
MATHEMATICAL RESULTS CONCERNING KERNEL
TECHNIQUES

Robert Schaback ∗
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Abstract: Black–box models based on kernelsK are written as mappings of the form

Fα(x) =
∑
j

αjK(xj , x)

that are intended to reproduce observational input/output data pairs(xj , yj) in the sense
F (xj) ≈ yj . Such functions have been studied in a general mathematical context for quite
some time, and this contribution reviews part of the known facts and provides links to a
subset of the background literature. Special emphasis is given to questions of optimality and
complexity within the context of black–box modelling.
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1. MODELS

The goal of this contribution within SYSID 2003 is
to make old and new mathematical results on kernels
available to the system identification community, in
particular within the context of black–box modelling
(Sjoberget al., 1995). For easy alignment with the
mathematical background, a black–box model is sim-
plified here to be a parametrized nonlinear multivari-
ate function

IRM
Fp→ IRN

Input 7→ Output
(1)

where the model parametersp come from some pa-
rameter domain inIRP . Usually there is a large
number of input/output observations pairs(xj , yj) ∈
IRM × IRN such thatyj = F (xj) holds for the “true”
transfer function or modelF . The standard identifica-
tion task is to find a parameterp such that

yj ≈ Fp(xj)

holds for all observations(xj , yj) ∈ IRM × IRN ,
where the parametrized class{Fp}p of models should
be adequate for the application in question. Simulation
then means the evaluation ofFp(x) for new inputsx.
In the context of learning theory the sample of the
(xj , yj) is called the “training set”, and findingp orFp
is called “learning” instead of “identification”. From
the mathematical point of view one has a nonlinear
approximation problem (Braess, 1986), which turns
into an interpolation problem, if exact reproduction
of the input/output pairs is required. Without losing
generality, one can assume the whole process to be
scalar–valued, i.e.N = 1 in (1). Time series are a
special case.

2. KERNELS

In many applications it is useful to map the input
observationsxj first into an elementΦ(xj) of a larger
“feature space” describing additional properties of
xj , in order to be able to use a specific distance
dist(Φ(xj),Φ(xk)) in feature space that allows to



model the similarity ofxj with xk much more closely
than by the dataxj andxk themselves. This key idea
was termed the “kernel trick” by the community fo-
cusing on learning algorithms and “kernel machines”
(Scḧolkopf and Smola, 2002), but its mathematical
roots date back to reproducing kernel Hilbert spaces
(Aronszajn, 1950; Meschkowski, 1962). The feature
mapΦ is supposed to map into some function space
F that carries an inner product(., .) and a reproducing
kernelK such that

Φ(x) = K(x, ·)
(Φ(x),Φ(y)) = (K(x, ·),K(y, ·))

= K(x, y)
(Φ(x), v) = (K(x, ·), v)

= v(x)

(2)

for all x, y ∈ IRM and allv ∈ F . Such kernels exist in
many variations (see section 4), and the spaceF can
be written as the Hilbert space closure of all images
Φ(x) = K(x, ·) of the feature map under the above
inner product. This “native” Hilbert space intrinsically
belongs to the kernel in question, and each Hilbert
space of functions with continuous point evaluation
has a unique reproducing kernel. Thus there is a one–
to–one correspondence between kernels and Hilbert
spaces.

3. OPTIMAL MODELS

For modeling purposes there now is a surprising obser-
vation: one can find an optimal model without making
specific assumptions about the model functionFp and
its parametrization. This is what makes kernel tech-
niques interesting for black–box modelling.

Theorem 1.Under all model functionsF such that
each component ofF is an arbitrary function inF and
which reconstructs the observational data exactly, the
one with components of minimal norm, if it exists, is
necessarily of the form

Fα(x) =
∑
j

αjK(xj , x) (3)

with coefficientsαj ∈ IRN .

