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Abstract

We investigate numerical differentiation formulas on irregular centers in two or
more variables that are exact for polynomials of a given order and minimize an
absolute seminorm of the weight vector. Error bounds are given in terms of a
growth function that carries the information about the geometry of the centers.
Specific forms of weighted ℓ1 and weighted least squares minimization are proposed
that produce numerical differentiation formulas with particularly good performance
in numerical experiments.

1 Introduction

We consider a linear differential operator D of order k in d real variables in the notation

Df =
∑

α∈Zd+
|α|≤k

cα∂
αf, ∂α :=

∂|α|

∂xα
=

∂|α|

∂xα1
1 · · · ∂xαd

d

, |α| = α1 + · · ·+ αd, (1)

where cα are real functions of the independent variable. To simplify notation, we assume
that d ≥ 1 and k ≥ 0 are fixed for the entire paper, and do not indicate the dependence
of various quantities on these two parameters.

Given an operator D, a point z ∈ R
d such that

∑

|α|=k |cα(z)| 6= 0, and a finite set

X = {x1, . . . ,xN} ⊂ R
d, we consider numerical differentiation formulas

Df(z) ≈
N
∑

j=1

wj f(xj) (2)

that allow to evaluate Df(z) approximately using only function values at the centers
in X. Any formula of type (2) is defined by its weight vector w = [w1, . . . , wN ]T that
depends on D, z and X.

Numerical differentiation formulas can be used in particular in meshless generalized
finite difference methods for partial differential equations that differ from the classical
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finite difference method in that they replace finite differences on grids by numerical
differentiation formulas (2) on subsets of a given set of centers that discretize a spacial
domain (see for example Chapter 5 of the book [17]). In these methods N is usually kept
small, and a refinement of the solution requires increasing the density of the centers and
hence reducing the distances ‖z − xj‖2. The accuracy of the approximation (2) plays
a crucial role for the convergence of such methods. It has been thoroughly investigated
under the name of local discretization error or consistency error for the functions of one
variable (with applications to numerical methods for ordinary differential equations)
and for many variables in the case when the centers z,x1, . . . ,xN are placed on a grid.
However, little is known about the error of the numerical differentiation formulas when
the centers are irregularly distributed in R

d, d ≥ 2, the situation of particular interest
for the meshless methods.

In this paper we are interested in the error bounds of the form

∣

∣

∣
Dp(z)−

N
∑

j=1

wj p(xj)
∣

∣

∣
≤ σ(z,X)φ(hz,X)‖f‖F , f ∈ F, (3)

where
hz,X := max

x∈X
‖z− x‖2, (4)

F is a space of functions with a (semi)norm ‖·‖F , σ(z,X) depends on the geometry of
X and its position with respect to z, but not on hz,X, and φ(hz,X) stands for the local
approximation order, where φ(t) → 0 as t → +0. If φ(hz,X) = O(hµz,X) for some µ > 0,
then (2) has consistency order µ in the usual sense of the error analysis of the numerical
methods as treated for example in [25]. Together with the computable estimates of a
stability constant of the system matrix suggested in [22], these bounds can be used for
the practical error analysis of generalized finite difference methods.

Given a point set X = {x1, . . . ,xN}, a numerical differentiation formula (2) can be
generated by requiring exactness for polynomials of certain order. We denote by Πd

q the
space of all d-variate polynomials of order at most q, i.e. of total degree less than q, and
Πd

0 := {0}.

Definition 1. Let D be a linear differential operator of order k. A numerical differen-
tiation formula (2) based on a set X = {x1, . . . ,xN} ⊂ R

d is said to be (polynomially)
exact of order q ≥ 1 if

Dp(z) =

N
∑

j=1

wj p(xj) for all p ∈ Πd
q , (5)

and (polynomially) consistent of order m ≥ 1 if it is exact of order q = m+ k.

Polynomially exact formulas of order q can be obtained by solving the equations
(5) with respect to the weights wj . The achievable order of polynomial exactness on a
set X is limited by solvability of (5) and depends crucially on the geometry of X and
the differential operator D. If (5) admits more than one solution, then the remaining
degrees of freedom can be settled by minimizing a norm of the weight vector w =
[w1, . . . , wN ]T . For example, the minimization of the ℓ2-norm ‖w‖2 := (

∑N
j=1w

2
j )

1/2
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results in the weight vector obtained by applying D to the least squares polynomial fit
to the data, see Section 5. Weight vectors that minimize the weighted ℓ1-norm ‖w‖1,µ =
∑N

j=1 |wj |‖xj − z‖µ2 and satisfy a positivity condition were considered in [24], whereas
[13] gives an error bound for the numerical differentiation formulas that minimize ‖w‖1,q.

In this paper we develop error bounds for the ‖·‖-minimal formulas whose weights
minimize a given absolute seminorm ‖·‖. These error bounds are expressed in terms of
a growth function

ρq,D(z,X, ‖·‖) := sup{Dp(z) : p ∈ Πd
q , ‖p|X‖∗ ≤ 1}, ‖·‖∗ is dual seminorm,

and are based on a duality argument that shows that

ρq,D(z,X, ‖·‖) = inf
{

‖w‖ : w ∈ R
N , Dp(z) =

N
∑

j=1

wjp(xj) for all p ∈ Πd
q

}

.

Special types of growth functions have previously been considered in [9, 3, 13]. In
particular, they appear in the error bounds for the kernel-based numerical differentiation
in [13].

Special attention is given to ‖·‖1,µ- and ‖·‖2,µ-minimal formulas, where ‖w‖2,µ :=

(
∑N

j=1w
2
j‖xj − z‖2µ2 )1/2. The ‖·‖1,µ-minimal formulas are sparse but their computation

requires linear programming whereas the ‖·‖2,µ-minimal formulas are cheaper to com-
pute thanks to their relation to the weighted least squares. Theoretical estimates and
numerical experiments reveal a lot of similarity in the degree of accuracy and stability
of both types of formulas for the same µ, which makes it possible to access the qual-
ity of a ‖·‖1,µ-minimal formula if the weights of the respective ‖·‖2,µ-minimal formula
are known, see Remark 22. The experiments suggest that the preferable choice of the
exponent µ is µ ≈ q, where q is the exactness order, as it provides formulas with al-
most optimal accuracy and and good stability even on centers with difficult geometry.
Explicit error bounds are obtained for the positive ‖·‖1,µ-minimal formulas of [24].

We refer the reader to our paper [14] for a treatment of the polyharmonic formulas
that minimize the error of a polynomially consistent formula in a Beppo-Levi space
and share with the ‖·‖-minimal formulas the computationally advantageous property of
scalability, see Remark 14 and Section 6.1.

The paper is organized as follows. In Section 2 we develop error bounds of the type
(3) for arbitrary polynomially consistent formulas, with f in a Hölder space Cr,γ(Ω)
or a Sobolev space W r

∞(Ω). Section 3 is devoted to the duality theory of the growth
functions and error bounds for the ‖·‖-minimal formulas, Section 4 to the ‖·‖1,µ-minimal
and Section 5 to the ‖·‖2,µ-minimal formulas. Numerical experiments are presented in
Section 6.

2 Error of Polynomially Consistent Formulas

We start with a basic error bound generalizing [13, Theorem 10]. For any domain
Ω ⊂ R

d, r ∈ Z+ and γ ∈ (0, 1], let Cr,γ(Ω) denote the Hölder space consisting of all r
times continuously differentiable functions f on Ω such that |∂αf |γ,Ω < ∞ for all α ∈ Z

d
+
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with |α| = r, where

|f |γ,Ω := sup
x,y∈Ω
x6=y

|f(x)− f(y)|
‖x− y‖γ2

is a semi-norm on C0,γ(Ω). For r ≥ 1 we use a nonstandard semi-norm

|f |r,γ,Ω :=
1

(γ + 1) · · · (γ + r)

(

∑

|α|=r

(

r

α

)

|∂αf |2γ,Ω
)1/2

, f ∈ Cr,γ(Ω). (6)

Note that (6) is equivalent to the usual seminorm |f |Cr,γ(Ω) := max|α|=r |∂αf |γ,Ω since

1

(r + 1)!
max
|α|=r

|∂αf |γ,Ω ≤ |f |r,γ,Ω <
dr/2

r!
max
|α|=r

|∂αf |γ,Ω.

In the case γ = 1 the space Cr,1(Ω) can be identified with the Sobolev space W r+1
∞ (Ω)

with the semi-norm
|f |W r+1

∞ (Ω) := max
|α|=r+1

‖∂αf‖L∞(Ω)

if Ω satisfies a strong local Lipschitz condition, see for example [1, Lemma 4.28]. If Ω is
a convex domain, it can be easily verified that

|f |r,1,Ω ≤ |f |∞,r+1,Ω :=
1

(r + 1)!

(

∑

|α|=r+1

(

r + 1

α

)

‖∂αf‖2L∞(Ω)

)1/2
(7)

for any f ∈ W r+1
∞ (Ω).

