc(α, β)ν(r, β)ν(s, α)

=: εtr+tsBr,s(ε)

to define a symmetric positive definite N × N matrix B(ε) which converges
for ε → 0 to B(0) with entries

Brs(0) =
∑

|β| = tr

|α| = ts

EQP (α, β)

ftr+tsc(α, β)ν(r, β)ν(s, α)

for 1 ≤ r, s ≤ N with equal parity of tr and ts, and zero else.

Lemma 2 The matrix B(0) is nonsingular.

Proof: We take an arbitrary u ∈ IRN , define the set

I := {α ∈ ZZd
0 : |α| = tr for some r, 1 ≤ r ≤ N}

and a function R which associates to each β ∈ I the set

R(β) := {j : |β| = tj, 1 ≤ j ≤ N}.
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Then we evaluate the quadratic form

N∑
r=1

N∑
s=1

urusBr,s(0)(−1)
tr−ts

2

=
N∑

r=1

N∑
s=1

urus(−1)
tr−ts

2

∑
|β| = tr

|α| = ts

α, β ∈ I

EQP (α, β)

f|α+β|c(α, β)ν(r, β)ν(s, α)

=
∑

α, β ∈ I

EQP (α, β)

f|α+β|c(α, β)(−1)
|α|−|β|

2

∑
r∈R(β)

urν(r, β)
∑

s∈R(α)

usν(s, α)

which clearly is positive semidefinite due to Lemma 1 and because it is the
limit of positive definite quadratic forms. It is positive definite, because from

∑
r∈R(β)

urν(r, β) = 0 for all β ∈ I

we can conclude u = 0 by inserting β = α1, . . . , αN one after another, applying
(12). This finishes the proof of the lemma. 2

With an N×N diagonal matrix D(ε) with entries ε−tk , 1 ≤ k ≤ N the system
(10) is rewritten as

y = A(ε)a(ε)

D(ε)My = D(ε)MA(ε)MT D(ε)︸ ︷︷ ︸
=:B(ε)

D−1(ε)(MT )−1a(ε)

= B(ε)D−1(ε)(MT )−1a(ε)

to get the solution as a rational vector valued function

a(ε) = MT D(ε)B−1(ε)D(ε)My

for all positive ε with an asymptotic behavior which has at most ε2tN = ε2k2

in the denominator. 2

We shall not use Theorem 1 directly, because it concerns the coefficients of
interpolants in terms of the degenerating basis φ(ε‖x − xj‖2), 1 ≤ j ≤ N .
Naturally, these coefficients are much less stable than coefficients uj(x, ε) of a
Lagrange basis. This observation motivates the next section.
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6 Expansions of Lagrange Bases

We write the standard linear system for Lagrange interpolating functions
uj(x, ε) satisfying uj(xk, ε) = δjk, 1 ≤ j, k ≤ N as A(ε)u(x, ε) = ΦX(x, ε)
with

ΦX(x, ε) := (φ(ε‖x− x1‖2), . . . , φ(ε‖x− xN‖2))
T

and transform it into

D(ε)MA(ε)MT D(ε)︸ ︷︷ ︸
=B(ε)

D−1(ε)(M−1)T u(x, ε)︸ ︷︷ ︸
=:v(x,ε)

= D(ε)MΦX(x, ε)︸ ︷︷ ︸
=:w(x,ε)

(13)

to make it stably solvable, as we shall see, led by the last section of (1). We
expand the elements of the B(ε) matrix as follows:

Brs(ε) =
∑

|β| ≥ tr

|α| ≥ ts

f|α+β|ε
|α+β|−tr−tsc(α, β)ν(r, β)ν(s, α)

=
∞∑

n=0

εn
∑

|β| ≥ tr

|α| ≥ ts

|α + β| = n + tr + ts

f|α+β|c(α, β)ν(r, β)ν(s, α)

=:
∞∑

n=0

εnBr,s,n

(14)

with coefficients

Br,s,n =
∑

|β| ≥ tr

|α| ≥ ts

|α + β| = n + tr + ts

f|α+β|c(α, β)ν(r, β)ν(s, α)
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which are zero unless EQP (n, tr+ts) holds. The components of the right-hand
side of (13) are

wj(x, ε) := ε−tj
j∑

k=1

mjkφ(ε‖x− xk‖2)