Our proof sketch of this standard mathematical obser-
vation just minimizes the quadratic form(F, F ) under
the constraints of exact reproduction of the observa-
tional data. With Lagrange multipliersαj one gets the
variational equation

(F, v)−
∑
j

αjv(xj) = 0 for all v ∈ F

which leads to (3) via (2). 2

In some sense this result eliminates the task of model
selection, provided that a feature map and an inner

product in feature space is chosen, and if one accepts
the resulting minimal norm model.

A drawback of this optimality criterion is that it aims
at some kind of “energy” of the model function itself,
and not at the prediction quality of the model for
new input/output pairs(x, y). But there is another
optimality result that precisely aims at reproduction
quality.

Theorem 2.Assume that the observational data come
from an arbitrary “true” functionF from a Hilbert
spaceF with reproducing kernelK, and consider
arbitrary models of the form

Fu(x) =
∑
j

uj(x)F (xj) (4)

that are linear in the observational data and use arbi-
trary weight functionsuj . Then for allx the specific
weightsu∗j (x) ∈ IR with

K(x, xk) =
∑
j

u∗j (x)K(xj , xk) (5)

lead to a minimal worst–case value of the relative error
|F (x)− Fu(x)|/‖F‖.

The proof sketch for this fact uses Hilbert space dual-
ity. Starting from

|F (x)− Fu(x)|2 = |(δx −
∑
j

uj(x)δxj )F |2

≤ ‖δx −
∑
j

uj(x)δxj‖2‖F‖2

and using (2) in the dual form(δx, δy) = K(x, y) one
can minimize the above quadratic form with respect to
the real variablesuj(x) to get (5) as normal equations

(δx, δxk) =
∑
j

u∗j (x)(δxj , δxk). 2

The connection of the model (4) withuj = u∗j from
(5) to the model (3) still needs explanation. If, as
discussed in the next section, the matrix with entries
K(xj , xk) is nonsingular, the functionsu∗j (x) are lin-
ear combinations of theK(x, xk) with the Lagrange
interpolation propertyu∗j (xk) = δjk. Thus the optimal
version of (4) is nothing else than a rewriting of (3) in
the Lagrange basis, proving that (3) is also minimizing
the pointwise reproduction error at all other locations
x in the sense of Theorem 2.

The “physical” meaning of the model function (3) can
be illustrated by the trivial case

Fy(x) =
∑
j

yjδxj (x)

for a Dirac delta kernel, and (3) can be seen as a
regularized version of the above, still maintaining
exact reproduction, but with a different kernel like a
Gaussian. Another interpretation viewsK(xj , x) as a



similarity measure between the observationsxj and
x, being large iffx is close toxj , and then (3) lets
the model return a result that lies close toyj if x is
close toxj . This line of argument can be made more
precise by stochastic assumptions, but one of the goals
of this paper is to show that probabilistic arguments
are irrelevant to the basics of kernel techniques. They
are no more than “add-ons”, and this also applies to
the nondeterministic parts of learning theory.

The consequence of the arguments of this section is
that after proper choice ofΦ andK there is no way
around working with the representation (3) in black–
box modelling. But, after all, picking a very specific
Φ andK that suits the application cannot be termed
“black–box modelling” any more.

4. POSITIVE DEFINITE KERNELS

If (3) reconstructs the observational data exactly, one
has to solve the system

Fα(xk) = yk =
∑
j

αjK(xj , xk) (6)

and this requires that the symmetric matrix with en-
tries K(xj , xk) should be nonsingular. Since it is
a Gramian due to (2), it must always be positive
semidefinite, but one needs additional information to
prove its nondegeneracy. Fortunately, the notion of
(strictly) positive definite kernels has a long history
in mathematics (Stewart, 1976) and provides precisely
the required positive definiteness of all such matri-
ces. There also is the notion of conditional positive
definiteness (Micchelli, 1986), but this extension is
dropped here to simplify the presentation.