Given z ∈ R
d and a function f ∈ Cs−1(Ω) for some domain Ω ⊂ R

d containing z, we
denote by Ts,zf the Taylor polynomial of order s ≥ 1 centered at z,

Ts,zf(x) =
∑

|α|<s

(x− z)α

α!
∂αf(z).

For any z ∈ R
d and X = {x1, . . . ,xN} ⊂ R

d we set

Sz,X :=

N
⋃

i=1

[z,xi], (8)

where [x,y] denotes the segment {αx+ (1− α)y : 0 ≤ α ≤ 1}.

Lemma 2. Assume that f ∈ Cr,γ(Ω), r ≥ 0, γ ∈ (0, 1]. Then for any z,x ∈ Ω such
that [z,x] ⊂ Ω,

|f(x)− Tr+1,zf(x)| ≤ ‖x− z‖r+γ
2 |f |r,γ,Ω.

Proof. By a well-known remainder formula, for any f ∈ Cr(Ω) and x ∈ Ω,

Rr,zf(x) := f(x)− Tr,zf(x) = r
∑

|α|=r

(x− z)α

α!

∫ 1

0
(1− t)r−1∂αf(z+ t(x− z)) dt.
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Hence

Rr+1,zf(x) = r
∑

|α|=r

(x− z)α

α!

∫ 1

0
(1− t)r−1[∂αf(z+ t(x− z)) − ∂αf(z)] dt, (9)

and we have for f ∈ Cr,γ(Ω),

|Rr+1,zf(x)| ≤ r
∑

|α|=r

|(x− z)α|
α!

∫ 1

0
(1− t)r−1tγ‖x− z‖γ2 |∂αf |γ,Ω dt

=
r!

(γ + 1) · · · (γ + r)
‖x− z‖γ2

∑

|α|=r

|(x− z)α|
α!

|∂αf |γ,Ω.

By using the identity
∑

|α|=r

(x− z)2α

α!
=

1

r!
‖x− z‖2r2

that follows from the multinomial theorem, and applying Cauchy-Schwarz inequality,
we obtain

(

∑

|α|=r

|(x− z)α|
α!

|∂αf |γ,Ω
)2

≤ 1

r!
‖x− z‖2r2

∑

|α|=r

|∂αf |2γ,Ω
α!

,

and the statement follows.

Proposition 3. Any differentiation formula (2), which is exact of order q > k for a
linear differential operator D of order k, has an error bound

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ |f |q−1,γ,Ω

N
∑

j=1

|wj |‖xj − z‖q−1+γ
2 (10)

for all f ∈ Cq−1,γ(Ω), γ ∈ (0, 1], where Ω ⊂ R
d is any domain that contains the set

Sz,X.

Proof. Using the exactness of the formula and the fact that DR(z) = 0 for any differ-
ential operator D of order less than q, we obtain

Df(z)−
N
∑

j=1

wj f(xj) = −
N
∑

j=1

wjRq,zf(xj), (11)

and (10) follows from Lemma 2.

By using (7), we obtain the following formulation for functions in W q
∞(Ω).

Proposition 4. Any differentiation formula (2), which is exact of order q > k for a
linear differential operator D of order k, has an error bound

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ |f |∞,q,Ω

N
∑

j=1

|wj |‖xj − z‖q2 (12)

for all f ∈ W q
∞(Ω), where Ω ⊂ R

d is any domain that contains the convex hull of
{z,x1, . . . ,xN}.
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Note that [13, Theorem 10] gives the same estimate (12) under the stronger assump-
tion that f ∈ Cq(Ω).

Remark 5. The expression of the error of numerical differentiation in the form (11)
with Rq,zf given by (9) generalizes [6, Theorem 1] that applies to the weights wj ob-
tained by differentiating Lagrange basis polynomials in the case when X is suitable for
interpolation with polynomials in Πd

q . An error bound in a form similar to (12) for the
weights generated by polynomial interpolation or least squares polynomial fits can be
found in [7].

Looking for an estimate of the type (3), we can for example deduce from (12) the
bound

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ ‖w‖1hqz,X |f |∞,q,Ω, f ∈ W q
∞(Ω), (13)

that holds under the hypotheses of Proposition 4, where the ℓ1-norm of w,

‖w‖1 =
N
∑

j=1

|wj|,

has an additional interpretation as a stability constant of the numerical differentiation
formula (2) responsible in particular for the sensitivity of (2) to the round-off errors be-
cause the absolute error in

∑N
i=1 wjfj is bounded by ‖w‖1 times the maximum absolute

error in fj.
However, the factor ‖w‖1 in (13) also depends on hz,X as the following lemma shows.

Lemma 6. Let (2) be exact of order q > k for a linear differential operator D of order
k. There is a constant C depending only on D and z, such that

‖w‖1 ≥ Ch−k
z,X.

Proof. Since
∑

|α|=k |aα(z)| 6= 0, there is α0 with |α0| = k such that aα0(z) 6= 0. Then

for p(x) = (x − z)α0 , we have |p(xj)| ≤ ‖xj − z‖k2 ≤ hkz,X, j = 1, . . . , N , and Dp(z) =

α0!aα0(z), where p ∈ Πd
k+1. Since (2) is exact for p, it follows that

|Dp(z)| =
∣

∣

∣

N
∑

j=1

wj p(xj)
∣

∣

∣
≤ ‖w‖1 max

j=1,...,N
|p(xj)|,

and hence ‖w‖1 ≥ α0!|aα0(z)|h−k
z,X.

This motivates to express the bounds in terms of the quantity hkz,X‖w‖1, that is the
ℓ1-norm of the scaled vector hkz,Xw. More general, we define σ-factors of the form

σ(z,X,w, µ) := hk−µ
z,X

N
∑

j=1

|wj |‖xj − z‖µ2 , µ > 0, σ(z,X,w, 0) := hkz,X‖w‖1. (14)

A simple calculation shows that

σ(z,X,w, µ) ≤ σ(z,X,w, ν), 0 ≤ ν < µ. (15)
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An important feature of the expressions σ(z,X,w, µ), µ ≥ 0, is their scale-invariance
in the sense that

σ(z,X,w, µ) = σ(z,Xh,wh, µ) for any h > 0,

where Xh = {xh
j : j = 1, . . . , N} and wh = [wh

1 , . . . , w
h
N ]T with

xh
j := z+ h(xj − z), wh

j := h−kwj , j = 1, . . . , N. (16)

The scaling of the weights in (16) is standard in the finite difference method and is
justified by the fact that for a homogeneous operator D of order k (that is aα = 0 for
all α with |α| < k in (1)), the exactness order of all scaled formulas

(Df)(z) ≈
N
∑

j=1

wh
j f(x

h
j ), h > 0, (17)

coincides with the exactness order of (2).
We deduce from Propositions 3 and 4 the following main result of this section.

Theorem 7. Assume that the differentiation formula (2) for a linear differential op-
erator D of order k is exact of order q > k, and let Ω be a domain containing the set
Sz,X =

⋃N
i=1[z,xi]. Then for any r = k, . . . , q − 1, γ ∈ (0, 1], and µ ≤ r + γ,

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ σ(z,X,w, µ)hr+γ−k
z,X |f |r,γ,Ω, f ∈ Cr,γ(Ω). (18)

If Ω contains the convex hull of {z,x1, . . . ,xN} and µ ≤ r + 1, then

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ σ(z,X,w, µ)hr+1−k
z,X |f |∞,r+1,Ω, f ∈ W r+1

∞ (Ω). (19)

The estimates in (18) and (19) are of the type (3) discussed in the introduction. The
factors in the right hand side are responsible for three different ingredients of the error:
geometric position of the points (σ-factor), size of the domain of influence (h-factor),
and a measure of smoothness of the function (f -factor).

3 Minimal Formulas and Growth Functions

If the weights wj are not fully determined by the exactness condition (5), it is natural
in view of Theorem 7 to choose w that minimizes the factor σ(z,X,w, µ), that is to
minimize the weighted ℓ1-(semi)norm

N
∑

j=1

|wj|‖xj − z‖µ2 =: ‖w‖1,µ (20)

of the weight vector w = [w1, . . . , wN ]T , with an appropriate exponent µ > 0. Clearly,
‖·‖1,µ is just a seminorm in case that xj = z for some j. Note that the notation ‖w‖1,µ
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for the above seminorm hides its dependence on z,X, which normally does not cause
any confusion.