= ε−tj
j∑

k=1

mjk

∑
α, β

f|α+β|ε
|α+β|c(α, β)xβxα

k

=
∑
α, β

|α| ≥ tj

f|α+β|c(α, β)ε|α|−tj(εx)βν(j, α)

=
∞∑

n=0

εn
∑
α, β

|α| = n + tj

f|α+β|c(α, β)(εx)βν(j, α)

=
∞∑

n=0

εnwj,n(εx)

(15)

where we defined

wj,n(y) :=
∑
α, β

|α| = n + tj

f|α+β|c(α, β)yβν(j, α)

=:
∑
β

wj,n,βyβ

having coefficients

wj,n,β =
∑
α

|α| = n + tj

f|α+β|c(α, β)ν(j, α) (16)

which can be nonzero only if EQP (|β|, n+tj) holds. The special representation
(15) of the right-hand side leads us to postulate a similar representation

vj(x, ε) =
∞∑

n=0

εnvj,n(xε) (17)
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for the solution. If we plug this into the full system, we get

∞∑
n=0

εnwr,n(xε)

=
∞∑

n=0

εn
N∑

s=1

Br,s,n

∞∑
m=0

εmvs,m(xε)

=
∞∑

k=0

εk
k∑

m=0

N∑
s=1

vs,m(xε)Br,s,k−m

and this is satisfied, because the nonsingularity of B(0) proven in Lemma 2
allows to solve the recursive linear system

wr,n(y) =
n∑

m=0

N∑
s=1

vs,m(y)Br,s,n−m

=
N∑

s=1

vs,n(y)Br,s,0 +
n−1∑
m=0

N∑
s=1

vs,m(y)Br,s,n−m

for all n ≥ 0, 1 ≤ r ≤ N . This justifies (17) and allows a recursive component-
wise calculation in the form

∑
β∈ZZd

0

wr,n,βyβ =
n∑

m=0

N∑
s=1

∑
β∈ZZd

0

vs,m,βyβBr,s,n−m

=
∑

β∈ZZd
0

yβ

(
N∑

s=1

vs,n,βBr,s,0 +
n−1∑
m=0

N∑
s=1

vs,m,βBr,s,n−m

)

wr,n,β =
N∑

s=1

vs,n,βBr,s,0 +
n−1∑
m=0

N∑
s=1

vs,m,βBr,s,n−m

(18)

of the representation

vs,m(y) =:
∑

β∈ZZd
0

vs,m,βyβ.

Here, nonzero coefficients can only occur if EQP (|β|, m + ts) holds, as was
the case for the wr,n expansion coefficients. To see this, we look inductively
at (18) in case EQP (|β|, n + tr) fails. Then the left-hand side is zero, and so
is the double sum, because it contains only terms with EQP (|β|, m + ts) and
EQP (n−m, tr + ts) which imply EQP (|β|, n + tr). Thus the solution is zero.
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We now exploit u(x, ε) = MT D(ε)v(x, ε) component-wise with (17) to get

uj(x, ε) =
∞∑

m=0

εm
N∑

k=j

mk,jε
−tkvk,m(xε)

=
∞∑

m=0

εm
N∑

k=j

mk,jε
−tk

∑
α∈ZZd

0

vk,m,αxαε|α|

= ε−tN
∞∑

n=0

εn
N∑

k=j

mk,j

∑
α ∈ ZZd

0

|α| ≤ n + tk − tN

vk,n+tk−tN−|α|,αxα

=: ε−tN
∞∑

n=0

εnPj,n(x)

(19)

with polynomials and coefficients

Pj,n(x) :=
∑

α ∈ ZZd
0

|α| ≤ n

Pj,n,αxα

Pj,n,α :=
N∑

k = j

|α| ≤ n + tk − tN ≤ n

vk,n+tk−tN−|α|,αmk,j.
(20)

Note that the worst-case degeneration of Lagrange basis functions is only like
ε−k2 = ε−tN , while the solution of (10) can degenerate like ε−2k2 .

7 Convergence Conditions

Now it is time to draw conclusions from the above expansions.

Lemma 3 All polynomials Pj,n are zero unless EQP (n, k2) holds.

Proof: In fact, the equation for Pj,n,α contains only terms with

EQP (|α|, n + tk − tN − |α|+ tk) = EQP (0, n− tN) = EQP (0, n− k2).2
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As in the cited papers, the expansion (19) implies

Pj,n(xk) = 0, 1 ≤ j, k ≤ N, n ≥ 0, n 6= k2 = tN

Pj,k2(xk) = δjk, 1 ≤ j, k ≤ N.

