1 KERNELS AND POINTS 1

MATLAB Programming
for Kernel-Based Methods

Robert Schaback, Gottingen

Draft of October 20, 2011

This technical report contains some hopefully helpful stuff for writing MAT-
LAB programs for kernel-based methods. Note that the book [3] by Greg
Fasshauer contains a very good and competitive collection of MATLAB pro-
grams, and note that my own MATLAB is an outdated antique version,
sorry...

1 Kernels and Points

We assume z, y to be vectors in R? and we consider radial kernels of the

form
K(z,y) = ¢(||lx — yll2), forall z,y € RY.

1.1 Point Sets

We store points in MATLAB/FORTRAN-style as rows of matrices with d
columns, e.g. z1,...,oy € R? as rows of a matrix X € RM*9 Note that
MATLAB runs through arrays in a columnwise way, like FORTRAN. Thus
unsymmetric arrays should always be stored such that there are more rows
than columns.

For univariate cases, note that MATLAB sequences like t=-1:0.01:1 gen-
erate a row, not a column.

Random sets of n points in d dimensions within [0,1]? are generated via
p=rand(n,d). To generate random points in [a, b]¢, use p=a+(b-a)*rand (n,d).

Regular grids are generated by the meshgrid command. The standard 2D
case looks like

[x yl=meshgrid(a:h:b,a:h:b);

for generating points in [a, b]*> with spacing h. But these are not points in
our matrix convention. Both x and y are matrices of the same shape, with
identical columns or rows. Use

1 KERNELS AND POINTS 2

p=[x(:) y(:)I;
to get a point matrix with two columns. The inverse operation is

x=reshape (p(:,1),size(x));
y=reshape(p(:,2),size(y));

to bring the point coordinates back into the correct order. In particular, if z
is a column vector of values at the points p, one often needs to reshape it by

zr=reshape(z,size(x));

to the shape of x or y.

1.2 Distance Matrices

Rdial kernels are usually evaluated on Euclidean distances. In MATLARB, it
is a crime to use avoidable loops, and thus we aim at kernel evaluation on
distance matrices, not on single point distances.

If there are M points for the z argument and N points for the y argument,
i.e. we want to calculate the kernel matriz Axy with entries

d(llxj —ykll2), 1<j< M, 1<k<N,

we have two input point matrices X € RM*?4 and Y € RV*? to generate an
M x N matrix with square roots of entries

IXTei = Y7ejlls = | X esllz + Y es3 — 2e7 XY e

for 1 <i< M, 1<3j<N. As a matrix, this is equal to —2XY7” plus two
matrices consisting of identical rows and columns formed by squared norms
of points. Thus it is more efficient to calculate squared distances divided
by two. Here is an m-file implementing the above formula in halved form,
without any loops and with complexity O(M Nd).

function dst=distsqgh(p, q)
% calculates a np*ng matrix of halved squares of point distances
% with two point sets p and q of np and nq points each.
[np pdim]l=size(p);
[nq qdim]l=size(q);
if pdim~=qdim
error (’point sets of unequal dimension’)
end

1 KERNELS AND POINTS 3

if pdim==

dst=(repmat(p,1,nq)-repmat(q’,np,1)).~2/2;

return
end
dst=p*q’;
cp=sum((p.*p)’)/2; % squared norms of p points, as row, halved
cqg=sum((q.*q)’)/2; % squared norms of q points, as row, halved
dst=repmat (cp’,1,nq)+repmat(cq,np,1)-dst;

Note that this m-file does not do any scaling.

The standard way to build a kernel matrix thus is to form the squared and
halved distances as above and to apply the unscaled kernel in the form

K(z,y) = f(lz—yl3/2)
= [f(s),
s = |z —yl3/2

using the function f(s) = ¢(v/2s) such that ¢(r) = f(r?/2). See section [3.3]
for the use of radial kernels in f-form. We shall use the term S-matriz for
matrices of halved squares of point distances.

1.3 Kernel Evaluation

(SecSubPBKE) Radial kernels should be evaluated on halved squares of dis-
tances, as we saw, and in MATLAB they should be applicable elementwise
to a full matrix. This is rather easy to do, but there are some precautions.

1.3.1 Avoiding Singularities

(SecSUBPBKEAS) The thin—plate spline and certain kernels involving Bessel
functions have singularities at the origin. A fast and often also sufficient trick
is to add a small positive constant like the MATLAB eps to the endangered
argument. A more sophisticated approach would be to calculate the local
Taylor polynomial around zero and implement it locally. But this s still to
be done ...

1 KERNELS AND POINTS 4

1.3.2 Truncated Powers

(SecSUBPBKETP) For compactly supported radial kernels, one often needs

truncated powers
v [s" s>0
Tl 00 s<0

elementwise on matrices. The standard trick in MATLAB is to use
max (zeros(size(c)),c) .k

in order to avoid pitfalls and loops.

1.3.3 Kernel Routines

(SecSUBPBKEKR) Our standard way to calculate with kernels of the above
form is to call a MATLAB m-file frbf .m of the form

resmat=frbf (dmat, k)

which takes a matrix dmat of halved squared distances and evaluates the
k—th derivative of the kernel on it, resulting in a matrix resmat of the same
form as dmat. Users are strongly advised not to use these routines for single
points. They are tailored for use on middle-size matrices. Furthermore, there
are no precautions so far against evaluation of kernels for illegal parameter
choices. These parameters are global MATLAB variables

RBFtype
RBFpar
RBFscale

to be explained in what follows.

Control of the scaling factor ¢ is not done within frbf. It is usually done
via the global variable RBFscale, but since the m—file distsqh.m does not
scale points, one has to apply the scaling before application of frbf and after
distsgh.m. An additional parameter is defined by RBFpar depending on the
type of kernel, while the type of kernel is selected by setting RBFtype to a
MATLAB string like g’ for the Gaussian. The list of current options for
RBFtype is

g Gaussian ¢(r) = exp(—r?/2) with f(s) = exp(—s), all k € Ny, no
RBFpar

1 KERNELS AND POINTS 5

mq Multiquadric ¢(r) = (1 + r2/2)%/2 with f(s) = (1 +)72, all k €
Ny, with RBFpar=/. Inverse multiquadrics can be treated by choosing
RBFpar—/ negative.

p Powers ¢(r) = r? with f(s) = (v/25)%, all k € Ny, with RBFpar—_.
ms Matern/Sobolev ¢(r) = K,(r)r", all k € Ny, with RBFpar—v.
w all C*™ Wendland functions ¢3, for m =RBFpar > 0, all k € N

tp Thin-plate splines ¢(r) = r*™log r for integer 2m =RBFpar > 0, all
k € Np.