Since, however, weight vectors minimizing other expressions are also in use, we note
that

N
∑

j=1

|wj|‖xj − z‖µ2 ≤ ‖w‖ ‖δµ(z,X)‖∗, (21)

where ‖·‖ is an arbitrary absolute seminorm on R
N , ‖·‖∗ its dual seminorm, and δ

µ(z,X)
denotes the vector with components

δµj (z,X) := ‖xj − z‖µ2 , j = 1, . . . , N. (22)

Recall that a (semi)norm ‖·‖ on R
N is said to be absolute if it depends only on the

absolute values of the components of a vector. The arguments in [2] (originally for norms
on C

N ) show that any absolute seminorm is monotonic in the sense that |wj| ≤ |vj |,
j = 1 . . . , N , implies ‖w‖ ≤ ‖v‖. From this it is easy to deduce that the kernel K of an
absolute seminorm ‖·‖ has the form {w ∈ R

N : wj = 0, j ∈ J} for some J ⊂ {1, . . . , N}.
The dual seminorm ‖·‖∗ is the norm on the orthogonal complement K⊥ of K dual to
the restriction of ‖·‖ to K⊥, and ‖u‖∗ = ∞ for all u ∈ Rn \ K⊥. In particular,

‖u‖∗1,µ = max
j=1,...,N

uj 6=0

|uj |‖xj − z‖−µ
2 , u ∈ R

N , (23)

and ‖δµ(z,X)‖∗1,µ = 1.
If we introduce a basis of polynomials, we see that polynomial consistency needs

weight vectors w ∈ R
N satisfying a possibly underdetermined linear system Aw = b in

the form (5) with a M ×N matrix A. Then one can try to minimize ‖w‖ for any norm
or seminorm on R

N under all solutions.

Lemma 8. The problems

inf{‖w‖ : w ∈ R
N , Aw = b} and sup{bTx : x ∈ R

M , ‖ATx‖∗ ≤ 1}

are dual, if ‖·‖∗ is the dual seminorm to ‖·‖. In particular,

1. bTx ≤ ‖w‖ holds for admissible vectors w and all x ∈ R
M such that ‖ATx‖∗ ≤ 1,

and hence both problems are solvable if one is,

2. if both problems are solvable, then optimal values are equal,

3. the second is unbounded if and only if the first has no admissible vector.

Proof. Although this lemma is a special case of Fenchel’s duality theorem, we provide
a short self-contained proof for the case when ‖·‖ is a norm. (The proof for seminorms
can be obtained following the same lines.) For any admissible vector w and any x ∈ R

M

satisfying ‖ATx‖∗ ≤ 1, we have

bTx = (Aw)Tx = wTATx ≤ ‖w‖‖ATx‖∗ ≤ ‖w‖,

which proves the first assertion.
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To prove the second assertion, we assume that the first problem is solvable and thus
b ∈ ImA. Then the formula

λ(ATx) := bTx, x ∈ RM ,

defines a linear functional λ on the space ImAT ⊂ R
N . Indeed, if ATx = ATy, then

x− y ∈ kerAT and hence bT (x− y) = 0 by Fredholm’s alternative for matrices, which
shows that λ is well defined. If we equip ImAT with the dual norm ‖·‖∗, then the norm
of λ,

‖λ‖ = sup
‖ATx‖∗≤1

bTx

is the optimal value of the second problem. By the Hahn-Banach theorem the functional
λ can be extended to R

N without increasing its norm. Hence there exists w ∈ R
N such

that ‖w‖ = ‖λ‖ and wTATx = bTx for all x ∈ R
M . The latter property implies

Aw = b, which shows that w is an admissible vector for the first problem and

‖w‖ = sup
‖ATx‖∗≤1

bTx.

The third assertion follows from Fredholm’s alternative that ensures that for any
b /∈ ImA there is x ∈ kerAT such that bTx 6= 0.

Note that the dual problem in Lemma 8 always has admissible points but may be
unbounded.

Inspecting the dual problem in our case, we see that the minimization of the semi-
norm ‖w‖ of a weight vector w for a differentiation formula which is exact on Πd

q is dual

to the maximization of Dp(z) over all polynomials p ∈ Πd
q where the vector p|X of values

of p on X satisfies ‖p|X‖∗ ≤ 1. This generalizes directly to other linear functionals than
f 7→ Df(z). By appropriate interpretation of A and b of Lemma 8 we get

Theorem 9. Given a seminorm ‖·‖ on R
N , a set X ⊂ R

d of N points, and a linear
functional λ that can be applied to Πd

q , the quantity

ρ := sup{λ(p) : p ∈ Πd
q , ‖p|X‖∗ ≤ 1}

is finite if and only if there exists an approximation formula

λ(f) ≈
N
∑

j=1

wjf(xj)

which is exact on Πd
q . Then

ρ = inf
{

‖w‖ : λ(p) =
N
∑

j=1

wjp(xj) for all p ∈ Πd
q

}

.

Moreover, the inequality
|λ(p)| ≤ ‖w‖

holds for all w that define a Πd
q-exact formula and all p ∈ Πd

q such that ‖p|X‖∗ ≤ 1 and
is sharp for any p = p∗ and w = w∗ satisfying ‖w∗‖ = ρ = |λ(p∗)|.
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In the case λ(f) := δzDf = Df(z) we call the constant ρ of the last theorem the
growth function and introduce the notation

ρq,D(z,X, ‖·‖) := sup{Dp(z) : p ∈ Πd
q , ‖p|X‖∗ ≤ 1}. (24)

Theorem 9 implies the following dual form of the growth function

ρq,D(z,X, ‖·‖) = inf
{

‖w‖ : w ∈ R
N , Dp(z) =

N
∑

j=1

wjp(xj) for all p ∈ Πd
q

}

. (25)

Note that the growth function was first considered in [9] for the norm ‖·‖1 and
identity operator Df = f (in which case it is related to the norming constant of [19]),
and later in [3] for partial derivatives and in [13] for differential operators and the norm
‖·‖1,µ. In particular, different proofs of the duality (24)–(25) in special cases were given
in [9] and [3].

It is easy to see that the growth function is monotone with respect to X in the
following sense. If X′ = X ∪ {xN+1, . . . ,xM}, with xj /∈ X, j = N + 1, . . . ,M , then
any vector w ∈ R

N can be extended to w′ ∈ R
M by setting w′

j = 0, j = N + 1, . . . ,M .

Assuming that the seminorm ‖·‖′ on R
M is compatible with ‖·‖ in the sense that ‖w′‖′ =

‖w‖, we derive from (25) that

ρq,D(z,X
′, ‖·‖′) ≤ ρq,D(z,X, ‖·‖). (26)

If X = {x1, . . . , xN} is a unisolvent set for Πd
q in the sense that p|X = 0 implies p = 0

for any p ∈ Πd
q , thenX contains an interpolation set X′ = {x′1, . . . , x′M} ⊂ X for Πd

q , that

is a unisolvent set such that M = dimΠd
q =

(

d+q−1
d

)

. Then any polynomial p ∈ Πd
q satis-

fies p =
∑M

j=1 p(x
′
j)ℓj, where the Lagrange polynomials ℓj ∈ Πd

q are uniquely determined

by the conditions ℓi(x
′
j) = δij (the Kronecker delta). Since Dp(z) =

∑M
j=1Dℓj(z) p(x

′
j),

the set in the right hand side of (25) is not empty for any z ∈ R
d, which implies the

following statement.

Proposition 10. If X is a unisolvent set for Πd
q , then ρq,D(z,X, ‖·‖) < ∞ for any D,

z and ‖·‖.

However, X does not have to be a unisolvent set for Πd
q in order that ρq,D(z,X, ‖·‖)

< ∞ for certain points z. An important example is given in the case of the Laplace
operator ∆ =

∑d
i=1

∂2

∂x2
i

in R
2 by the five point star X = {(0, 0), (±1, 0), (0,±1)} ⊂ R

2,

where ∆p(0, 0) = p(1, 0) + p(−1, 0) + p(0, 1) + p(0,−1) − 4p(0, 0) for all p ∈ Π2
3, which

implies ρ3,∆(0,X, ‖·‖) < ∞ for any norm ‖·‖, whereas X with its 5 points is too small
to be a unisolvent set for Π2

3 of dimension 10.
If X is an interpolation set for Πd

q , then there is a unique differentiation formula of

exactness order q given by Df(z) ≈ ∑N
j=1Dℓj(z) p(xj), where ℓj, j = 1, . . . , N , are the

Lagrange functions. In this case the growth function for ‖·‖ = ‖·‖1 coincides with the
classical Lebesgue function,

ρq,D(z,X, ‖·‖1) = Lq,D(z,X) :=
N
∑

j=1

|Dℓj(z)|.

10



If X is a unisolvent set for Πd
q , then the monotonicity (26) of the growth function implies

that

ρq,D(z,X, ‖·‖1) ≤ min
{

Lq,D(z,X
′) : X′ ⊂ X, X′ is an interpolation set for Πd

q

}

.

Remark 11. Growth functions in the form (24) can be estimated from above under
appropriate assumptions on the set X, such as sufficient density in a domain satisfying
an interior cone condition, see e.g. [27, Theorem 3.8], or the existence of a subset with
a known bound on the Lebesgue function, for example Padua points [5]. We will not
pursue such estimates in this paper.

In what follows we will investigate weight vectors that realize the infimum in (25)
for certain types of seminorms ‖·‖.

Definition 12. Let ‖·‖ be an seminorm on R
N . A differentiation formula (2) for a linear

differential operator D of order k is said to be ‖·‖-minimal of order q if the weight vector
w∗ that defines it satisfies

‖w∗‖ = inf
{

‖w‖ : Dp(z) =

N
∑

j=1

wjp(xj) for all p ∈ Πd
q

}

.