Theorem 2 For analytic positive definite radial basis functions with positive
Fourier transforms on a set of positive measure, increasingly flat interpolants
will converge to a polynomial, if k2 ≤ k0 + 2 holds.

Proof: Assume non-convergence. Then there are j, n with 1 ≤ j ≤ N, . 0 ≤
n < k2 and EQP (n, k2) such that Pj,n does not vanish. This polynomial then
must have a degree larger than k0, because it vanishes on X and is nonzero.
This implies

k0 < deg Pj,n ≤ n ≤ k2 − 2 < k2 with EQP (n, k2).

2

8 Radial Coalescence

We now leave the “increasingly flat” scenario. From (15) we see that

wj(x, ε) =
∞∑

n=0

εnwj,n(y) = ε−tj
N∑

k=j

mjkφ(‖y − εxk‖2), y = ε x

is the right-hand side of a Lagrange-type system of equations where φ is not
scaled, but where the data points ε xk coalesce radially into zero for ε → 0.
This is a model case for what happens for fixed scaling of φ but for data points
getting dense. The associated linear functionals

λj,ε(f) := ε−tj
j∑

k=1

mjkf(εxk), 1 ≤ j ≤ N, (21)

when used for interpolation with the basis

wj(x, ε) = λy
j,εφ(‖x− y‖2)

generated by λj,ε acting with respect to y on φ(‖x− y‖2), lead to the interpo-
lation matrix with entries

λx
r,ελ

y
s,εφ(‖x− y‖2) = Br,s(ε) (22)
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we know already. The interpolation is carried out with the basis of functions
vj(x, ε) satisfying (13). Our scaling is such that in the dual of the native Hilbert
space (6) for φ we have

‖λr,ε‖2
φ = Br,r(ε) → Br,r(0) > 0

for ε → 0. Consequently, we see that our use of M and D(ε) is the right way to
precondition problems with this kind of coalescence. The finite-dimensional in-
terpolation space which arises in the limit will now not consist of polynomials,
but rather be spanned by the functions

wj,0(y) =
∑
α, β

|α| = tj

f|α+β|c(α, β)yβν(j, α). (23)

They span the same space as the functions vj,0 we get when taking the limit
of (13), because the vj,0 are generated from the wj,0 by application of B(0)−1.
The functions above are of the form wj,0(x, ε) = λy

j,0φ(‖x − y‖2) for limit
functionals

λj,0(x
α) :=

 ν(j, α) |α| = tj

0 else


which act like tj-fold derivatives at zero. They still are linearly independent
because of

(λr,0, λs,0)φ = Brs(0), 1 ≤ r, s ≤ N.

Theorem 3 Radially coalescent Lagrange interpolation problems converge to-
wards Hermite interpolation problems with a maximal differentiation order k2

of limit functionals. 2

It should be remarked that (7) contains the basics of Hermite interpolation
by radial basis functions.

9 Newton Interpolation

The foregoing sections contained some rather heavy machinery, but they fol-
lowed a strategy which is well-known from univariate polynomial interpolation.
In fact, the transition from Lagrange to Hermite interpolation via the New-
ton interpolation formula is precisely what happened above. To see this more
clearly, we drop the parameter ε in this section.

17



First, in univariate situations, we make the transition from function values
f(x1), . . . , f(xN) to the N divided differences

λj(f) := f [x1, . . . , xj], 1 ≤ j ≤ N

in standard terminology, but written as N linear functionals which have the
form (28) with a moment matrix that does not appear explicitly but satis-
fies (6). The connection between (28) and divided differences is based on the
property

λj(x
α) = 0, |α| < tj = |αj| = j − 1

in 1D, as assured by the moment matrix via (6). Then the Newton basis

vj(x) :=
j−1∏
i=1

(x− xi), 1 ≤ j ≤ N

generates the Newton interpolant

p(x) :=
N∑

j=1

λj(f)vj(x), (24)

and the interpolation process nicely converges for coalescing points into a
Hermite interpolation problem, if written in Newton form. Note that the limit
functionals are derivatives of order up to N − 1 in 1D, but only up to order
k2 ≤ N − 1 in our multivariate theory.