By the fundamental Micchelli paper of 1986, there
was quite a number of useful (conditionally) positive
definite functions on the market, including the radial
kernels known as Gaussians, thin–plate splines, poly-
harmonic splines, and multiquadrics. The term “radial
basis function” is used to describe kernels of the form
K(x, y) = φ(‖x − y‖2) with Euclidean invariance.
Special cases are, besides the Gaussianexp(−‖x −
y‖2), the multiquadrics (Hardy, 1971) and the thin–
plate splines (Duchon, 1976).

In 1995 the first compactly supported positive definite
radial kernels were constructed (Schaback, 1995a;
Wu, 1995; Wendland, 1995) and Wendland’s func-
tions turned out to be polynomial and of least possible
degree for fixed smoothness requirements. Currently,
the paper of Schaback and Wendland (2001) sur-
veys the state–of–the–art of construction techniques
for positive definite kernels, while other contributions
(Schaback, 1999b; Schaback, 2000) provide specific
properties and relations to integral equations (e.g.
“Mercer” kernels in the language of learning theory).

It should be remarked on the side that kernels play a
dominant part in integral and differential equations,

since they occur in the context of fundamental solu-
tions and Hilbert–Schmidt expansions, for instance.
In approximation theory, kernels have a long history
dating back to the Dirichlet kernel occurring in Fourier
analysis. Finally, it should be kept in mind that one
can construct conditionally positive definite kernelsK
without ever caring for Hilbert space arguments. Ap-
plications of kernel models need not care for Hilbert
spaces at startup time. But the native Hilbert space for
K will always come up later through the back door as
a certain closure of the space of functions of the form
K(x,·).

5. SUPPORT REDUCTION

If a modeling process involves an abundance of ob-
servational data, it is not reasonable to use the model
(3) in its original form, because it involves a sum over
the full data. Furthermore, in most applications there
will be noise in the observations, and then it makes
no sense to insist on exact reproduction. However, the
two optimality properties of (3) suggest to stay within
the overall form of (3), and to try to get away with
some useful modifications.

Fortunately, there are strategies to combine both mod-
ifications into one. While allowing an error in the
reproduction, the complexity of the sum in (3) can be
reduced to a smaller set of observational data, called
the “support vectors” in the context of learning algo-
rithms. Between the two extreme cases

• using the full data with zero error or
• using no data (F = 0) with a huge error

there is a tradeoff between the complexity of a
“thinned” sum in (3) and its reproduction quality. This
tradeoff is still under investigation, and it remains a
major challenge for the future.

The mathematical background for the mainstream of
support reduction techniques is based on optimization
theory and has nothing to do with modeling, learning
theory, time series, probability, or statistics. Reduction
simply results from imposing a Chebyshev–type (uni-
form) bound

‖yj − F (xj)‖∞ ≤ ε (7)

on the reproduction quality, while minimizing a suit-
able penalty function depending onF , for instance
‖F‖2 as in Theorem 1. The necessary Karush–Kuhn–
Tucker conditions for the optimum will pick a set of
indicesj where (7) is attained with equality. This is
called the “active set” in optimization theory, and it
determines the (hopefully few) “support vectors” and
nonzero contributions in (3) using only the indicesj
from the active set. The other observations are irrel-
evant for the optimal solution and could have been
left out right from the start, if the calculation of the
optimal model would ever be repeated.



So far, the modeling problem was stated in “regres-
sion” form, but the same argument applies for what
is called ‘classification” in learning theory. The addi-
tional ingredient is the “margin” that plays the part of
(7) in a slightly different way that should be explained
here for completeness of presentation. The observa-
tionsxj are grouped in two classesX+ andX−, and
the easiest way to define a classification model is to
ask for a real–valued functionF that does something
like

F (xj) ≥ +γ for all xj ∈ X+

F (xj) ≤ −γ for all xj ∈ X−

for some positiveγ. Compared with (7) and using
standard optimization theory arguments, this is per-
fectly fine to guarantee a reduction to a few active con-
straints, if some penalty function onF is minimized.
Since the scaling and an additive shift do not matter,
one could also ask for anF satisfying

F (xj) ≥ 2 for all xj ∈ X+

F (xj) ≤ 0 for all xj ∈ X−.
(8)