Note that currently there are no polynomials added in case of conditional
positive definiteness of positive order. Furthermore, the Wendland function
class is currently restricted to kernels working in R3. The program frbf.m
just calculates the formula for the k—th derivative of the kernel and it does
not care for restrictions on the kernel parameters and the existence of the
required derivatives. A full listing is here:

function y = frbf (s, k)
% k-th derivative of standard rbf kernel in f form, i.e.
% as a function of s=r-2/2.
global RBFtype; % ’g’=Gaussian, ’mq’ = Multiquadric etc..
global RBFpar; % parameter depending on RBFtype
switch lower (RBFtype)
case (’g’) % ’g’=Gaussian,
if mod(k,2)==0
y=exp(-s);
else
y=-exp(-s);
end
case (’mq’) % ’mq’ = Multiquadric, inverse or not...
fac=1;
ord=k;
par=RBFpar;
while ord>0
ord=ord-1;
fac=fac*par;
par=par-2;
end
y=facx(1+2%s) .~ (par/2);

1 KERNELS AND POINTS

case (’p’) ' powers
fac=1;
ord=k;
par=RBFpar;
while ord>0
ord=ord-1;
fac=fac*par;
par=par-2;
end
y=facx(2*s+eps) .~ (par/2);
case (’tp’) % thin-plate

fac=1;
ord=k;
par=RBFpar;
su=0;
while ord>0
ord=ord-1;
if ord==k-1
su=1;
else
su=sux*par+fac;
end
fac=fac*par;
par=par-2;
end

y=(2*s+eps) .~ (par/2);
y=facxy.*log(2xs+eps) /2 +suxy;
case (’ms’) % Matern/Sobolev
y=(-1) “k*besselk (RBFpar-k,sqrt(2xs+eps)) .*. ..
(sqrt(2*s+eps)) .~ (RBFpar-k) ;
case (’w’) % Wendland functions.
% we use only those which are pos. def.
% in dimension at most 3.
[coeff, expon]=wendcoeff (3+2xk, RBFpar-k);
r=sqrt(2*s);
ind=find(r<=1);
u=zeros(size(ind));
sp=ones (size(ind));
sloc=r(ind);
for i=1:length(coeff)
u=u+coeff (i) *sp;

1 KERNELS AND POINTS 7

sp=sp.*sloc;
end
u=u.*(1l-sloc) . expon;
y=zeros(size(s));
y(ind)=(-1) ~k*u;
otherwise
error (’RBF type not implemented’)
end

1.4 Recursive Scalar Radial Derivatives

This section describes how the derivatives of unscaled radial kernels in the
f form can be calculated. Thus it is an explanation of how frbf (dmat,k)
works for positive derivative orders k.

We write an unscaled radial kernel as

K(xy) = f(lx—yl3/2)-

Besides a simplified calculation of distance matrices, this has certain advan-
tages when calculating derivatives. But later we shall scale via

Ko(xy) = f(lx—yl3/(2¢") = K(x/e,y/c)
with ¢ being defined by the global variable RBFscale. This lets ¢ act like
a support radius, in particular when we let compactly supported unscaled
radial kernels K vanish for ||x — y||2 > 1.
1.4.1 Gaussian
The Gaussian K (z,y) = exp(—|lz—yl||3/2) uses f(s) = exp(—s) with simplest
possible derivatives.
1.4.2 Multiquadrics
The multiquadric ¢g(r) := (1+72)%/2 with 8 ¢ 2Nj leads to the easy recursion

fols) = (1+25)
Tils) = BO+25) = By o(s)

allowing to work with arbitrary k for § ¢ 2Ny. Note that this includes inverse
multiquadrics.

1 KERNELS AND POINTS

1.4.3 Polyharmonic kernels

For the powers ¢(r) := r? with 8 > 0, 8 ¢ 2Z we get

s =

fs(s)
f5(s)

(25)8/2
5(25)7/2
Bfs—a(s)

and for the thin—plate splines ¢5(r) := rlog(r) with 8 € 2Z we find
fa(s) = (25)°*log(v/2s)

(25)7(log(s) +log(2))

ﬁ(25)5/271<10g(5) +1log(2)) + (28)6/2—1
= 5]05_2(5) + (25)5/2—1.

Note that the second term is a polynomial in s.

1.4.4 Matern/Sobolev kernels

These are

ou(r) == K, (r)r”
with the Bessel function of second kind. It has the property

14

K)(2) = —Kya(2) + 2Ky (2) = =Ky (2) = 2K, (2)

and we need

Then

fuls) =

1 KERNELS AND POINTS 9

1.4.5 Wendland functions

We now handle the Wendland [6, [7], wendland:1995-1,wendland:2005-1
kernels, but note that we now have to be careful with constant factors. First,
we rewrite the dimension walk operator [7], wendland:2005-1

16)(r) = / ()t

o0

— 1)), t=r2/2
162 = I = / £(s)ds
' = —Id.

The Wendland functions are defined via
Gar = I"Glas2)ens1, de(r) = (1—1)"
and we rewrite them in the form
&d,k(s) = ¢d,k(\/273)7 <Z~5£(3) = @(\/273) =(1- \/E)i

Then .
Gar(s) = dar(v2s)
= (I*¢la/a)1r41)(V25)
~ = [k?td/2g+k+1(5)
Gu(s) = =1l inia(s)
= 1" are) o) th-111(5)
= _¢d+2,k71(5)
is a derivative recursion which is easy to implement if the standard basis
functions are available. We shall describe below how those can be calculated

in general.

Note that the multiplicative factors are different from what is usually seen in
tables of Wendland functions. Here is an example with correct factors when
starting with the topmost one:

P33(r) = (1—r)5(32r% + 25r% 4+ 8r + 1)
Ps2(r) = 22(1—7r)1(16r2 +7r + 1)
¢7’1(T) = 528(1 — ’I")i(67“ +].)

gbg’o(?“) = 22176(1 — ’I")i

1 KERNELS AND POINTS 10

An easy way to get high—degree Wendland functions with correct constants
for derivatives is to start with some polynomial wy(r) := (1 — r)* and then
to repeat the MAPLE statement
w:=-int (r*w,r) ;w:=factor (w-subs(r=1,w)) ;

couple of times. The second part sets the correct integration constant to
let the resulting polynomial vanish at 1. This process generates the above
sequence backwards when started with 22176(1 —r)°. To get ¢4 one has to
start with wy(r) := (1—7)* for £ = |d/2]| +k+1 and perform k steps. The re-
sult is C?* and positive definite in dimensions up to d. With CodeGeneration
features, one can generate appropriate code for standard programming lan-
guages.