While our functionals of (21) correspond nicely to divided differences, we still
have to see how our basis corresponds to the Newton basis. The crucial fact
is that the Newton basis satisfies

λj(vk) = δjk, 1 ≤ j, k ≤ N, (25)

as follows from (24). Note that the case j < k relies on the fact that vk van-
ishes on x1, . . . , xk−1, while the case j > k is standard for divided differences,
because they annihilate lower-order polynomials.

In our technique, the system (13) can be written as

N∑
j=1

(λj, λk)φvj(x) = wk(x)

using (22), both for positive ε and in the limit ε → 0. But the definition of
the wk implies λj(wk) = (λj, λk)φ, and thus we have (25). If we use the fact
that the M matrix is lower triangular by construction, we immediately get
something similar to the 1D case:
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Lemma 4 The functions vj,ε of the transformed interpolation process satisfy

vj,ε(xk) = 0, 1 ≤ k < j ≤ N, ε > 0. 2

10 General Coalescence

We now turn to the harder problem of N more or less freely coalescing points at
zero. To this end, we assume that our data points xk(h) move along smooth
curves for h → 0 into 0 = xk(0). For simplicity, we assume ‖xk(h)‖2 ≤ h
throughout. The geometry now is h-dependent, and the characteristic multi-
indices αj(h) of (5) and the tj(h) := |αj(h)| of (4) will vary with h. But we
shall focus on sequences hk → 0 where these discrete quantities do not vary
any more. Thus we ignore their dependence on h again.

If we define points yk(h) by xk(h) = h yk(h) such that the yk(h) still vary
smoothly, the geometric quantities derived for the yk(h) are the same as those
for xk(h), because the columns of the monomial matrices just get different
scalar factors. We assume that higher-order monomials of the yk(h) can be
stably calculated via

yα
k (h) =

N∑
j=1

d(j, h, α)yαj

k (h), 1 ≤ k ≤ N, |α| > k2 (26)

from lower-order monomials, with uniformly bounded coefficients d(j, h, α).
From the definition of k2 this is clear if the yk are constant, but we allow
them to vary here, allowing a much more general but still somewhat regular
coalescence of the xk(h).

The above identity describes how the column with multi-index α of the mono-
mial matrix can be reconstructed from the N linear independent columns
corresponding to the αj, 1 ≤ j ≤ N . In our coalescence scenario, the above
identity, when rewritten in terms of the xα

k (h), turns into

xα
k (h) =

N∑
j=1

d(j, h, α)h|α|−|α
j |xαj

k (h), 1 ≤ k ≤ N, |α| > k2 (27)

and describes in a natural way how the larger powers of the xk vanish faster
than the lower ones for h → 0. This provides a good reason why (26) should
be assumed.

We can always find h-dependent N × N moment matrices M(h) = (mjk(h))
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such that the linear functionals

λj,h(f) :=
N∑

k=1

mjk(h)f(xk(h)), 1 ≤ j ≤ N, (28)

are orthonormal in the native space of φ. This can be done by orthogonalizing
in the span of the functionals δxk(h), 1 ≤ k ≤ N in the native space, which
is equivalent to orthogonalization of the N ×N positive definite matrix with
entries

(δxj(h), δxk(h))φ = φ(‖xj(h)− xk(h)‖2), 1 ≤ j, k ≤ N, h > 0.

Due to their normalization, the functionals of (28) must be weak-∗-convergent,
and thus there are limit functionals λj,0 with norm one in the dual of the native
space such that

λj,0(f) = lim
h→0

λj,h(f)

for suitable subsequences and all f in the native space of φ. The whole problem
works in the span of the right-hand sides

wj,h(y) := λx
j,hφ(‖x− y‖2)

which nicely converge in the native space towards

wj,0(y) := λx
j,0φ(‖x− y‖2), 1 ≤ j ≤ N,

whatever these functions actually are, and the orthogonalization of our func-
tionals imply the Lagrange property

λy
k,hwj,h(y) = λx

j,hλ
x
k,hφ(‖x− y‖2) = δjk, 1 ≤ j, k ≤ N

for all positive h. Clearly, the limit functionals must be supported in zero only,
but we want to figure out that they are necessarily derivatives at zero of order
up to k2. From (27) we get uniform convergence

λm,h(x
α) =

N∑
j=1

d(j, h, α)h|α|−|α
j |λm,h(x

αj

) → 0

for h → 0 and all |α| > k2. This proves

λj,0(x
α) = 0 for all |α| > k2, 1 ≤ j ≤ N.