Unfortunately, the standard approach to classification
in learning theory is somewhat more complicated, but
essentially a particular case of the above straightfor-
ward attack, as is shown now. One looks for a hyper-
plane in feature space that optimally separates the sets
Φ(X+) andΦ(X−). If a general hyperplane is written
as{z : (u, z) = β} with an elementu of norm 1 in
feature space (the normal vector on the hyperplane)
and a real numberβ, then the signed distance of a
point z from the hyperplane is(z, u) − β. Thus one
wants a maximal positive “margin”µ with

(Φ(xj), u)− β ≥ +µ for all xj ∈ X+

(Φ(xj), u)− β ≤ −µ for all xj ∈ X−.

Introducingzj := Φ(xj) andσj := ±1 if xj ∈ X±
this amounts to use optimization to find a maximal
positive numberµ such that

((zj , u)− β)σj ≥ µ for all xj .

The pair(u, β) allows a renormalization, and one can
divide the inequalities byµ. Thus the above optimiza-
tion is equivalent to a minimization of‖u‖2 under the
linear Chebyshev–type constraints

((zj , u)− 1)σj ≥ 1 for all xj

that allow a reduction argument to active sets based on
the Karush–Kuhn–Tucker conditions. The connection
to (8) is easily made when takingu as a scalar–valued
F and applying (2) in the form

(zj , u) = (zj , F ) = (K(xj , ·), F ) = F (xj)

to get
(F (xj)− 1)σj ≥ 1 for all xj ,

which turns out to be exactly the same as (8). Note that
(8) works for any penalty onF , while the the classical
geometric margin argument requires a penalty based
on‖F‖.

6. SPECIAL REDUCTION TECHNIQUES

Besides using Chebyshev–type constraints as in (7)
and (8) there are other techniques to reduce the com-
plexity of (3) while allowing some tolerable reproduc-
tion error.

“Greedy” methods (DeVore and Temlyakov, 1996;
Schaback and Wendland, 2000; Honet al., 2001) were
used to solve (6) partially, working iteratively on the
equations where the reproduction errorFα(xk) − yk
is still too large. It turns out that exact reproduction of
a small subset of the observational data often yields
small errors on the rest, but research is still incom-
plete.

The other methods mentioned here are trying to local-
ize the problem somehow. Using fast multipole expan-
sions of kernels (Beatson and Newsam, 1992; Pow-
ell, 1993; Beatson and Greengard, 1997; Beatson and
Light, 1997; Beatson and Newsam, 1998), one can
lump “far” pointsxj together and treat them computa-
tionally as one, leading to very good reductions in the
complexity of solving the system (6) and evaluating
the sum in (3). Another localization technique uses
partitions of unity (Wendland, 2002) combined with
rather arbitrary local models. This technique does not
require expansions and allows fairly general applica-
tions in modelling. If the partitions of unity satisfy a
certain stability property, the global reproduction error
can be bounded by the local errors in the subproblems.

It is an interesting open research area to compare
and to combine the various reduction techniques. In
particular, on can possibly insert greedy, localization,
and multipole techniques into advanced methods to
solve the huge quadratic linearly constrained problems
of section 5 by sophisticated optimization methods.

7. REPRODUCTION QUALITY AND STABILITY

There is a well–established mathematical literature
(Duchon, 1978; Madych and Nelson, 1988; Madych
and Nelson, 1990; Madych and Nelson, 1992; Wu and
Schaback, 1993; Schaback, 1999a; Buhmann, 2000)
on the error committed by kernel models of the form
(3), long before learning machines and black–box
modelling with kernels were fashionable. The results
will be useful for modelling purposes, but for space
limitations only a short summary is possible here,
extending an earlier survey (Schaback, 1997).