If we start from wy(r) := (1 —)¢ and perform the above operation k times,
one can see the above process as starting from the polynomial py = 1 and
proceeding inductively via

/sa—@“%awm:a—m““mmmv

forn =0,...,k — 1. This means
d t+n+1 t+n
(=) pua(r)) = —r(1=r)""pa(r)

and if we set
n
r) = ajar’
j=0

there is a simple recursion for the coefficients via

(L =7r)*pa(r) = —(C+n+1)(1 =) "po(r) + (1 — 7)) Hp (1)
() = =+ () + (1=) () |
Ty i g@iar! = —(C+n+ 1) t @i (1 =) Z;‘ L J @
—aj 1 = —(l+n+1Dajnm+ (J+ Dajrn — jajan
—j1n = —({lF+n+1+75)ajnm+ (+1)a1100m
Ajn+1 €+n+1+j((j+)@jt1n+1 + A1)
backwards for j =n +1,...,0. If the basis functions are evaluated on large

matrices, the above O(k?) snippet does not contribute significantly to the
program complexity. The following MATLAB code generates the necessary
polynomial coefficients in ascending order by applying the above recursion.

1 KERNELS AND POINTS 11

function [coeff, expon]=wendcoeff(d,k)
% calculates coefficients and exponent for polynomial
% part p_{d,k}(r) of Wendland functions
% phi_{d,k}(r)=p_{d,k}(r)*(1-r) expon
expon=floor(d/2)+k+1;
coeff=zeros(k+1,1);
coeff(1,1)=1;
for n=0:k-1
coeff(n+2,1)=coeff (n+1,1)/(n+expon+2) ;
for j=n+1:-1:2
coeff(j,1)=(j*coeff(j+1,1)+coeff(j-1,1))/(expon+tj);
end
expon=expon+1;
coeff(1,1)=coeff(2,1)/expon;
end

The final evaluation is a part in frbf.m when called for the k-th derivative
and on a matrix in s form (see the above listing of frbf.m). Note that the
calculation of Wendland kernels acts only on points in the support, once they
are found.

1.4.6 Remark

It seems to be a strange fact that these classes of radial kernels are closed
unter integration and differentiation, provided that they are written in f
form. But this is no miracle. The basic reason is that these classes are closed
under radial Fourier transforms in f form taken in different dimensions, and
these radial Fourier transforms commute with differentiation and integration
of the f form.

1.5 Multivariate Polynomials

(SecSUBMVP) In various cases, in particular for dealing with conditionally
positive definite kernels, we need the M x) matrix polvalues of values of
multivariate polynomials of some order order evaluated on a M x d matrix
points of M points in d dimensions. Note that order means degree +1 here,
and the dimension @) of the polynomials is dependent on the order m and
the space dimension d via) = (m‘Lj*l). Our simplest implementation is via
unscaled monomials, i.e. we form the matrix of values z§ forall j, 1 < j < M
and all multiindices o € Zg with 0 < |a| := |||y < m where m is the order.

Again, the row index will run over points, i.e. from 1 to M = |X|. Users

1 KERNELS AND POINTS 12

should work with the following routine only near the origin, and they should
possibly apply some scaling.

function polvalues=polynomials(points,order)
% generates all polynomials on points up to order
% The order MUST be increasing from left to right.
[numpoints,dim]=size(points); % handle trivial cases first
if order==
polvalues=[];
return
end
if order==
polvalues=ones (numpoints,1);
return
end
if order==2
polvalues=[ones (numpoints,1) points];
return
end
if dim==1
polvalues=zeros (numpoints,order) ;
polvalues(:,1)=ones (numpoints,1);
polvalues(:,2)=points(:,1);
for i=3:order
polvalues(:,i)=polvalues(:,i-1) .*points(:,1);
end
return
end % general case done recursively
polvalues=[polynomials(points,order-1)...
polynomials_exact_order(points,order)];

The recursion in the above program uses

function polvalues=polynomials_exact_order(points,order)
% generates all polynomials of order on points
[numpoints,dim]=size(points); % first some trivial cases
if order==

polvalues=ones (numpoints,1);

return

2 INTERPOLATION AND EVALUATION 13

end
if order==2
polvalues=points;
return
end
if dim==1
polvalues=points(:,1).~(order-1);
return
end
% What follows is a crude recursive scheme over the DIMENSION.
% Somebody MUST write a better one....
polvalues= points(:,dim) .~ (order-1);
for i=2:order-1
pe=polynomials_exact_order(points(:,1:dim-1),1i);
pp=points(:,dim) .~ (order-i);
[rpes cpes]=size(pe);
% pps=size(points(:,dim)."~(order-i));
for j=1:cpes
polvalues=[polvalues pe(:,j).*ppl;
end
end
polvalues=[polvalues
polynomials_exact_order(points(:,1:dim-1),order)];

These programs need enhancement wrt. to speed and different bases, e.g.
Chebyshev bases.

2 Interpolation and Evaluation

(SecSUBPBKEIE) A standard square kernel-based interpolation system
M
ZK(xk,xj)aj =y, 1<E<M
=1

for unconditionally positive definite radial kernels is usually set up from a
point matrix X via

intmat=frbf (distsqh(X,X) /RBFscale~2,0);

provided that the controls for the kernel are defined and the kernel is positive
definite. We can use a standard MATLAB routine kermat .m for this, using
intmat=kermat (X,X):

2 INTERPOLATION AND EVALUATION 14

function mat=kermat (X, Y)
% creates kernel matrix
% for two point sets X and Y
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for kermat arguments’);
end
mat=frbf (distsqh(X,Y)/RBFscale~2,0);

The solution vector a follows from the data vector y via

a=intmat\y;

but it is always a good idea to check the scaling by preceding this with
condition=condest (intmat)

to avoid problems.

After finding the coefficient vector, one would usually like to evaluate the
solution, e.g. for subsequent plotting. This will need a much finer point set
than X, and we assume that it is called Y here. The resulting values at these
points are obtained from

evalmat=kermat (Y,X) ;
values=evalmat*a;

For fine-grained evaluation, this will take longer than the actual solution
of the linear system, because a large unsymmetric kernel matrix has to be
formed. Note that the resulting values have to be reshaped, if the points in
Y are derived from a meshgrid command. The standard evaluation sequence
in 2D thus is something like

[xe yel=meshgrid(....);

Y=[xe(:) ye(:)];

evalmat=kermat (Y,X) ;

values=evalmatx*a;

figure
surfc(xe,ye,reshape(values,size(xe)));

A full sample listing of the m-file testint.m for interpolation of the MAT-
LAB peaks function in [—3, 3]? is here:

2 INTERPOLATION AND EVALUATION 15

clear all;

close all;

global RBFtype;

global RBFpar;

global RBFscale;

rand(’state’,0)

RBFscale=0.5

RBFtype=’g’

RBFpar=3.5

np=15 % results in np~2 points
p=6*rand (np*np,2)-3; 7% use this for random points
% or the next two statements for regular points
% [xp ypl=meshgrid(-3:6/(np-1):3,-3:6/(np-1):3);
h p=Lxp(:) yp(:)I;

subplot(2,2,1)

plot(p(:,1),p(:,2),7.%)
title(’Interpolation points’)

z=peaks (p(:,1),p(:,2));

[xe ye]l=meshgrid(-3:0.06:3,-3:0.06:3);
pe=[xe(:) ye(:)];

ze=peaks(xe, ye);

imat=frbf (distsqgh(p,p) /RBFscale~2,0);
condition=condest (imat)

coeff=imat\z;

emat=frbf (distsqh(pe,p) /RBFscale~2,0);
val=emat*coeff;

subplot(2,2,2)

surfc(xe,ye,ze)

shading interp

title(’Given function’)

subplot(2,2,3)
surfc(xe,ye,reshape(val,size(xe)));
shading interp

title(’Reconstructed function’)
subplot(2,2,4)

surfc(xe,ye,ze -reshape(val,size(xe)));
shading interp

title (’Error?)