But for general functions f the functionals act like

λj,0(f) =
∑

α∈ZZd
0

Dαf(0)

α!
λj,0(x

α)

=
∑
|α|≤k2

Dαf(0)

α!
λj,0(x

α)
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proving that they are derivatives of order at most k2, as required. Now we can
also check the limit of the orthogonality. Since convergence is not strong, we
cannot directly conclude

δjk = lim
h→0

(λj,h, λk,h)φ
?
= (λj,0, λk,0)φ,

but we can consider the limit of

δjk = (λj,h, λk,h)φ

=
∑

α,β∈ZZd
0

c(α, β)f|α+β|λj,h(x
α)λk,h(y

β)

→
∑

α, β ∈ ZZd
0

|α|, |β| ≤ k2

c(α, β)f|α+β|λj,0(x
α)λk,0(y

β)

= (λj,0, λk,0)φ, 1 ≤ j, k ≤ N.

Theorem 4 Lagrange interpolation problems based on coalescing data sites
satisfying (26) converge to Hermite problems whose functions and functionals
are defined by limit functionals being certain derivatives of order at most k2

at the coalescence point.

11 Computations

We add a few remarks concerning the actual calculation of all important terms
arising in the above equations. A MAPLE c© worksheet for 2D examples is
available from the author.

First, for given N data points in IRd forming a set X, a sufficiently large
monomial matrix IM must be generated such that its rank is N . In worst
possible, i.e. essentially univariate cases, this takes a degree up to N − 1. In
general, we can get away with the maximal degree k2 ≤ N − 1, but at this
point we do not know k2, forcing us to start with a monomial matrix that is
“sufficiently large” to have rank N . A standard LU decomposition with row
permutations then leads to a (usually non-square) U matrix with N rows,
permutations just acting on the points of X. The first nonzero entry of U in
row j, counted from left to right, corresponds to a unique column multi-index
αj, thus defining the sequence (5). This determines the tj := |αj| of (4) with
k2 = tN , and the L−1 matrix of the decomposition yields the moment matrix
M in (6). Looking at the largest row index i, 1 ≤ i ≤ N where the nonzero

pivots still lie on the diagonal, we get k0 as the largest k with
(

k+d
d

)
≤ i. In

21



short, if looking at the staircase-shaped positions of first nonzero elements in
rows of U ,

• k0 is the degree after which the staircase leaves the diagonal to move to the
right,

• k1 is the degree necessary for forming the left N ×N submatrix,
• k2 is the degree at which the staircase hits the bottom row.

This illustrates (2). Up to here, there are no radial basis functions involved, and
it is no problem to calculate a polynomial interpolant based on the monomials
xαi

, 1 ≤ i ≤ N for comparison with what comes later. This interpolant is
somewhat special in that it uses the minimum possible number of monomials,
and it only uses those with a certain minimality with respect to the ordering of
the exponents. In many cases, it looks preferable to every other interpolating
polynomial.

We now turn to increasingly flat radial basis function interpolants. Inserting
an expansion of f as a sequence of numbers f2n, we arrive at the problem to
determine how far to calculate all of our expansions. Looking back at (20), it
suffices to calculate the Pj,n,α for 1 ≤ j ≤ N, 0 ≤ n ≤ k2 and |α| ≤ k2. This
requires vj,n,α for the same range. From (18) we see that also the wj,n,α share
this range, and we need the Br,s,k for 1 ≤ r, s ≤ N, 0 ≤ k ≤ k2. However,
equations (16) and (14) imply that we need the c and ν values for multi-indices
|α| ≤ 2k2 to calculate those values. Altogether, this fixes finite data to work
with, and it is quite straightforward to program all necessary linear algebra
calculations.

Using this strategy, the 2D examples of (2) can easily be reproduced, the
solutions given there being the polynomials P1,k2 here. But since (2) deals with
the irrelevant number k1 and additional non-degeneracy conditions which are
only implicitly related to k0 and k2, we add a table to supply the constants
connecting these examples to the theory of this paper.

Example k0 k1 k2 N Data

2.1 1 2 2 4 general

2.2 1 2 3 6 on parabola

2.3 0 2 5 6 on a line

2.4 2 2 2 6 general

2.5 1 2 3 6 on a circle

Clearly, by Theorem 2 only Example 2.3 can show degeneracy, and it does. If
N data are given on a line, we have (3), and Theorem 2 implies that the first
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possibly degenerate case can be k2 = 3 and N = 4. However, by MAPLE c©
one can show that the first degenerate situation for one-dimensional data
embedded in 2D occurs for N = 5.