Then ‖w∗‖ = ρq,D(z,X, ‖·‖) by (25).

From Propositions 3, 4, and equations (21), (25) we immediately obtain the following
error bounds.

Theorem 13. Assume that the differentiation formula (2) with the weight vector w∗ for
a linear differential operator D of order k is ‖·‖-minimal of order q > k for an absolute
seminorm ‖·‖, and let Ω be a domain containing the set Sz,X =

⋃N
i=1[z,xi]. Then for

any r = k, . . . , q − 1, and γ ∈ (0, 1],

|Df(z)−
N
∑

j=1

w∗
j f(xj)| ≤ ρq,D(z,X, ‖·‖) ‖δr+γ(z,X)‖∗ |f |r,γ,Ω, f ∈ Cr,γ(Ω),

where the vector δr+γ(z,X) is defined in (22). If Ω contains the convex hull of {z,x1, . . . ,xN},
then

|Df(z)−
N
∑

j=1

w∗
j f(xj)| ≤ ρq,D(z,X, ‖·‖) ‖δr+1(z,X)‖∗ |f |∞,r+1,Ω, f ∈ W r+1

∞ (Ω).

Note that similar estimates involving general growth functions ρq,D(z,X, ‖·‖) can
be obtained for the error of the kernel-based numerical differentiation, generalizing the
results in [13]. Indeed, (21) and (25) can be applied to the bound given in [13, Lemma
7].

For the scaled formulas (17) for a homogeneous operator D of order k the error
bound (10) takes the form

|Df(z)−
N
∑

j=1

wh
j f(x

h
j )| ≤ hq−1+γ−k|f |q−1,γ,Ωh

N
∑

j=1

|wj |‖xj − z‖q−1+γ
2 ,

11



where Ωh contains the scaled set Sz,Xh =
⋃N

i=1[z,x
h
i ]. Hence, for a ‖·‖-minimal weight

vector w we immediately obtain the following estimates showing the correct scaling
behavior of the error for any h > 0,

|Df(z)−
N
∑

j=1

wh
j f(x

h
j )| ≤ hr+γ−kρq,D(z,X, ‖·‖) ‖δr+γ(z,X)‖∗ |f |r,γ,Ωh,

|Df(z)−
N
∑

j=1

wh
j f(x

h
j )| ≤ hr+1−kρq,D(z,X, ‖·‖) ‖δr+1(z,X)‖∗ |f |∞,r+1,Ωh,

(27)

where r = k, . . . , q−1, {z,x1, . . . ,xN} ⊂ Ω, and for the second estimate we assume that
Ω contains the convex hull of {z,x1, . . . ,xN}.

Remark 14. If w is ‖·‖-minimal for a homogeneous operator D of order k on z,X,
then clearly wh = h−kw is also ‖·‖h-minimal for the same operator D on z,Xh if
‖wh‖h = αh‖w‖ with some αh > 0. Therefore the ‖·‖-minimal formulas are scalable in
the sense of [14], which is helpful for the computation of w, see Section 6.1.

4 Weighted ℓ1-Minimal Differentiation Formulas

In the case of the ℓ1-norm ‖·‖ = ‖·‖1, with ‖w‖1 :=
∑N

j=1 |wj |, and the (semi)norm
‖·‖ = ‖·‖1,µ of (20) we will use the simplified notation for the growth function

ρq,D(z,X, 1, µ) := ρq,D(z,X, ‖·‖1,µ), µ ≥ 0 (‖·‖1,0 := ‖·‖1).

Thus,

ρq,D(z,X, 1, µ) = sup{Dp(z) : p ∈ Πd
q , |p(xj)| ≤ ‖xj − z‖µ2 , j = 1, . . . , N}

= inf
{

N
∑

j=1

|wj |‖xj − z‖µ2 : w ∈ R
N , Dp(z) =

N
∑

j=1

wjp(xj) for all p ∈ Πd
q

}

,

where ‖xj − z‖02 := 1 in the undetermined case xj = z.

We now consider various aspects of ‖·‖1,µ-minimal formulas in some detail.

4.1 Sparsity

An important feature of ‖·‖1,µ-minimal formulas is a relatively small number of nonzero
weights wj.

Theorem 15. Given D, X and z, assume that there exists a numerical differentiation
formula (2) of polynomial exactness order q. Then for any µ ≥ 0, there is a ‖·‖1,µ-
minimal formula of order q with at most dimΠd

q nonzero weights.

Proof. The constrained weighted ℓ1-minimization problem for the ‖·‖1,µ-minimal weight
vector w = [w1, . . . , wN ]T can be reformulated as a linear optimization problem

min
w+,w−

cT (w+ +w−) under A(w+ −w−) = b,

12



for nonnegative variables w+,w− ∈ R
N , where w+

j = max{wj , 0}, w−
j = −min{wj , 0},

j = 1 . . . , N , such that w = w+−w− and |wj| = w+
j −w−

j . Here c is a fixed nonnegative

vector with cj = ‖xj − z‖µ2 , and A is a matrix with dimΠd
q rows and N columns that

expresses the polynomial exactness of order q. This is a problem in standard normal
form, and, if solvability is assumed, there always is an optimal vertex solution having
no more positive components than the number of rows of A.

Clearly, any linear programming algorithm that ends in a vertex solution, for example
the simplex method, will find a weight vector w satisfying Theorem 15. Note that Πd

q–

unisolvent sets X will always consist of N ≥ dimΠd
q points, and if there are more points

than needed, the ‖·‖1,µ-minimal formulas do not use them, albeit the choice of the subset
depends on µ, see some numerical examples in Section 6.4. Sparser solutions with less
than dimΠd

q nonzero weights wj , i.e. the five point star for bivariate Laplace operator,
are more difficult to find unless X is specifically designed to admit such solutions, which
is the standard approach in the finite difference method on regular nodes. Note that
methods for obtaining sparse solution of underdetermined systems of linear equations
are the subject of Compressed Sensing [18].

4.2 Error bounds and choice of µ

Given a linear differential operator D of order k and the order q > k of polynomial
exactness, assume that f ∈ Cr,γ(Ω) for a domain Ω containing Sz,X, with some r ∈
{k, . . . , q − 1} and γ ∈ (0, 1]. We consider ‖·‖1,µ-minimal formulas for various µ ≥ 0.

The choice µ = r + γ plays a special role as it delivers the best possible estimate in
Theorem 13. Indeed, since ‖δr+γ(z,X)‖∗1,r+γ = 1 by (23), we have

|Df(z)−
N
∑

j=1

w1,r+γ
j f(xj)| ≤ ρq,D(z,X, 1, r + γ) |f |r,γ,Ω. (28)

where w1,r+γ is the weight vector of a ‖·‖1,r+γ-minimal formula. In view of (21) and
(25),

ρq,D(z,X, 1, r + γ) ≤ ρq,D(z,X, ‖·‖) ‖δr+γ(z,X)‖∗

for any absolute seminorm ‖·‖, which shows that (28) is the best estimate obtainable
from Theorem 13.

From (28) we obtain in particular that for any f ∈ W q
∞(Ω), where Ω contains the

convex hull of Sz,X, any ‖·‖1,q-minimal formula of exactness order q satisfies

|Df(z)−
N
∑

j=1

w1,q
j f(xj)| ≤ ρq,D(z,X, 1, q) |f |∞,q,Ω. (29)

Nevertheless, other choices of µ are also of interest. In particular, a ‖·‖1,0-minimal
formula has the optimal stability constant

‖w1,0‖1 = ρq,D(z,X, 1, 0)

13



over all weight vectors of the fixed exactness order q > k, whereas a larger µ > 0 means
that the weights in (20) penalize more distant points in X, thus leading to smaller
effective supports

Xw := {xj ∈ X : wj 6= 0}
of the respective formulas.

Therefore we derive error bounds for ‖·‖1,µ-minimal formulas with any µ ≥ 0, that
also take into account the influence of the effective supports Xw.

Theorem 16. Assume that the differentiation formula (2) with the weight vector w =
w1,µ for a linear differential operator D of order k is ‖·‖1,µ-minimal of order q > k, and

let Ω be a domain containing the set Sz,X =
⋃N

i=1[z,xi]. Then for any r = k, . . . , q − 1,
and γ ∈ (0, 1],

|Df(z)−
N
∑

j=1

w1,µ
j f(xj)| ≤ ρq,D(z,X, 1, µ)hr+γ−µ

z,Xw
|f |r,γ,Ω if 0 ≤ µ ≤ r + γ, (30)

|Df(z)−
N
∑

j=1

w1,µ
j f(xj)| ≤ ρq,D(z,X, 1, µ) sr+γ−µ

z,Xw
|f |r,γ,Ω if µ > r + γ, (31)

where hz,X is defined in (4), and

sz,Y := min
y∈Y\{z}

‖y − z‖2 (32)

denotes the distance from z to Y \ {z}.
Proof. The case µ = r + γ is covered in (28). Let µ 6= r + γ. In view of (23),

‖δr+γ(z,Xw)‖∗1,µ = max
xj∈Xw\{z}

‖xj − z‖r+γ−µ
2 =

{

hr+γ−µ
z,Xw

, if µ < r + γ,

sr+γ−µ
z,Xw

, if µ > r + γ.