The results are depicted in Figure [l For conditionally positive definite ker-

2 INTERPOLATION AND EVALUATION 16

Interpolation points Given function

Figure 1: Resulting figure for testint.m

nels of order m and interpolation in M points forming a point matrix X, one
needs an extended (M + Q) x (M + ()) matrix

Axx Px
PY Ogxq

AX,X = (K(xjaxk))a 1§j,k’§M
Px = (pi(;)), 1<j<M 1<i<Q

with matrices

and @ being the dimension of the polynomials on R? up to order m, using
a basis pi1,...,pg. The interpolation data v, ..., ys have to be extended to
a vector (y7,0g)7 forming the right—hand side for the above system. The
coefficients are then a vector (a’,b”)T € RM*Q and evaluation on a fine
point set Y needs the matrix—vector product

(Avx Py) (Z)

2 INTERPOLATION AND EVALUATION 17

to generate the interpolant’s values on Y. A corresponding program is
testintCPD.m below, with the result in Figure See how the program
testint.m was slightly modified to work in the conditionally positive defi-
nite case.

clear all;

close all;

global RBFtype;

global RBFpar;

global RBFscale;

rand(’state’,0)

RBFscale=0.5

RBFtype="tp’

RBFpar=2

order=2

np=15 7, results in np~2 points

% p=6*rand (np*np,2)-3; % use this for random points
% or the next two statements for regular points
[xp ypl=meshgrid(-3:6/(np-1):3,-3:6/(np-1):3);
p=[xp(:) yp(:)];

subplot(2,2,1)

plot(p(:,1),p(:,2),”.7)
title(’Interpolation points’)

z=peaks (p(:,1),p(:,2));

[xe ye]l=meshgrid(-3:0.06:3,-3:0.06:3);
pe=[xe(:) ye(:)]1;

fe=peaks(xe, ye);

imat=frbf (distsqgh(p,p) /RBFscale~2,0);
pmat=polynomials(p,order) ;

[npp ql=size(pmat);

amat=[imat pmat; pmat’ zeros(q,q)];
condition=condest (amat)

ze=[z; zeros(q,1)];

coeff=amat\ze;

emat=frbf (distsqh(pe,p) /RBFscale~2,0);
pemat=polynomials(pe,order) ;

val=[emat pemat]*coeff;

subplot(2,2,2)

surfc(xe,ye,fe)

shading interp

2 INTERPOLATION AND EVALUATION

title(’Given function’)

subplot(2,2,3)
surfc(xe,ye,reshape(val,size(xe)));
shading interp

title(’Reconstructed function’)
subplot(2,2,4)

surfc(xe,ye,fe -reshape(val,size(xe)));
shading interp

title(’Error’)

Interpolation points Given function
3
0 E I A I R B B
" I T e
3 L + L
-4 2 0 2 4

Figure 2: Resulting figure for testintCPD.m

18

2 INTERPOLATION AND EVALUATION 19

2.1 Lagrange Bases

(SecSUBPBKELB) For a positive definite kernel and a point matrix X of M
points, the Lagrange basis functions u;(x), ..., uy(z) solve the system

M
ZK(a:k,xj)uj(az) = K(zg,x), 1 <k <M.
=1

To visualize these functions on a fine set of N points y; given by a matrix Y,
one should look at

This is a matrix multiplication of the form U x* A = B, and thus one gets the
matrix

U = (u;j(y:)) 1<i<n,1<j<m = B * AL
by solving ATUT = AUT = BT via

umat=(intmat\evalmat’)’;

if the matrices intmat and evalmat are already calculated and stored as
above. They are needed anyway for interpolation and evaluation, as we
saw in the previous section. Now the columns of umat yield the values of
the Lagrange basis functions. For 2D applications and surf plotting on
meshgrid data, they must be reshaped. An example follows below.

Lagrange bases are special cases of data—dependent bases in [5].

2.2 Power Functions

(SecSUBPBKEPF) Once the Lagrange basis is at hand, one can calculate the

square of the optimal Power function [7] (eqpowSPD)
M

P(x) = K(x,0) = Y uj(@)K (2, 2) (1)
j=1

at the points y; via

P(y) = K(yoy) = Y () K (x5,4:)

2 INTERPOLATION AND EVALUATION 20

This function is a crucial ingredient of error bounds, and in the stochastic
setting it describes the variance of the prediction error at x from a Kriging
predictor (i.e. the kernel interpolant) using the available data at the z;.

With the matrices derived above, one can form umat.*evalmat to get the
N x M matrix of all products u;(y;) K (z;,y;). We need the sum over rows,
but the sum operator of MATLAB sums over columns and generates a row.
Thus

powval=frbf (0,0)-sum((umat.*evalmat)’)’;

yields the column vector of values of the optimal power function at the evalu-
ation points. For 2D applications and surf plotting on meshgrid data, they
must be reshaped. The evaluation of the Power Function is essential for
certain greedy methods, see e.g. [2].