If data are on a non-degenerate conic like a circle or a parabola, we have k0 = 1
as in Examples 2.2 and 2.5 of (2), because there is a nontrivial second-degree
polynomial vanishing on all data sites, independent of the number N of these.
In this case we need k2 ≥ 4 by Theorem 2 to find a degenerate case. This
occurs, for instance, if two points are added to the 6 points on a parabola in
Example 2.2 of (2). Then k2 = 4 holds, and Theorem 2 turns out to be sharp.

Finally, we consider the coalescence case. There, the limit of Lagrange ba-
sis functions makes no sense. Likewise, the degenerating linear systems for
coalescing points should not be solved at all. Thus we work our way back-
wards, constructing the Hermite limit interpolants first, and evaluating them
at various sequences of coalescing points in order to show that the Hermite
interpolants agree with the given function at coalescing points up to terms of
order h.

Thus we pick a smooth function g and use fixed data locations xk, 1 ≤ k ≤ N
to start with. The coalescing points will then be defined a-posteriori by the
user to satisfy zk(h) := hxk + O(h2). Then we calculate either exact Hermite
data λj,0(g) or approximate data

λj,h(g) := h−tj
N∑

k=1

mjkg(zk(h))

near zero and form the functions

s(x) :=
N∑

j=0

λj,0(g)vj,0(x)

sh(x) :=
N∑

j=0

λj,h(g)vj,0(x)

using the fixed Hermite basis functions vj,0(x) which we calculate explicitly
by multiplying the vector of functions wj,0 of (23) by B(0)−1. They satisfy
λk,0(vj,0) = δjk, 1 ≤ j, k ≤ N , as we pointed out in section 9. The functions
s and sh are exact or approximate solutions, respectively, to the Hermite
problem at zero.

Then we can use MAPLE c© to see symbolically that the error functions g− s
and g− sh behave like O(h2) for h → 0 at the points zk(h). The degenerating
interpolants defined via Lagrange interpolation at the zk(h) are not calculated
at all. The fixed function s arises as the limit of all coalescing cases with points
zk(h) := hxk(h) + O(h2), no matter how they are defined. If the functionals
λj,0 are numerically approximated by λj,h, the same limit is attained via sh for
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h → 0, but the calculation of λj,h(g) is numerically unstable due to cancellation
in (21). The numerical instability is confined to the approximate calculation of
the Hermite functionals, while the linear system has fixed condition and does
not degenerate. If the user calculates s instead of sh, there are no numerical
degenerations at all, at the expense of not solving the coalescing problems
exactly.

12 Open Problems

The conditions given by Theorem 2 are sufficient to guarantee convergence for
the “increasingly flat” case, and they are sharp as far as conditions are for-
mulated using k0 and k2 only. However, convergence is equivalent to certain
equations guaranteeing Pn = 0 for all k0 < n < k2 with EQP (n, k2), and these
come up as complicated rational expressions involving the data set X and the
expansion coefficients f2` of the radial basis function φ. Thus there may be
special cases of X and φ where there is convergence outside the sufficient con-
dition of Theorem 2. A particular case, conjectured by Driscoll and Fornberg
(4) and proven in (1), surprisingly states that the Gaussian lets these condi-
tions be satisfied in all cases, no matter what the geometry of X is. In other
words: the Gaussian overcomes all possible geometric degenerations. The same
property holds experimentally for the Bessel radial basis function J0(r), but
this one fails to satisfy the assumptions of Lemma 1 and leads to singular ma-
trices (3). The special role of the Gauss and Bessel kernels are still a mystery.
Our MAPLE c© procedures allow some explicit experimentation along these
lines, but there are no theoretical results known so far.

For the “coalescence” scenario, our methods indicate how to cope with data
points that come too close and thus spoil the condition of the linear sys-
tem. We showed how to transform the Lagrange interpolation problem into
a Hermite interpolation problem with a stable limit. This is a first case of a
preconditioning technique for such systems, but it is still nor efficient enough.
However, the analysis leads to a complete understanding of the degeneration
process and the stable limit of the transformed process.

Coalescence situations will automatically occur, if adaptive methods calculate
approximations of functions that are derivatives of the kernel at a fixed point.
Investigations of such methods are under way, since they proved to be rather
efficient (8; 9) in practice, even for solving partial differential equations by
collocation (10; 11).
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