Moreover, it is clear from (25) that ρq,D(z,X, 1, µ) = ρq,D(z,Xw, 1, µ), and both (30)
and (31) follow from Theorem 13 applied to the set Xw instead of X.

Note that hz,Xw
≤ hz,X and s−1

z,Xw
≤ s−1

z,X, and the respective quantities may be
significantly different if w is sparse.

When comparing the bounds in (28), (30), (31) it is helpful to take into account the
scaling behavior of the growth functions ρq,D(z,X, 1, µ). If D is a homogeneous operator
of order k, then for Xh defined by (16),

ρq,D(z,X
h, 1, µ) = hµ−kρq,D(z,X, 1, µ), µ ≥ 0, (33)

which is easy to check by the definition of ρq,D(z,X, 1, µ). In particular, all these bounds
give convergence with rate O(hr+γ−k) as in (27) for the scaled formulas with weights
wh
j = h−kwj.
By rearranging the factors in (30) and estimating hz,Xw

by hz,X we may obtain
bounds in the form (3),

|Df(z)−
N
∑

j=1

w1,µ
j f(xj)| ≤ σq,D(z,X, 1, µ)hr+γ−k

z,X |f |r,γ,Ω, µ ≤ r + γ, (34)
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where the σ-factor
σq,D(z,X, 1, µ) := hk−µ

z,X ρq,D(z,X, 1, µ)

is scale-invariant in the sense that σq,D(z,X, 1, µ) = σq,D(z,X
h, 1, µ) for any h > 0 and

any homogeneous D. It is connected to σ(z,X,w, µ) of (14) by the relation

σq,D(z,X, 1, µ) = inf
{

σ(z,X,w, µ) : w ∈ R
N , Dp(z) =

N
∑

j=1

wjp(xj)
}

.

Although the right hand side of (34) is minimal for µ = r + γ thanks to (15), the
more accurate estimates in (30) are not so conclusive. In Section 6.4 we investigate the
influence of µ on the accuracy and stability of the ‖·‖1,µ-minimal formulas numerically.
The results suggest that significantly higher accuracy can be achieved at the expense of
a moderate increase of ‖w‖1 when using µ > 0. However, an excessively large µ may
lead to a high error and a high stability constant ‖w‖1 on more difficult sets X. The
choice µ = r + γ seems to deliver a good compromise between stability and accuracy.
The error bounds (31) involving sz,Xw

rather than hz,Xw
are much less accurate than

those in (28)–(30) in these experiments, when compared with the actual error of the
numerical differentiation formulas.

4.3 Positive formulas

For an elliptic differential operatorD of second order, a numerical differentiation formula
(2) with x1 = z is said to be positive if w1 < 0 and wj > 0, j = 2, . . . , N . Formulas
of this type are useful in generalized finite difference methods [24] for elliptic PDEs
since under certain additional assumptions the system matrices become M-matrices
with highly desirable properties such as guaranteed invertibility and discrete maximum
principle.

Proposition 17. There are no positive formulas that are exact for polynomials of order
5 or higher.

Proof. Following the argumentation in [23, p. 57], assume that a positive formula (2)
with is exact for polynomials of order 5. Then in particular it is exact for the polynomial
p(x) = ‖x − z‖42 ∈ Πd

5. Since Dp(z) = 0, this implies that
∑N

j=1wj‖xj − z‖42 = 0 and
hence w1 = · · · = wN = 0, a contradiction.

An example of a positive formula of polynomial exactness order 4 for the Laplace
operator ∆ is the classical 5 point star formula in R

2.
The following theorem shows a minimality property and an error bound for arbitrary

positive formulas.

Theorem 18. Let D be an elliptic differential operator (1) of second order, and let
a numerical differentiation formula (2) with weight vector w be positive and exact for
polynomials of order q ∈ {3, 4}. Then w is ‖·‖1,2-minimal, with

‖w‖1,2 = ρq,D(z,X, 1, 2) = τD(z) := 2
∑

|α|=1

c2α(z), (35)
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and hence for any f ∈ Cr,γ(Ω), with 2 ≤ r + γ ≤ q,

|Df(z)−
N
∑

j=1

wj f(xj)| ≤ τD(z)h
r+γ−2
z,Xw

|f |r,γ,Ω (36)

where Ω ⊂ R
d is any domain that contains the set Sz,X defined by (8), and Xw := {xj ∈

X : wj 6= 0}.

Proof. If a formula (2) with weight vector w is exact for polynomials of order q, then in
particular it is exact for p(x) = ‖x− z‖22 ∈ Πd

3, and hence

N
∑

j=1

wj‖xj − z‖22 = Dp(z) = τD(z).

It follows that ‖w‖1,2 ≥ τD(z). (Note that τD(z) > 0 for any elliptic operatorD of second

order.) If we assume that x1 = z and w is positive, then ‖w‖1,2 =
∑N

j=2wj‖xj − z‖22 =
τD(z), which proves the ‖·‖1,2-minimality of the positive formula, and (35) in view of
(25). The error bound (36) follows from (30).

As a corollary we obtain the following statement about growth functions.

Corollary 19. Let D be an elliptic differential operator (1) of second order, and let z
and X be such that there exists a positive differentiation formula (2) of exactness order
q ∈ {3, 4}. Then ρq,∆(z,X, 1, 2) = τD(z).

Note that for the Laplace operator D = ∆ we have τ∆(z) = 2d for all z ∈ R
d.

Theorem 18 shows that any positive differentiation formula is ‖·‖1,2-minimal. If
there is more than one such formula, then all of them have the same ‖·‖1,2-seminorm
‖w‖1,2 = τD(z) and satisfy the error bound (36). It is suggested in [24] to choose
a particular positive differentiation formula by minimizing the ‖·‖1,µ-seminorm of the
weight vector w, with µ > 2, which is supported by numerical evidence. Indeed, for
a greater µ, points closer to z are preferred, which potentially improves the bound in
(36) thanks to a smaller hz,Xw

. Our experiments in Section 6.4 also investigate this
phenomenon, although we do not require the formulas to be positive.

5 Numerical Differentiation by Least Squares

General results of Section 3 can also be applied to the numerical differentiation formulas
obtained by differentiating the least squares polynomial fits to the data.

Assuming that X = {x1, . . . ,xN}, where N ≥ dimΠd
q , is a unisolvent set for Πd

q , the

weighted least squares polynomial Lθ

X,qf ∈ Πd
q , θ = [θ1, . . . , θN ]T , θj > 0, is uniquely

defined by the condition

‖(Lθ

X,qf − f)|X‖2,θ = min{‖(p − f)|X‖2,θ : p ∈ Πd
q},

where

‖v‖2,θ :=
(

N
∑

j=1

θjv
2
j

)1/2
.
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Moreover, Lθ

X,qf satisfies Lθ

X,qp = p for all p ∈ Πd
q . Since Lθ

X,qf depends linearly on

f |X, the application of D to Lθ

X,qf leads to a numerical differentiation formula

Df(z) ≈ DLθ

X,qf(z) =

N
∑

j=1

w2,θ
j f(xj) (37)

of exactness order q. Note that such formulas are frequently used in the generalized
finite difference methods, see e.g. [20, 4].

Let ‖·‖2,θ−1 be the weighted ℓ2-norm defined by the weight vector θ−1 = [θ−1
1 , . . . , θ−1

N ]T ,

‖v‖2,θ−1 =
(

N
∑

j=1

v2j
θj

)1/2
.

It is well known (see e.g. [16, Section 22.3]) that the weight vector w2,θ of (37) solves
the quadratic minimization problem

‖w‖2
2,θ−1 =

N
∑

j=1

w2
j

θj
→ min subject to Dp(z) =

N
∑

j=1

wjp(xj) for all p ∈ Πd
q .

Hence, (37) is a ‖·‖2,θ−1-minimal formula of order q according to Definition 12. We may

also allow zero and infinite weights, 0 ≤ θj ≤ ∞. If θj0 = 0 for some j0, then w2,θ
j0

= 0.

If θj0 = ∞ then the weighted least squares polynomial Lθ

X,f satisfies the interpolation

condition Lθ

X,f (xj0) = f(xj0). In both cases ‖·‖2,θ and ‖·‖2,θ−1 lose the j0-th term and
become seminorms.

The growth function corresponding to the seminorm ‖·‖2,θ−1 is

ρq,D(z,X, ‖·‖2,θ−1) = ‖w2,θ‖2,θ−1 = sup
{

Dp(z) : p ∈ Πd
q ,

N
∑

j=1

θj|p(xj)|2 ≤ 1
}

.

Since ‖·‖2,θ−1 is dual to ‖·‖2,θ, Theorem 13 implies the following error bounds.