Here is a program testlag.m for Lagrange bases and Power Functions in the
unconditionally positive definite case, and its output is in Figure [3l

clear all;

close all;
global RBFtype;
global RBFpar;
global RBFscale;
rand(’state’,0)
RBFscale=0.7

RBFtype=’g’
RBFpar=3.5
np=11

% p=6*rand (np*np,2)-3;

[xp ypl=meshgrid(-3:6/np:3,-3:6/np:3);
p=[xp(:) yp(:)];

[xe ye]l=meshgrid(-3:0.06:3,-3:0.06:3);
pe=[xe(:) ye(:)]1;

intmat=frbf (distsqh(p,p) /RBFscale~2,0);
condition=condest (intmat)

evalmat=frbf (distsqh(pe,p) /RBFscale~2,0);
umat=(intmat\evalmat’)’;

k=floor ((np*(np+1)/2))

subplot(1,3,1)

surfc(xe,ye,reshape (umat(:,k),size(xe)))

2 INTERPOLATION AND EVALUATION 21

shading interp

axis square

title(sprintf (’Lagrange function %d ’,k))
powval=frbf (0,0)-sum((evalmat.*umat)’)’;
subplot(1,3,2)
surfc(xe,ye,reshape(powval,size(xe)));
shading interp

axis square

title(’P. £.?)

subplot(1,3,3)
plot(p(:,1),p(:,2),7.7,pk,1),pk,2),%0?)
title(’Points’)

axis square

Lagrange function 66 P. 1. -
P
L x 10° o A oints

L I I B B
L I I B B

2 L I I B B
L I I B B
L I I B B
L I I B B

0 D Y O IR AT AT A A
L I I B B
L I I B B

_2 L I I B B
L I I B B
L I I B B

-4

-5 0

Figure 3: Resulting figure for testlag.m

Note that if the functions u; are not the standard Lagrange basis using

K, one has to use the formula (eqpowgen)
M
P*z) = K(z,x)—2 Zuj(:c)K(a:J,a:)
M o~ (2)
+ Z wj(x)ug(z) K (x),)
jk=1

for the non—optimal power function. This is useful for evaluation effects of
badly chosen kernels, e.g. if a Lagrange basis u; coming from a different
kernel is inserted. These programs were used to prepare examples in [I].

2 INTERPOLATION AND EVALUATION 22

In the conditionally positive definite case, the Lagrange basis uy, ..., uy; has
to be extended by additional functions vy,...,vo and is to be solved for by
the system

(3 o) G) - (56)

Kx(z) = (K(z1,2),...,K(zp,)7,
p(x) = (p(2),...,po(x))".

On an evaluation set Y, we get

AX,X PX UY _ AX,Y
PE 0gxo Vy P

and the rows of Uy are now the Lagrange basis functions evaluated on Y.
The square of the power function is (2] eqpowgen). In the unconditionally
positive definite case, the quadratic term cancels with one of the linear terms,
thus simplifying to (I eqpowSPD). In matrix form,

with

P(z) = f(0) = 2u"(z)Kx(z) — u (z) Ax xu(z)
= f(0) = u"(v)Kx(z) — u” (z)Pxv(z),

to avoid work on M x M matrices. If we use N points for evaluation on a
set Y and prepare matrices

umat = (u;(yx)) = U}, 1<k<N 1<j<M
vmat (vi(yr)) = VW, 1<k<N, 1<i<Q
evalmat = (K(yx,zj)) = Ayx, 1<E<N, 1<j<M
pmat = (pi(z;)) = Px, 1<j<M 1<:i<Q

with the row index mentioned first, then the column vector of values P%(Y)
can be calculated in MATLAB notation via

f(0) — ' (2) Kx (z) — u”(z) Pxv(z)
= frbf(0,0)-sum((umat.*(evalmat+vmat*pmat’))’)’;

Here is an analogous program testlagCPD.m for the conditionally positive
definite case, and its output is in Figure[d Note the changes from testlag.m.

clear all;
close all;
global RBFtype;
global RBFpar;

2 INTERPOLATION AND EVALUATION

global RBFscale;

rand(’state’,0)

RBFscale=2

RBFtype="tp’

RBFpar=2

order=2

np=11

% p=6*rand (np*np,2)-3;

[xp ypl=meshgrid(-3:6/np:3,-3:6/np:3);
p=[xp(:) yp(:)];

[xe yel=meshgrid(-3:0.06:3,-3:0.06:3);
pe=[xe(:) ye(:)]1;

imat=frbf (distsqgh(p,p) /RBFscale~2,0);
pmat=polynomials(p,order) ;

[npp ql=size(pmat);

amat=[imat pmat; pmat’ zeros(q,q)];
condition=condest (amat)

pemat=polynomials (pe,order) ;

[nepp gql=size(pemat);

evalmat=frbf (distsqh(pe,p) /RBFscale~2,0);
cmat=amat\ [evalmat’ ; pemat’];

umat=cmat (1:npp,1:nepp)’;

vmat=cmat (npp+1:end,1:nepp)’;

k=floor ((np*(np+1)/2))

subplot(1,3,1)
surfc(xe,ye,reshape(umat(:,k) ,size(xe)))
shading interp

axis square

title(sprintf (’Lagrange function %d ’,k))
powval=frbf (0,0)-sum((umat . * (evalmat+vmat*pmat’))’)’;
subplot(1,3,2)
surfc(xe,ye,reshape(powval,size(xe)));
shading interp

axis square

title(’P. £.?)

subplot(1,3,3)
plot(p(:,1),p(:,2),’.7,p(k,1),p(k,2),’0?)
title(’Points?’)

axis square

3 EXPLICIT MULTIVARIATE DERIVATIVES 24

Lagrange function 66 P. 1. .
_ Paints
4 .
............
............
b2 N
............
............
............
Or ... @evsons
............
............
_2 oooooooooooo
............
............
-4
-5 0

Figure 4: Resulting figure for testlagCPD.m

3 Explicit Multivariate Derivatives

This section is of quite some importance when radial basis functions are used
for solving partial differential equations. On needs plenty of derivatives of
radial kernels, and one has to care for scaling and geometry.

We assume z, y to be vectors in R%. We define

Kory) = f(llz—yl3/2%)
s o= o —ul3/2e

using a positive scale factor c. We also assume M points for the x argument
and N points for the y argument, stored as rows of matrices X € RM*4 and
Y € RV*4, Furthermore, we assume a matrix

S¥Y = (|| XTe; — YTej5/2¢%)

1<i<M, 1<j<N

to be precalculated, e.g. by
SXY=distsqh(X,Y)/c"2

in MATLAB, and we shall provide formulae for evaluation of kernel deriva-
tives on such a configuration. For each scalar derivative, we thus have to
calculate an M x N matrix. Since frbf does not scale, we have to care for
the scaling here.

3 EXPLICIT MULTIVARIATE DERIVATIVES 25

Users will see that the following routines all boil down to calls of frbf (S,k)
for various matrices S and derivative orders k. If the routines are used naively,
there will be multiple calls for exactly the same S and k in different routines.
When optimizing for speed, users should check this, execute the required
calls outside of the routines, store the results into global variables, and avoid
all recalculations.

3.1 First Derivatives

The s derivatives in scalar form are

0s T; — Y;
=+ Y

ox; c

0s T

8?/2‘ 02

and they occur all over again, e.g. in

GEdr) = g
- fc<28) (SL’] - y])
0 ., 0Os
a—ych(fﬁay) = f(8>8—yk
f'(s)

2 (xk_yk)
In matrix form for 1 <: < M, 1 <j <N, 1 <k <d:

(%Kc(:c,y)lj = @(Xi — Yji)

) f'(S5Y)
(8—%K‘3<x’y))” = —T(Xi — Vi)

ij
We provide a standard MATLAB routine for implementing the first formula:

function mat=gradkermatX(X, Y)

% creates kernel matrices

% for two point sets X and Y

% corresponding to the full gradient wrt. the X variable.

