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1 Synonyms

Approximation by functions of several variables

2 Mathematics Subject Classification

41-00,41A63, 65Mxx

3 Short Definition

Approximations of functions are multivariate, if they replace functions of n ≥

2 variables defined on a domain Ω ⊆ IR
n by simpler or explicitly known or

computable functions from a trial space of n–variate functions.

4 Overview

Multivariate approximation is an extension of ⇒ Approximation Theory and
⇒ Approximation Algorithms. In general, approximations can be provided via
⇒ Interpolation, but this works in the multivariate case only if trial spaces are
data–dependent. Consequently, multivariate approximation splits into subfields
depending on the chosen trial spaces which in turn are tailored to meet the de-
mands of applications. In all cases, there is a strong dependence on the domain
Ω. If Ω is a Cartesian product of univariate domains, e.g. an n–dimensional
cube or rectangle, one can use tensor products, i.e. sums of products of uni-
variate functions [Light and Cheney(1985)]. In the periodic case, i.e. on a
multivariate torus, there are multivariate Fourier series, a special case of tensor
products. On the sphere, expansions into spherical harmonics yield useful multi-
variate approximations with plenty of applications in geophysics. Other special
applications in Physics and Engineering may require special multivariate trial
functions like plane waves for approximation. In general, ⇒ spectral methods

[Canuto et al(2006)Canuto, Hussaini, Quarteroni, and Zang, Canuto et al(2007)Canuto, Hussaini, Quarteroni,
and pseudo–spectral methods [Fornberg and Sloan(1994), Fornberg(1996)] use

1



application–adapted multivariate trial functions for solving ordinary or partial
differential equations via some form of multivariate approximation.

But there is also a number of multi–purpose trial spaces. They often require
a triangulation or mesh of the domain Ω ⊆ IR

n. If the triangulation is regular in
the sense of a net or grid, box splines [de Boor et al(1993)de Boor, Höllig, and Riemenschneider],
living on a multi–direction mesh, generalize the well–known univariate ⇒ spline

functions [de Boor(2001), Schumaker(2007)] which are piecewise polynomial
functions. General splines on triangulations are treated in [Lai and Schumaker(2007)].
On grids, and with special applications to imaging, multivariate ⇒ wavelets are
particularly useful, with a huge literature, e.g. [Cohen(2003), Mallat(2009)].

On general triangulations, and with a vast range of applications in ⇒ com-

putational partial differential equations, the ⇒ finite element method (FEM)
[Babuška et al(2011)Babuška, Whiteman, and Strouboulis, Brenner and Scott(2008)]
is the most popular multivariate approximation technique. Via Cea’s Lemma,
the error analysis of FEM techniques for solving elliptic PDEs boils directly
down to the error of multivariate approximation to the solution. Various exten-
sions (XFEM, GFEM) enrich the finite element trial spaces by special functions
to model phenomena like boundary singularities or crack discontinuities.

Non–Uniform Rational B–Splines, (NURBS, [Farin(1999)]) form vector–
valued multivariate trial spaces related to finite elements. They dominate
the applications of Computer–Aided Design (CAD, ⇒ Geometrical Design) of
curves and surfaces in Engineering [Dassault(2012)]. It is a generalization of
the Bernstein–Bézier technique (⇒ Bezier Curves and Surfaces) for parametriz-
ing spaces of multivariate polynomials over triangles, rectangles, tetrahedra, or
simplices. Here, vector–valued multivariate functions. e.g. complicated 3D
surfaces, are approximated by smoothly patching simpler surfaces together.

If users want to work without triangulations, they have to resort to mesh-

free or ⇒ meshless methods [Liu(2003)]. They come in various forms, based
on either particles [Li and Liu(2004)] like in ⇒ smooth particle hydrodynamics

[Liu and Liu(2003)], or on shape functions [Belytschko et al(1996)Belytschko, Krongauz, Organ, Fleming, and Krysl
Liu(2003)] that generate meshless trial spaces and often form a partition of unity.
The shape functions may be generated via Moving Least Squares [Levin(1998)]
as a per–point calculation, but they can also be provided in explicit form
by translates of kernels or ⇒ radial basis functions. These techniques pro-
vide general tools for handling multivariate scattered data [Wendland(2005),
Fasshauer(2007), Schaback and Wendland(2006)] and are connected to pseu-
dospectral and particle methods, since they furnish multivariate approximations
from superpositions of smooth global or compactly supported functions (⇒ Spec-

tral collocation methods,⇒ Spectral methods). They are instances of ⇒ Repro-

ducing kernel methods and also allow⇒ Fast Multipole Methods [Beatson and Greengard(1997)].
A particularly important application area for such techniques is ⇒ Computa-

tional Mechanics [Liu(2003)].
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5 Algorithms

Numerical methods (⇒ Approximation Algorithms) for multivariate approxima-
tion problems arise in many forms, in particular if solutions of partial differential
equations are approximated. They range from the classical ⇒ Galerkin methods

and theMeshless Local Petrov Galerkin approach (MLPG, [Atluri and Shen(2002)])
via all forms of pseudospectral techniques to ⇒ finite volume methods and
⇒ smooth particle hydrodynamics in fluid dynamics. In most cases, a multi-
variate function from a suitably parametrized trial space is required to satisfy
certain test equations arising from weak formulations using test functions or
strong formulations using ⇒ Collocation Methods. If there are enough test con-
ditions to identify trial functions uniquely and with additional stability prop-
erties, numerical solutions will usually provide an accuracy that is roughly the
error of the best approximation of the true solution by functions from the trial
space [Schaback(2010)].

By the curse of dimensionality, the ⇒ computational complexity of algo-
rithms for multivariate approximation usually grows exponentially with the
number of variables, if the required accuracy is fixed. Such problems can
only be handled by reducing the degrees of freedom using techniques based
on ⇒ sparsity. Sparse tensor product methods are connected to sparse grids

[Barthelmann et al(2000)Barthelmann, Novak, and Ritter, Bungartz and Griebel(2004)]
and hyperbolic cross approximations [Sickel and Ullrich(2009), Döhler et al(2010)Döhler, Kunis, and Potts].
N–term approximation [DeVore(1998)], ⇒ wavelets, and ⇒ compressive sensing

[Donoho(2006), Cohen et al(2009)Cohen, Dahmen, and DeVore] aim at⇒ sparse

approximation in general, even if there are only a few independent variables, e.g.
when it comes to solve PDEs [Urban(2009), Cohen et al(2010)Cohen, DeVore, and Schwab]
or dealing with images. These multivariate approximations are behind modern
⇒ data compression algorithms like JPEG 2000 and MPEG-4 for images and
videos.

References

[Atluri and Shen(2002)] Atluri SN, Shen S (2002) The Meshless Local Petrov-
Galerkin (MLPG) Method. Tech Science Press, Encino, CA
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