Theorem 20. Let D be a linear differential operator of order k and let Ω be a domain
containing the set Sz,X =

⋃N
i=1[z,xi]. The numerical differentiation formula (37) of

order q > k for any r = k, . . . , q − 1, and γ ∈ (0, 1] satisfies

|Df(z)−
N
∑

j=1

w2,θ
j f(xj)| ≤ ρq,D(z,X, ‖·‖2,θ−1)

(

N
∑

j=1

θj‖xj − z‖2(r+γ)
2

)1/2
|f |r,γ,Ω,

for all f ∈ Cr,γ(Ω). If Ω contains the convex hull of {z,x1, . . . ,xN}, then for all
f ∈ W r+1

∞ (Ω),

|Df(z)−
N
∑

j=1

w2,θ
j f(xj)| ≤ ρq,D(z,X, ‖·‖2,θ−1)

(

N
∑

j=1

θj‖xj − z‖2r+2
2

)1/2
|f |∞,r+1,Ω.
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Motivated by the ‖·‖1,µ-minimal formulas studied in Section 4, we consider the least
squares solution with the weights given by

θj = ‖xj − z‖−2µ
2 , j = 1, . . . , N, µ ≥ 0,

and denote by w2,µ the vector w2,θ obtained with these weights, which are therefore
minimal with respect to the seminorm

‖w‖2,µ :=
(

N
∑

j=1

w2
j‖xj − z‖2µ2

)1/2
, µ > 0, ‖w‖2,0 := ‖w‖2.

The corresponding growth functions ρq,D(z,X, 2, µ) := ρq,D(z,X, ‖·‖2,µ) satisfy

ρq,D(z,X, 2, µ) = sup
{

Dp(z) : p ∈ Πd
q ,

N
∑

j=1
xj 6=z

|p(xj)|2

‖xj − z‖2µ2
≤ 1

}

.

= ‖w2,µ‖2,µ =
(

N
∑

j=1

(w2,µ
j )2‖xj − z‖2µ2

)1/2
.

(38)

In this case Theorem 20 leads to the following statement.

Corollary 21. Given a linear differential operator D of order k, the ‖·‖2,µ-minimal
formula of order q > k with the weight vector w2,µ, µ ≥ 0, satisfies for any domain Ω
containing the set Sz,X =

⋃N
i=1[z,xi] and any r = k, . . . , q − 1, and γ ∈ (0, 1], the error

bound

|Df(z)−
N
∑

j=1

w2,µ
j f(xj)| ≤

(

N
∑

j=1
xj 6=z

‖xj − z‖2(r+γ−µ)
2

)1/2
ρq,D(z,X, 2, µ) |f |r,γ,Ω. (39)

In particular, for µ = r + γ we have

|Df(z)−
N
∑

j=1

w2,r+γ
j f(xj)| ≤

√
N ρq,D(z,X, 2, r + γ) |f |r,γ,Ω. (40)

We can also estimate the error of the ‖·‖2,µ-minimal least squares formulas with
the help of the ‖·‖1,µ growth function. Indeed, from the inequality ‖w‖2,µ ≤ ‖w‖1,µ ≤√
N‖w‖2,µ it follows that

ρq,D(z,X, 2, µ) ≤ ρq,D(z,X, 1, µ) ≤
√
Nρq,D(z,X, 2, µ). (41)

Hence, (40) implies a bound for the error of the ‖·‖2,r+γ-minimal formulas that is only
by a factor of

√
N worse than the estimate (28) for the ‖·‖1,r+γ-minimal formulas.

Moreover, Theorem 16 implies in view of (41) that the error of the ‖·‖1,µ-minimal
formulas of exactness order q can be estimated with the help of the ‖·‖2,µ growth func-
tion,

|Df(z)−
N
∑

j=1

w1,µ
j f(xj)| ≤

√
Nρq,D(z,X, 2, µ) max

{

hr+γ−µ
z,X , sr+γ−µ

z,X

}

|f |r,γ,Ω, (42)
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where hz,X is defined in (4), and sz,X in (32).
In particular, for any f ∈ W q

∞(Ω), where Ω contains the convex hull of {z,x1, . . . ,xN},
(40) and (42) imply that both ‖·‖1,q-minimal and ‖·‖2,q-minimal formulas of exactness
order q satisfy the same error bound

|Df(z)−
N
∑

j=1

w1,q
j f(xj)| ≤

√
N ρq,D(z,X, 2, q) |f |∞,q,Ω, (43)

|Df(z)−
N
∑

j=1

w2,q
j f(xj)| ≤

√
N ρq,D(z,X, 2, q) |f |∞,q,Ω. (44)

Numerical experiments in Section 6 suggest that the accuracy of the ‖·‖2,µ-minimal
formulas is close to that of the ‖·‖1,µ-minimal formulas. Their weight vectors w can be
more efficiently computed, but they are not sparse.

Remark 22. A remarkable feature of (42) and (43) is that these error bounds do not
rely on the knowledge of the ‖·‖1,µ-minimal formula, so that its quality can be assessed
by computing ρq,D(z,X, 2, µ) and other ingredients of (42)–(43) without resorting to
expensive ℓ1-minimization. The latter will only be needed to compute a sparse ‖·‖1,µ-
minimal formula after good values for q and µ have been found based on the estimates.
Such sparse formulas are of interest for the generalized finite difference methods since
they lead to sparser system matrices. Since the error of kernel-based numerical differen-
tiation formulas is also bounded in terms of ρq,D(z,X, 1, q) [13, Theorem 9], the inequal-
ities (41) imply a bound in terms of the more efficiently computable ρq,D(z,X, 2, q) for
these formulas as well, which can be used in the kernel-based generalized finite differ-
ence methods to improve the algorithms for the selection of local point sets that generate
numerical differentiation formulas [10, 11, 21].

Remark 23. Note that the stability constant ‖w2,θ‖1 of the formula (37) has an al-
ternative interpretation as the Lebesgue function Lθ

q,D(z,X) of the differentiated least

squares operator DLθ
X,q because

Lθ
q,D(z,X) := sup{|DLθ

X,qf(z)| : |f(xi)| ≤ 1} = ‖w2,θ‖1. (45)

Similar to certain estimates of the Lebesgue constant Lθ
q,D(Ω,X) := supz∈Ω Lθ

q,D(z,X)
proposed in [8] the formula (45) can be employed to determine suitable degrees of local
polynomial approximations in the two-stage scattered data fitting algorithms [12, 15].

6 Numerical Experiments

6.1 Computation of weight vectors

Since Πd
q is shift-invariant, the polynomial exactness condition (5) for a vector w is

equivalent to

Dzp(0) =

N
∑

j=1

wjp(xj − z) for all p ∈ Πd
q ,
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where 0 is the origin in R
d, and for any operator D given by (1) the shifted operator

Dz is defined by

Dzf(x) :=
∑

|α|≤k

cα(x+ z)∂αf(x).

Hence we can always use z = 0 in the implementation of a ‖·‖-minimal formula if we
replace X by X− z and D by Dz. This allows the use of simple monomials for a basis
of polynomials.

Thus, for a ‖·‖1,µ-minimal formula we arrive at the following linear programming
problem: find w1,µ ∈ R

N that minimizes

N
∑

j=1

|wj |‖x̃j‖µ2 , x̃j := xj − z,

subject to the constraints

N
∑

j=1

wj x̃
α
j = Dzx

α|x=0 = α! cα(z), |α| < q.

However, for the setsX with small hz,X the matrix [x̃α
j ]j,α is extremely ill-conditioned.

Therefore, we make use of the scalability of the ‖·‖-minimal formulas, see Remark 14.
Thanks to this property, for a homogenous operator D of order k, the vector w can be
obtained by scaling w = h−k

z,Xv from the weight vector v ∈ R
N that solves the following

problem:

N
∑

j=1

|vj |‖yj‖µ2 → min subject to
1

α!

N
∑

j=1

vjy
α
j = cα(z), |α| < q, (46)

where yj := h−1
z,X(xj − z), j = 1, . . . , N .

We refer the reader to the extensive literature on the algorithms for the basis pursuit,
the name often used for the ℓ1 minimization problem, of which (46) is a special case.
Specifically in the area of Compressed Sensing there is a high demand for such algo-
rithms delivering sparse solutions. In our experiments we obtain sparse weights v with
vj = 0, j /∈ I, for some I ⊂ {1, . . . , N} by MATLAB command linprog by specifying
‘dual-simplex’ as algorithm. Since Optimization Toolbox currently only works in double
precision, we recompute the weights in the variable-precision arithmetic by solving the
constraint equations for vj, j ∈ I, should a higher accuracy be needed.

Since ‖·‖2,µ-minimal formulas are also scalable, the computation of their weight
vectors w is more stable numerically if we rescale the set X into the unit disk as Y :=
h−1
z,X(X− z), obtain the weight vector v of the formula

DzL
θ

Y,qf(0) =

N
∑

j=1

vjf(yj), with θj = ‖yj‖−2µ
2 , j = 1, . . . , N,

and then scale back to arrive at w = h−k
z,Xv. To see how v can be computed, write the

polynomial p = Lθ

Y,qf ∈ Πd
q in the monomial basis,

p(y) =
∑

|α|<q

bαy
α, bα ∈ R.
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Assuming that 0 /∈ Y, the vector b = [bα]α is the unique solution of the problem

‖Wb− fY‖2,θ → min, W := [yα
j ]j,α, fY := [f(y1), . . . , f(yN )]T .