% The result is a 3-dimensional matrix of size nx times ny times dx=dy,

3 EXPLICIT MULTIVARIATE DERIVATIVES 26

global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for gradkermatX arguments’);
end
fmat=frbf (distsqh(X,Y) /RBFscale~2,1) /RBFscale~2;
mat=zeros (nx,ny,dx) ;
for dim=1:dx
mat(:,:,dim)=fmat.*(repmat (X(:,dim),1,ny)-repmat(Y(:,dim)’,nx,1));
end

The second formula then is implemented by

function mat=gradkermatY (X, Y)

% creates kernel matrices

% for two point sets X and Y

% corresponding to the full gradient wrt. the Y variable.
% See gradkermatX for details.

mat=-gradkermatX(X,Y);

but in many applications one would prefer to call only one of these routines.

3.2 Normals

(SecSubNormal) Scalar normal or directional derivatives are prescribed via
an additional matrix /N of normals or directions as rows, with d columns. If
the normals are evaluated on the X points, there are M normals, otherwise
N. The pointwise case is

) B d B
a° d d
2K — Nip—K
81/j c(l’,y) ;]kal‘k c(l’,y)
() &

3 EXPLICIT MULTIVARIATE DERIVATIVES 27

a%ch(ﬂf:,y) = Z z,y)

Nix(zr — yr)
and now for full matrices with 1 <i < M, 1 < j < N:

T ‘SXY
(% Kc<x7y))lj = f ZNzk ik —)

_ zﬁ——)<<NXT> —(NYT),)

2
Py ' SXY d
(%mm@”:f SILACTRA
] k=1
/ SXY
— _%((XNT)M — (NYT);))

We provide MATLAB routines for implementing the first formula:

function mat=normalXkermat (X, NX, Y)
% creates kernel matrices
% for two point sets X and Y
% corresponding to the normals NX wrt. the X variable.
% The result is a matrix of size nx times ny.
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for normalXkermat arguments’);
end
fmat=frbf (distsqh(X,Y) /RBFscale~2,1) /RBFscale~2;
mat=fmat.* (repmat (diag(NX*X’),1,ny) - (NX*Y’));

The second formula then is implemented by

function mat=normalYkermat (X, Y, NY)

% creates kernel matrices

% for two point sets X and Y

% corresponding to the normals NX wrt. the X variable.
% The result is a matrix of size nx times ny.
mat=normalXkermat (Y, NY, X)’;

3 EXPLICIT MULTIVARIATE DERIVATIVES 28

3.3 Second derivatives

We start with the appropriate calculations:

0 iKc(x,y) -0 (fl(s)(xp—yp))

Ox, Ox,, ox, 2
f'(s) 0 a (f(s)
- 2 O (Tp — yp) + (7 — yp)@x o2
f'(s) —Yp . Js
- 2 57’p _'_ pf /(S>8—xr
() " Ty —YprTp — Y
= 57'17 + f () C2 B 02 K
0 a B f/(SZ)J(Y) f//(Si)j(Y)
(&'Er 8pr o[, y)) . N Orp + oA (Xir = Y) (Xip — Yip)

k) = o (T w)
= —f/(S) 8?6/5 (zr —y) — (z1 — yk)aays (f/(;))

c2

c
! — 0

= fc<) sk — kCQ ykf”(s)a—ss
f/() Ys T — Yk

= et (e
S.XY " S){Y
(a aKC(x’y)) _ f(u) f(S57)

c2

Sste + (Xis = Yjo) (Xir — Yii)

aysa—yk ij c? ct

o 0 9 (F(s)

TR G U)
RO o9 (1)
= 02 oo (zp — yp) + (@ ?/p)ayk 2
B) — Yp i s
= 5kp 2 f (>8yk

" Tp — £

.) Sy — 1(5) 2 e T

o 0 f’(Sfy) F(S5Y)

(a—yka—&(z’”)ij =TT e T (X Ye) (e~ Vi)

These formulas are not yet implemented, since there was no application for
them, so far. Instead, we shall focus on special cases below.

3 EXPLICIT MULTIVARIATE DERIVATIVES 29

3.4 Laplace operators

(SecSubLaplacian) From the previous section, we get

AK(o,y) = T TG e

c? ct
_d), 250)

(), 109)

Ach(xay) - A ||IL‘—’y||%

a(s) |, 257"0s)
c? c?
= g(s),

and ¢(s) can be considered like a new kernel generated by ¢ instead of f.
In matrix form:
(A*Ko(2,y));; = 9(S57) = (ATyKc(2,9)),,
d / S_XY QS.XY " SXY
g(S;](Y): f(z])+ i <U)

c? c?
with a rather trivial implementation

function mat=laplacekermat (X, Y)
% creates Laplacian of kernel matrix
% for two point sets X and Y,
% The result is a matrix of size nx times ny
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for laplacekermat arguments’);
end
s=distsqh(X,Y)/RBFscale~2;
mat=(dxxfrbf(s,1)+2xs.*frbf(s,2))/RBFscale~2;

For later use, we collect derivatives of g:

g = L 2
&) | 20'() | 20”(s)

([d+2)"(5) | 250"

c? c?

Y

3 EXPLICIT MULTIVARIATE DERIVATIVES 30

([d+2)1"(s) | 2s8"()

) = 5
_ W6 246 | 2550
C C C
_ [0576) 255
C C

3.5 Mixed Derivatives

Here, we look at cases where different operators act on the x and y arguments
of a kernel.

3.5.1 Mixed Normals or Directional Derivatives

(SecSubMixedNormals) For mixed normal or directional derivatives we as-
sume two matrices N and NY of normals or directions wrt. the points in
X and Y. The pointwise case is

0°* 0"
814 8—1/p Kc(xvy) - Z 1]8 (Z y))
= NY z,
d
S e \Tj— Y Tp — Y
= ZNZ‘;(ZNIZ; (_75k]_f/(5>]62 J kCQ k)
j=1

k:l
_ ') ZNXNY,
L) (Z N (o - y;»)) (Z N yk>)
j=1 k=1

3 EXPLICIT MULTIVARIATE DERIVATIVES 31

and for matrices we get

o*oY
(55“”%
f’(SXY)
- T i

f%&”’(EZNi =))(ﬁéA%C&h—EQ>

F'(s5h)
= Doy,
f//(SXY)
A
Our MATLAB program is

function mat=normalXYkermat (X, NX, Y, NY)
% creates kernel matrices
% for two point sets X and Y
% corresponding to the normals NX wrt. the X variable
% and NY wrt. the Y variable.
% The result is a matrix of size nx times ny.
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for normalXYkermat arguments’);
end
smat=distsqh(X,Y)/RBFscale~2;
mat=-frbf (smat,1) .* (NX*NY’) /RBFscale~2-...
frbf (smat,2) /RBFscale~4.*. ..
(repmat (diag (NX*X’) ,1,ny) -NX*Y’) . x (X*NY’-repmat (diag (NY*Y’)’ ,nx,1));