When experimenting with kernel models (3) and cor-
responding systems (6) it turns out that results often
depend crucially on the scaling of the kernel in relation
to the density of the observational data. To quantify the
latter, the fill distance

hX,Ω := sup
y∈Ω

min
xj∈X

‖y − xj‖2

of the setX = {xj} of observational data within
an enclosing domainΩ is useful. Then one looks



at sequences of observational data such that the fill
distancehX,Ω tends to zero, and the goal is to prove
convergence in the sense that the reproduction error
tends to zero as a function ofhX,Ω. If the kernel
K is fixed throughout this process, the situation is
called “nonstationary” within approximation theory,
while a “stationary” setting scales the kernel with
hX,Ω to keep the data distance and the kernel width
proportional.

For the stationary setting, theory (Buhmann, 1989)
says that integrable kernels like the Gaussian, the in-
verse multiquadric or the compactly supported Wend-
land kernels cannot yield convergence, though in prac-
tice one often observes that the errors are small enough
to keep the user satisfied. In fact, the error usually
decreases if the ratio of the kernel width and the fill
density (i.e. the “bandwidth” in the matrix of (6)) is
increased, and this is sufficient in many cases to keep
the error below a tolerable level.

In the nonstationary setting the reproduction error al-
ways behaves like a powerhkX,Ω wherek > 0 in-
creases with the smoothness ofK. If the kernel is
analytic (this occurs for the Gaussian and for multi-
quadrics, for instance), the error decreases even expo-
nentially likeexp(−c/hX,Ω) with a positive constant
c, at least in theory (Madych and Nelson, 1992).

However, this fantastic convergence behavior comes
at a price. In practice, the linear systems (6) get more
and more ill–conditioned (Narcowich and Ward, 1991;
Narcowich and Ward, 1992) whenhX,Ω gets small,
and this effect is dramatically increasing with the
smoothness ofK. It can be proven (Schaback, 1995b)
that good reproduction always comes with instabil-
ity and vice versa, while additional smoothness of
the kernel boosts both of them, unfortunately. If the
user does not apply additional techniques like pre-
conditioning or localization, the best choice of scale
usually is the one that works close to the condition
limits of the machine. Thus preconditioning is an-
other important topic (Dynet al., 1983; Jetter and
Stöckler, 1995; Beatsonet al., 1999; Fasshauer and
Jerome, 1999; Hon and Kansa, 2000) in the context of
making (3) work for large–scale application problems.
Even for Gaussians, which show extremely good re-
construction quality and catastrophic instability, there
was no well–established preconditioning technique so
far, but the situation will improve (Schaback, 2002).

The above discussion was restricted to exact recon-
struction of data from functions in the Hilbert space
associated to the kernel. This “native” Hilbert space
is very small when the kernel is very smooth, and
thus in theory the user must make sure to use a kernel
that is not too smooth. However, if the reconstruction
is allowed to be not exact, or if there is contamina-
tion by noise, one can observe in practice and prove
(Schaback, 1996) that the convergence rate in the non-
stationary setting adapts in an optimal and local way

to the smoothness of the unknown function supplying
the observational data.

This is a partial result concerning the tradeoff between
complexity of (3) and the reproduction quality, but the
proof technique, when studied in detail, only treats the
case where the actually used observational data still
“covers” the whole data domainΩ. Compared to the
reduction technique of section 5 this is a worst–case
scenario that does not exploit specific features of the
observational data.
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Scḧolkopf, B. and A. J. Smola (2002).Learning with
Kernels. MIT Press.

Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. De-
lyon, P. Glorennec, H. Hjalmarsson and A. Ju-
ditsky (1995). Nonlinear black-box modeling in
system identification: a unified overview.

Stewart, J. (1976). Positive definite functions and gen-
eralizations, an historical survey.Rocky Moun-
tain J. Math.6, 409–434.

Wendland, H. (1995). Piecewise polynomial, positive
definite and compactly supported radial functions
of minimal degree.Advances in Computational
Mathematics4, 389–396.

Wendland, H. (2002). Fast evaluation of radial basis
functions: Methods based on partition of unity.
In: Approximation Theory X: Wavelets, Splines,
and Applications(C. K. Chui, L. L. Schumaker
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