(Note that W has full rank since Y is unisolvent for Πd
q .) Hence

b = (δW )+δfY,

where δ := diag(
√
θ1, . . . ,

√
θN) and A+ denotes the Moore-Penrose pseudoinverse of a

matrix A. Since
Dzp(0) =

∑

|α|<q

bαDzy
α|y=0 = [α! cα(z)]

T
α b,

we arrive at the formula
vT = [α! cα(z)]

T
α (δW )+δ.

In the case 0 ∈ Y assume without loss of generality that y1 = 0. Then θ1 = ∞ and
hence b0 = f(y1) and b̃ := [bα]α6=0 is the unique solution of the least squares problem

‖W̃ b̃− f̃Y‖2,θ → min,

where
W̃ := [yα

j ]j 6=1,α6=0, f̃Y := [f(y2)− f(y1), . . . , f(yN )− f(y1)]
T ,

with W̃ necessarily a full rank matrix. Then

Dzp(0) = c0(z)f(y1) + [α! cα(z)]
T
α6=0 b̃

= c0(0)f(y1) + [α! cα(z)]
T
α6=0 (δ̃W̃ )+δ̃f̃Y,

with δ̃ := diag(
√
θ2, . . . ,

√
θN ), which shows that

[v2, . . . , vN ] = [α! cα(z)]
T
α6=0 (δ̃W̃ )+δ̃,

v1 = c0(z)−
N
∑

j=2

vj.

The pseudoinverse of δW or δ̃W̃ can be found by using either the singular value
decomposition, the QR-factorization or the normal equations [26]. The last method
leads to a simple formula A+ = (ATA)−1AT , but requires solving linear systems with
the potentially highly ill-conditioned matrix ATA. Therefore we are using the singular
value decomposition in the numerical experiments as the most reliable method.

Once the weight vector w of a ‖·‖2,µ-minimal formula of order q has been computed,
the growth function ρq,D(z,X, 2, µ) can be easily evaluated by (38).

6.2 Comparison of numerical differentiation formulas

To compare various numerical differentiation formulas we follow the same approach
as in [13], and use the worst case error on Sobolev spaces Hρ(Rd) = W ρ

2 (R
d) as the

main accuracy measure. By Sobolev theorem, under certain restrictions on Ω, Hρ(Ω)
is embedded in Cr,γ(Ω) if ρ − d/2 = r + γ with ρ ∈ Z+ and γ ∈ (0, 1). Therefore the

21



estimates obtained in this paper are applicable to f ∈ Hρ(Ω) if ρ > d/2 and ρ−d/2 /∈ N.
The reason to deal with the spaces Hρ(Ω) rather than Cr,γ(Ω) is that the worst case
error of the formula (2) as well as the optimal recovery error are easily computable for
them.

Recall that the space Hρ(Rd) with the norm

‖f‖Hρ(Rd) := (2π)−d/4
(

∫

Rd

|f̂(ω)|2(1 + ‖ω‖22)ρ dω
)1/2

in the case ρ > d/2 coincides with the native space (see e.g. [27]) of the Matérn kernel

Mρ,d(x) :=
Kρ−d/2(‖x‖2)‖x‖ρ−d/2

2

2ρ−1Γ(ρ)
, ρ > d/2,

where Kν denotes the modified Bessel function of second kind. It follows (see [13]) that
the worst case error of a numerical differentiation formula (2) on the unit ball of Hρ(Rd)
can be computed by

sup
‖f‖

Hρ(Rd)
≤1

|Df(z)−
N
∑

j=1

wjf(xj)| =
√

QD,X(w), (47)

where

QD,X(w) := DD̃Mρ,d(0)− 2

N
∑

j=1

wjDMρ,d(z− xj) +

N
∑

i,j=1

wiwjMρ,d(xi − xj), (48)

with
D̃f := Df(−·) =

∑

|α|≤k

(−1)|α|cα∂
αf.

The optimal recovery error

inf
w∈RN

sup
‖f‖

Hρ(Rd)
≤1

|Df(z)−
N
∑

j=1

wjf(xj)| =
√

QD,X(w∗)

is attained by the kernel-based numerical differentiation formula with weight vector w∗

generated by the Matérn kernel Mρ,d, see [13, Section 2].
To circumvent the effect of rounding errors which have especially bad influence on

(48) due to the double differencing nature of QD,X(w), we compute the weights w for
small h using the variable-precision arithmetic (up to 64 digits) of MATLAB Symbolic
Math Toolbox.

We will compare the errors of various formulas for the numerical differentiation of

the Laplacian Df = ∆f = ∂2f
∂x2

1
+ ∂2f

∂x2
2
in two variables evaluated at the origin z = 0. We

consider the worst case errors on on the unit ball of the Sobolev space Hρ(R2) evaluated
by

√

QD,X(w) derived from the kernel Mρ,2, and the errors

∣

∣

∣
∆fi(z)−

N
∑

j=1

wjfi(xj)
∣

∣

∣
, i = 1, 2, (49)
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for two test functions described below.
The first test function is given by

f1(x) := φ3,2(‖x‖2)(x1 + x2) + φ3,3(‖x‖2),

where φ3,2(r) = (1 − r)6+(35r
2 + 18r + 3) and φ3,3(r) = (1 − r)8+(32r

3 + 25r2 + 8r + 1)
are compactly supported radial basis function of Wendland’s family [27]. It is easy to
check that f1 ∈ C5,1(R2) = W 6

∞(R2), but its 6th order derivatives are discontinuous
at the origin, so that we consider it as a typical representative of the space C5,1(Ω)
when evaluating its derivatives at the origin. Note that f1 /∈ H7(R2) but nevertheless
f1 ∈ W 7

p (R
2) for all p < 2.

Our second test function is
f2(x) := ex1+x2 .

It is infinitely differentiable and it is easy to see that

|f2|∞,m,Ω =
2m/2

m!
‖f2‖L∞(Ω), m = 0, 1, . . . ,

and
inf

{

‖f2‖L∞(Ω) : Ω ⊃ S0,X

}

= max
x∈X

f2(x),

which allows explicit computation of the error bounds that include the factor |f |∞,m,Ω.

6.3 Errors of minimal formulas of various exactness orders

Our first goal is to see how close we can get to the optimal recovery error by using
minimal formulas of the types considered in Sections 4 and 5. As already observed in
the experiments in [13], weighted ℓ1-minimal formulas can compete rather well with the
optimal recovery formulas obtained by kernel-based numerical differentiation if their
exactness order q is appropriately chosen. We now confirm a similar behavior of the
formulas generated by weighted least squares.

We consider three sets X̂i ⊂ [−1, 1]2, i = 1, 2, 3, introduced in [13], each consisting
of 32 points containing the origin, and generate numerical differentiation centers by
scaling Xh

i = hX̂i, where h = 2−n, n = 0, . . . , 9. The set X̂1 consists of the origin
and 31 random points in [−1, 1]2 drawn from the uniform distribution, X̂2 includes 32
points on a straight line, a hyperbola and an ellipse, perturbed (except of the point at
the origin) randomly by at most 10−6 in both coordinate directions, and X̂3 includes 32
points on three parallel straight lines, perturbed in the same way, see Figures 1 and 2
in [13]. Since 32 lies between dimΠ2

7 = 28 and dimΠ2
8 = 36, we consider formulas with

exactness order q ≤ 7. For simplicity, we choose the weight exponent µ = q, leaving the
experiments with varying µ to Section 6.4.

In Figure 1 we compare the worst case error (47) of the numerical differentiation of
the Laplacian on H7(R2) for the ‖·‖1,q and ‖·‖2,q-minimal formulas of exactness order
q = 3, . . . , 7. Figure 2 presents the comparison of the actual error (49) of the same
formulas for the test function f1. The error of the numerical differentiation using the
weights generated by the Matérn kernel M7,2 is also included, leading in Figure 1 to the
optimal recovery error. Note that the error of the ‖·‖1,7-minimal formulas of exactness
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order 7 is not shown for the sets Xh
3 because linprog fails to compute the weight vector

in this case. Nevertheless, the error of the corresponding ‖·‖2,7-minimal formulas is very
big, and the same is expected from the ‖·‖1,7-minimal formulas.

The results indicate that the errors of ‖·‖1,q-minimal and ‖·‖2,q-minimal formulas
are close for both the worst case on H7(R2) and for the test function f1. The best
convergence order as h → 0 achieved in these experiments is h4 for all sets Xh

i , i = 1, 2, 3,
and it is attained by the formulas of polynomial exactness order q = 6 or 7. The fact
that the formulas of exactness order 7 do possess better convergence speed than those
of order 6 is explained by the finite smoothness of f1 and H7(R2), see [14]. There are
significant differences between the sets Xh

1 , X
h
2 and Xh

3 with respect to the question
which q is preferable, especially in the pre-asymptotic setting where h is not excessively
small. For the random set Xh

1 the largest possible q = 7 is the best for all h, whereas it
leads to very big errors for the other two sets Xh

2 ,X
h
3 where the points are placed close

to algebraic curves of degree 5, respectively 3. The best choice for Xh
2 is q = 6, with

the errors of q = 5 quite competitive for larger h. The situation is more complicated for
Xh

3 , where q = 4 is the best choice for larger h, and the errors are comparable to those
of the optimal recovery, whereas q = 6 becomes better for smaller h, but the errors are
nevertheless significantly worse than the optimal recovery. Note that the slope of the
error of the Matérn kernel changes, as h decreases, from h2 matching the slope of the
error curve for q = 4, to h4 matching the slope of the error curve for q = 6.