((N¥XT)i = (NFYT)i) (X(NY)T)iy = (NYYT)55)

3.5.2 Mixed Laplacians

(SecSubMixedLaplacians) Mixed scalar Laplacian values are

A*AVK (2, y)
= S0+ (s
4 (A0 | 2070 2 (WD) BI00)
+ += + =

c? c? c? c? c

= 0—14 (d(d + 2)f"(s) + 4s(d + 2) f"(s) + 45> fD(s))

3 EXPLICIT MULTIVARIATE DERIVATIVES 32

and they can easily be cast into matrix form by replacing s by S;;. Our
MATLAB program is

function mat=laplaceXYkermat (X, Y)
% creates Laplacian of kernel matrix
% for two point sets X and Y,
% the Laplacian applied to BOTH arguments.
% The result is a matrix of size nx times ny
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for laplaceXYkermat arguments’);
end
s=distsqh(X,Y) /RBFscale~2;
mat=(dx* (dx+2) *frbf (s,2) +4x (dx+2) *s.*xfrbf (s,3)+4*s.~2.xfrbf(s,4)) /RBFscale~4;

3.5.3 Mixed Normal and Laplacian

(SecSubMixedNormalLaplacian) The first scalar case is

0
814

AKo(zy) = Y NX%NKC(L Y)

2
k=1
and in matrix form
d° gSEY) &
(5 o)) = TS M- v
ij k=1
g'(S5Y)
- ng ((NXX)M (NXYT)ZJ)

with the implementation

function mat=laplaceYnormalXkermat (X, NX, Y)

3 EXPLICIT MULTIVARIATE DERIVATIVES 33

% creates kernel matrices
% for two point sets X and Y
% corresponding to the normals NX wrt. the X variable
% and the Laplacian wrt. the Y variable
% The result is a matrix of size nx times ny.
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for laplaceYnormalXkermat arguments’);
end
S=distsqgh(X,Y)/RBFscale~2;
gmat1=((dx+2)*frbf (S,2)+2*S.*xfrbf (S,3))/RBFscale"4;
mat=gmatl.*(repmat(diag (NX*X’),1,ny)- (NX*Y’));

The other scalar case is

ayx _ Yaar
Eia—[& K.(xz,y) = ZE:fVA kfﬁ K.(x,y)

and in matrix form

0 ., g (S5 <
(5 aKito) = =200 Y N v
ij

with the implementation

function mat=laplaceXnormalYkermat(X, Y, NY)

% creates kernel matrices

% for two point sets X and Y

% corresponding to the normals NY wrt. the Y variable

3 EXPLICIT MULTIVARIATE DERIVATIVES 34

% and the Laplacian wrt. the X variable
% The result is a matrix of size nx times ny.
global RBFscale
[nx dx]=size(X);
[ny dyl=size(Y);
if dx"=dy
error (’Unequal space dimension for laplaceXnormalYkermat arguments’);
end
S=distsqgh(X,Y)/RBFscale~2;
gmatl=((dx+2)*frbf (S,2)+2*S.xfrbf (5,3)) /RBFscale~4;
mat=gmatl.*(repmat(diag(NY*Y’)’,nx,1)-(X*NY’));

3.5.4 Derivatives of Normal Derivatives

(SecSubMixedNormalGrad) Mixed partials of normal derivatives in the scalar
case for 1 < p < d are

o 0" 0 [f(s) &
By, v, Ke(z,y) = —(fC(QS)ZNjK‘(xk_yk))

Yy P
_ (a% flc(;)> kzd;Njk(wk — i) — @NJ’
_ Oy kzd: Natan -) - L,
%%ym(m, y) = —a%p (f/c(;) kzd:lek(% - W)
- _f/::(;) g—; kzd; Nyelar —) - L,
_ 0 :1 Nt —) - L,

These formulas are not yet implemented in matrix form.

4 CALCULATIONS FOR POISSON PROBLEMS 35

3.5.5 Derivatives of Laplace

(SecSubMixedGradLap) The partials of Laplace derivatives are in the scalar
case

0 0
— AY = —
axjA Ke(z,y) o, (s)
- g
aSL’j
x‘. —_ N
= g(s5)Z > Yi
9 T _ / T — Yk
8ykA Kc('rvy) - g (8) CQ

These formulas are not yet implemented in matrix form.

4 Calculations for Poisson Problems
The following example describes how to set up a program that solves

Au = f¢ inQCR?

v = fP inDCT:=00cR?
ou = f¥ inNcl:=00cR?
on

via generalized Hermite interpolation [8], wu:1992-1 or, equivalently, Kansa’s
collocation technique [4]. Technically, we just discretize these equations in
points x;, yi, 2¢ and do not care where the points lie. The program might
also solve ill-posed problems where Dirichlet and Neumann data are pre-
scribed on the same part of the boundary, or where function values are pre-
scribed inside the domain. For a pure Neumann solver, one might add a single
Dirichlet point for normalization of the solution. We use an unconditionally
positive definite kernel throughout.

4.1 Matrices

We use three sets of points, each stored in a matrix:

1. points z;, 1 < j < J for interpolation of A, arranged in a J X d matrix
X

Y

2. points y, 1 < k < K for interpolation of function values, arranged in
a K x d matrix Y,

4 CALCULATIONS FOR POISSON PROBLEMS 36

3. points z;, 1 < ¢ < L for interpolation of directional derivatives, ar-
ranged in a L x d matrix Z, with directions (“normals”) in another
L x d matrix N.

We generate squared—distance matrices by the general rule

S48 = (Jla; — by3/26%),

4,7

for the cases
SXX SXY SXZ SYY SYZ SZZ

If we collect all points into a matrix
P = (XT yT ZT)T e R+K+L)xd

we have
SX X SX Y SX Z

SPP — [(§XV)T gy gvZ
(SXA\T (SYZ)T §2Z
We do not store the ST¥ matrix, but we need the above layout for the kernel

matrix to arise in the next section.

4.2 Full system

The basic linear system will have a matrix of the form

AXX AXY AXZ
(AXY)T AYY AYZ
(AXZ)T (AYZ)T AZZ

where the blocks need different derivatives of the kernel K (z,y):

Matrix | Rows Columns
AXX A on x for X A ony for X
AXY 1 Aon z for X Values on y for Y
AXZ | A on x for X Normals on y for Z

AYY | Values on z for Y | Values on y for Y
AYZ | Values on x for Y | Normals on y for Z
A?% | Normals on z for Z | Normals on y for Z

A simple MATLAB implementation is

4 CALCULATIONS FOR POISSON PROBLEMS 37

function [val, coeffl=fullpoissonsolver(X, fX, Y, fY, Z, NZ, fZ, E)
global RBFscale;

SXX=distsqh(X,X)/RBFscale~2;

SXY=distsqh(X,Y)/RBFscale~2;

SXZ=distsqh(X,Z) /RBFscale~2;

SYY=distsqh(Y,Y) /RBFscale"2;

SYZ=distsqh(Y,Z) /RBFscale"2;

SZZ=distsqh(Z,Z) /RBFscale~2;

% SPP=[SXX SXY SXZ ; SXY’ SYY SYZ ; SXZ’ SYZ’ SZZ]1;

AXX=laplaceXYkermat (X,X) ;
AYY=kermat(Y,Y);
AZZ=normalXYkermat(Z, NZ, Z, NZ);
AXY=laplacekermat (X,Y);
AXZ=laplaceXnormalYkermat (X,Z,NZ) ;
AYZ=normalYkermat (Y, Z, NZ);
AZZ=normalXYkermat(Z, NZ, Z, NZ);

A=[AXX AXY AXZ ; AXY’ AYY AYZ; AXZ’> AYZ’> AZZ];
condA=condest (A)
sizA=size(A)
if condA >1.0el14

error (’Condition too large’)
end
coeff=A\[fX; fY; fZ];
AEX=laplacekermat (E,X) ;
AEY=kermat(E,Y);
AEZ=normalYkermat (E,Z, NZ);
val=[AEX AEY AEZ]*coeff;

It also needs a point list E for evaluation, and the values on E will be in
val while the coefficients wrt. the A matrix are in coeff. Here is a driver
program testfullpoissonsolver.m:

clear all;

close all;
global RBFtype;
global RBFpar;
global RBFscale;
RBFscale=0.7

4 CALCULATIONS FOR POISSON PROBLEMS 38

RBFtype="mq’
RBFpar=-2
dx=2
dy=dx;
dz=dx;
hx=0.1;
[xx, yx]=meshgrid(-1:hx:1,-1:hx:1);
X=[xx(:), yx(:)];
lenx=length(X(:,1))
hy=0.1;
yd=(-1:hy:1)’;
Y=[yd -ones(length(yd),1) ; yd ones(length(yd),1)];
leny=length(Y(:,1))
Z=[-ones(length(yd),1) yd ; ones(length(yd),1) yd 1;
lenz=length(Z(:,1))
NZ=[-ones(length(yd),1) zeros(length(yd),1) ;...
ones (length(yd),1) zeros(length(yd),1) 1 ;
fX=-2xcos(X(:,1)) .*xsin(X(:,2));
fY= cos(Y(:,1)) .xsin(Y(:,2));
fZ= -sin(Z(:,1)) .xsin(Z(:,2)) .*NZ(:,1)
+cos(Z(:,1)) .*%cos(Z(:,2)) .*NZ(:,2);
he=0.05;
[xe,yel=meshgrid(-1:he:1,-1:he:1);
E=[xe(:) ye(:)]1;
subplot(2,2,1);
plot (xx,yx,’b.”,Y(:,1),Y(:,2),’rx?,Z(:,1),Z(:,2),’go0?)
% legend(’Laplace data’,’Dirichlet data’,’Neumann data’)
hold on
quiver(zZ(:,1),Z(:,2), NZ(:,1),NZ(:,2))
title(’Data locations’)
[val, coeffl=fullpoissonsolver(X, fX, Y, fY, Z, NZ, fZ, E);
subplot(2,2,2);
surf (xe, ye, reshape(val, size(xe)))
shading interp
title(’Approximate solution’)
dirval=[laplacekermat(Y,X) kermat(Y,Y) normalYkermat(Y,Z,NZ)]*coeff;
dirichlet_norm=norm(dirval-fY)
zval=[laplacekermat (Z,X) kermat(Z,Y) normalYkermat(Z,Z,NZ)]xcoeff;
delta=0.0000001;
Zplus=Z+delta*NZ;
zneuval=[laplacekermat (Zplus,X) kermat(Zplus,Y)

REFERENCES 39

normalYkermat (Zplus,Z,NZ)]xcoeff;
neumann_norm_discretized=norm(fZ- (zneuval-zval)/delta)
subplot(2,2,3);
surf(xe, ye, cos(xe).*sin(ye))
shading interp
title(’Exact solution’)
subplot(2,2,4)
surf (xe, ye, cos(xe).*sin(ye)-reshape(val, size(xe)))
shading interp
title(’Error’)

Its output is in Figure Bl The exact solution is u(z,y) = cos(z)sin(y). The
appropriate Dirichlet and Neumann data are sampled on 42 points on each
boundary line, and there are 441 sample points in the interior for interpolat-
ing the Laplacian. This makes a 525x525 matrix.

References

[1] St. De Marchi and R. Schaback. Stability of kernel-based interpolation.
Adv. in Comp. Math., 32:155-161, 2010.

[2] Stefano De Marchi, R. Schaback, and H. Wendland. Near-optimal data-
independent point locations for radial basis function interpolation. Adv.
Comput. Math., 23(3):317-330, 2005.

[3] G. F. Fasshauer. Meshfree Approzimation Methods with MATLAB, vol-
ume 6 of Interdisciplinary Mathematical Sciences. World Scientific Pub-
lishers, Singapore, 2007.

[4] E. J. Kansa. Application of Hardy’s multiquadric interpolation to hydro-
dynamics. In Proc. 1986 Simul. Conf., Vol. j, pages 111-117, 1986.

[5] M. Pazouki and R. Schaback. Bases for kernel-based spaces. Computa-
tional and Applied Mathematics, 2011. to appear.

[6] H. Wendland. Piecewise polynomial, positive definite and compactly sup-
ported radial functions of minimal degree. Advances in Computational
Mathematics, 4:389-396, 1995.

[7] H. Wendland. Scattered Data Approximation. Cambridge University
Press, 2005.

REFERENCES 40

Data locations Approximate solution

Figure 5: Resulting figure for testfullpoissonsolver.m

[8] Z. Wu. Hermite-Birkhoff interpolation of scattered data by radial basis
functions. Approzimation Theory and its Applications, 8/2:1-10, 1992.

	Kernels and Points
	Point Sets
	Distance Matrices
	Kernel Evaluation
	Recursive Scalar Radial Derivatives
	Multivariate Polynomials

	Interpolation and Evaluation
	Lagrange Bases
	Power Functions

	Explicit Multivariate Derivatives
	First Derivatives
	Normals
	Second derivatives
	Laplace operators
	Mixed Derivatives

	Calculations for Poisson Problems
	Matrices
	Full system