These results emphasize the need for a careful selection of the exactness order q of
a numerical differentiation formula, which cannot always be made only on the basis of
the number of points in the set X, or their nearly uniform distribution. (The set X2

fills out the square [0, 1]2 more uniformly than X1 does, see [13, Figure 1].) To see
how well our estimates in Sections 4 and 5 can predict which q leads to smaller errors,
we present in Figure 3 the errors of the ‖·‖1,q-minimal and ‖·‖2,q-minimal formulas of
exactness order q for the numerical differentiation of the Laplacian of the test function f2,
together with the estimates of this error provided by the inequalities (12) and (44)/(43).
(Note that in these estimates we take the infimum over all Ω containing the convex
hull of {z,x1, . . . ,xN}.) Note that the estimate (29) for the ‖·‖1,q-minimal formulas
of exactness order q coincides with (12). The error of the ‖·‖1,7-minimal formulas of
exactness order 7 is not shown in Figure 3(e) because linprog fails to compute their
weight vectors, as mentioned above for Figures 1 and 2.

The results in Figure 3 show that both bounds (12) and (44)/(43) correctly predict
q with the smallest error in most cases. However, the estimates seem to become less
effective as q increases.

6.4 Influence of the exponent µ

In the above experiments we used µ = q for formulas of exactness order q. In order
to see how the choice of µ influences the results, we consider two new sets X4 and X5

shown in Figure 4. The set X4 consists of the origin (0, 0) and 149 random points from
the uniform distribution in [−1, 1]. To obtain X5, we removed from X4 its 32 points
closest to (0, 0), and replaced them by the set Xh

3 with h = 1/
√
2. This makes the

central part of X5 less suitable for a high order approximation.
We now compare ‖·‖1,µ and ‖·‖2,µ-minimal formulas of a given exactness order q =
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Figure 1: Error of numerical differentiation of the Laplacian by weighted ℓ1-minimal for-
mulas (left) and by the least squares formulas (right) on the Sobolev space H7(R2) using
centers in Xh

i , i = 1, 2, 3, as function of h. The error of optimal recovery (opt recovery

H7) obtained with the Matérn kernel M7,2 is included for comparison. L1min[q] (resp.
LS[q]): ‖·‖1,µ-minimal (resp. ‖·‖2,µ-minimal) formula with exactness order q and weight
exponent µ = q.
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Figure 2: Error of numerical differentiation of the Laplacian by weighted ℓ1-minimal
formulas (left) and by the least squares formulas (right) for the test function f1 using
centers inXh

i , i = 1, 2, 3, as function of h. The curves correspond to the weights obtained
by different methods. The error of the optimal recovery weights for the space H7(R2)
obtained with the Matérn kernel M7,2 is included for comparison (Matern7). L1min[q]
(resp. LS[q]): ‖·‖1,µ-minimal (resp. ‖·‖2,µ-minimal) formula with exactness order q and
weight exponent µ = q.
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Figure 3: Error of numerical differentiation of the Laplacian by weighted ‖·‖1,q-minimal
formulas (left) and ‖·‖2,q-minimal formulas (right) of exactness order q for the test
function f2 using centers in Xh

i , i = 1, 2, 3, h = 1, 1/16, 1/512, as functions of q =
3, . . . , 7, together with error bounds. L1 er, h: the error of the ‖·‖1,q-minimal formula
of exactness order q; LS er, h: the error of the ‖·‖2,q-minimal formula of exactness
order q; bd w1: error bound (12); bd g2: error bound (44)/(43) for both ‖·‖1,q and
‖·‖2,q-minimal formulas.
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Figure 4: Point sets X4 (the origin and 149 random points in [−1, 1]) and X5 obtained

from X4 by replacing its 32 points closest to (0, 0) by X
1/

√
2

3 .

7 on the sets X4 and X5, with the weight exponents µ varying between 0 and 15.
Figures 5(ab) show the worst case error (47) of these formulas on H8(R2), Figures 5(cd)
shows the value of the factor ‖w‖1,q =

∑N
j=1 |wj |‖xj − z‖q2 in the error bound (12),

whereas Figures 5(ef) depict the stability constant ‖w‖1 =
∑N

j=1 |wj | responsible for
the numerical stability of the respective differentiation formula. In addition, Figure 6
presents the errors of the same formulas for test function f2, together with the error
bounds given by (12), (28), (30), (31), (39) and (42). Finally, Figure 7 shows which
points have nonzero weights in the ‖·‖1,µ-minimal formulas for the weight exponents
n = 0, 7, 15.

We list some observations from these experiments:

1. The errors of ℓ1-minimal and least squares formulas behave quite similar.

2. For the random set X4 the error generally decreases with the exponent µ, see
Figures 5(a) and 6(ac). This can be explained by the fact that a higher exponent
µ penalizes more distant points and thus forces the algorithm to choose points
located closer to z, compare Figures 7(ace). The improvement of the error is most
significant when µ increases from µ = 0 to µ ≈ q.

3. For the set X5 with a difficult configuration in the central part the errors first
improve when µ increases but start increasing when µ gets a little higher than
q, see Figures 5(b) and 6(bd). Thus, the high exponents force the algorithm to
choose too many points in the problematic central area of X5, see Figure 7(f).

4. For both sets X4 and X5 the choice µ = q gives almost optimal error. It is in
particular remarkable to see in Figure 7(d) that the algorithm chooses more distant

points of X5 (not belonging to X
1/

√
2

3 ) in the direction orthogonal to the parallel
lines used to generate X3, which is heuristically a good way to compensate for

the deficiency of X
1/

√
2

3 which has too many points in rows going in the direction
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(a) X4: error on H8(R2)
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(b) X5: error on H8(R2)
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(d) X5: the value of ‖w‖1,q

0 5 10 15
10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

L1min[0-15]
LS[0-15]

(e) X4: stability constant ‖w‖1

0 5 10 15
10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

L1min[0-15]
LS[0-15]

(f) X5: stability constant ‖w‖1

Figure 5: Comparison of ‖·‖1,µ and ‖·‖2,µ (µ = 0, . . . , 15) minimal formulas of exactness
order q = 7 for the numerical differentiation of the Laplacian at the origin on the sets
X4 and X5 of Figure 4.
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(a) ‖·‖1,µ formulas on X4
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(b) ‖·‖1,µ formulas on X5
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(c) ‖·‖2,µ formulas on X4
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(d) ‖·‖2,µ formulas on X5

Figure 6: Error of ‖·‖1,µ and ‖·‖2,µ (µ = 0, . . . , 15) minimal formulas of exactness order
q = 7 for the numerical differentiation of the Laplacian at the origin for test function f2
on the centers in X4 and X5, together with various error bounds. bd w1: error bound
(12) with Ω chosen as the convex hull of z∪X; bd gr1: error bound (28) if µ = q, (30)
if µ < q or (31) if µ > q; bd gr2: error bound (42) for ‖·‖1,µ-minimal formulas, or (39)
for ‖·‖2,µ-minimal formulas.
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(a) X4: µ = 0
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(b) X5: µ = 0
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(c) X4: µ = 7
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(d) X5: µ = 7
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(e) X4: µ = 15
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(f) X5: µ = 15

Figure 7: The 28 points of ‖·‖1,µ-minimal formulas for X4 and X5 of exactness order
q = 7 with weight exponents µ = 0, 7, 15.
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of these lines and does not provide enough information about the behavior of the
test function in the orthogonal direction.

5. Figures 5(cd), in comparison to 5(ab) show that the quantity ‖w‖1,q predicts very
well which formulas are more accurate. The curves marked bd w1 in Figure 6
confirm this observation by comparing the error bound (12) based on ‖w‖1,q to
the actual error of the Laplacian for test function f2.

6. A comparison of Figures 5(ab) with Figures 5(ef) demonstrates a trade-off between
higher accuracy and stability: a smaller error is normally achieved at the expense
of a larger stability constant ‖w‖1. Using µ = q seems to give a good compromise
in this respect, as a significantly better stability is only obtained with small values
of µ by picking more distant centers as in Figures 7(ab). An excessively large µ
leads on X5 to formulas that are inaccurate and unstable at the same time.

7. The curves marked bd gr1 and bd gr2 in Figure 6 show that the error bounds
(28)/(30)/(31), (39) and (42) of Sections 4 and 5 are useful if µ ≤ q. In the case
µ > q, when negative powers of ‖xj − z‖2 are present in the estimates, they seem
too coarse.
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