
Native Hilbert Spaes for Radial Basis Funtions IIRobert Shabak, G�ottingenAbstrat. This ontribution ontinues an earlier survey [20℄ over thenative spaes assoiated to (not neessarily radial) basis funtions. Afterrealling the basis, the relation to L2 spaes is studied. This leads toa new formulation of the theory of radial basis funtions in the ontextof integral operators. Instead of Fourier transforms, the most importanttools now are expansions into eigenfuntions. This uni�es the theory ofradial basis funtions in IRd with the theory of zonal funtions on thesphere Sd�1 and the theory of kernel funtions on Riemannian manifolds.New haraterizations of native spaes and positive de�nite funtions areprovided within this ontext.x0. IntrodutionSine this paper is an extension of [20℄, we �rst reall the introdution to[20℄ with slight modi�ations. The �nal three paragraphs will go over to theurrent paper.For the numerial treatment of funtions of many variables, radial basisfuntions are useful tools. They have the form �(kx�yk2) for vetors x; y 2 IRdwith a univariate funtion � de�ned on [0;1) and the Eulidean norm k � k2on IRd. This allows to work eÆiently for large dimensions d, beause thefuntion boils the multivariate setting down to a univariate setting. Usually,the multivariate ontext omes bak into play by piking a large number Mof points x1; : : : ; xM in IRd and working with linear ombinationss(x) := MXj=1 �j�(kxj � xk2):In ertain ases, low{degree polynomials have to be added, and these ompli-ations are dealt with in setion 5 of [20℄, while setion 6 shows how to get ridof these. However, in the de�nitions and in the notation we still keep a spaeP whih plays the role of polynomials.Approximation Theory IX 1Charles K. Chui and Larry L. Shumaker (eds.), pp. 1{3.Copyright o 1998 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reprodution in any form reserved.



2 Shabak, R.Besides the lassial radial basis funtions on the whole spae IRd, thesurvey [20℄ also overs zonal funtions on the (d � 1){dimensional sphereSd�1 � IRd. These have the form �(xT y) = �(os(�(x; y))) for points x; yon the sphere spanning an angle of �(x; y) 2 [0; �℄ at the origin. Here, thesymbol T denotes vetor transposition, and the funtion � should be de�nedon [�1; 1℄. Periodi multivariate funtions an also be treated, e.g. by re-duing them to produts of univariate periodi funtions. Another very im-portant ase are basis funtions on Riemannian manifolds, as introdued byNarowih [13℄ and investigated by Dyn, Narowih, and Ward [2℄. Here, weonsider symmetri funtions � : 
 � 
 ! IR on some domain 
 � IRd,overing the above situations.All of these ases of basis funtions share a ommon theoretial foun-dation. The funtions all have a unique assoiated \native" Hilbert spaeN�;P(
) of funtions in whih they at as a generalized reproduing kernel.The di�erent speial ases (radiality, zonality) are naturally related to geomet-ri invariants of the native spaes. The �rst part of the survey [20℄ thus startsin setion 2 with reproduing kernel Hilbert spaes and looks at geometriinvariants later in setion 3.But most basis funtions are onstruted diretly and do not easily pro-vide information on their underlying native spae. Their main propertiesare symmetry and (strit) positive de�niteness (SPD) or onditionally pos-itive de�niteness (CPD). These notions are de�ned without any relation toa Hilbert spae, and one then has to onstrut the native spae, prove itsuniqueness, and �nd its basi features. The survey [20℄ does this for SPDfuntions in setion 4 and for CPD funtions in setion 5. The results mostlydate bak to lassial work on reproduing kernel Hilbert spaes and positivede�nite funtions (see e.g. [12,17℄). We �nished [20℄ with a short aount ofoptimal reovery of funtions in native spaes from given data, and providedthe orresponding error bounds based on power funtions.There are di�erent ways to de�ne native spaes (see [10℄ for omparisons),but in the �rst part [20℄ of the survey we wanted to provide just one tehniquethat is general enough to unify di�erent onstrutions (e.g. on the sphere [3℄ oron Riemannian manifolds [2,13℄). But we avoided advaned tools like Fouriertransforms or expansions into series of spherial harmonis or eigenfuntionsof the Laplae{Beltrami operator.In this ontinuation of [20℄, we start with embedding of native spaes intoL2(
). This provides a very useful link to the theory of integral operators andtheir eigenfuntion expansions. We use these expansions as a replaement fortransforms in the lassial variations of the theory. Consequently, we get newharaterizations of native spaes via suh expansions, and new onstrutiontehniques for positive de�nite funtions.The notation and numbering will simply extend from [20℄ in a straightfor-ward way. We strongly advise the reader to have a opy of [20℄ available, sinewe annot reall all de�nitions and results here. The referenes, however, arerepeated for onveniene of the reader.



Native Hilbert Spaes 3x12. Connetion to L2 spaes: OverviewThis setion starts an analysis of native spaes direted towards the well{known representation of the \energy inner produt" of lassial splines in theform (f; g)� := (Lf; Lg)L2(
) =: (Lf; Lg) (12:1)with some linear di�erential operator L. Natural univariate splines of odddegree 2n � 1 are related to L = dm=dxm on 
 = [a; b℄ � IR. Furthermore,the fundamental work of Duhon [1℄ on thin{plate and polyharmoni splines isbased strongly on the use of L = �m. For general (not neessarily radial) basisfuntions �, there is no obvious analogue of suh an operator. However, wewant to take advantage of (12.1) and thus proeed to work our way towards aproper de�nition of L, starting from the bilinear form (:; :)� that we de�ned in[20℄, and whih led us to the notion of the native spaeN�;P(
) = F�;P(
)+Pof a onditionally positive de�nite funtion � on a domain 
 � IRd withrespet to a �nite{dimensional spae P.Sine the proedure is somewhat ompliated, we give an overview here,and point out the reasons for ertain arguments that may look like unneessarydetours. We �rst have to relate the native spae somehow to L2(
). Toahieve this, we simply imbed the major part F�;P(
) of the native spaeN�;P(
) = F�;P(
) + P into L2(
). Then we study the adjoint C of theembedding, whih turns out to be a onvolution{type integral operator withkernel � that �nally will be equal to (L�L)�1. We thus have to form the\square root" of the operator C and invert it to get L. Taking the squareroot requires nonnegativity of C in the sense of integral operators. This is aproperty that is intimately related to (strit) positive de�niteness of the kernel�, and thus in setion 16 we take a loser look at the relation of these twonotions. In between, setion 15 will provide a �rst appliation of the tehniquewe develop here: we an generalize a proof of an inreased onvergene order,replaing Fourier transforms by eigenfuntion expansions. Finally, we give aharaterization of the native spae and of positive de�nite funtions. In thenotation we shall always use (�; �) to denote the inner produt in L2(
).x13. Embedding into L2There is an easy way to imbed a native spae into an L2 spae.Lemma 13.1. Let � be symmetri and onditionally positive de�nite (CPD)with respet to P on 
, and let 	 be the normalized kernel with respet to �as de�ned in setion 6. AssumeC22 := Z
	(x; x)dx <1: (13:1)Then the Hilbert spae F�;P(
) � N�;P(
) for � has a ontinuous linearembedding into L2(
) with norm at most C2.Proof: Conditional positive de�niteness learly implies that the integrand	(x; x) = (Æ(x); Æ(x))� = kÆ(x)k2�



4 Shabak, R.is positive when forming (13.1).Now for all f 2 F�;P(
) and all x 2 
 we an use the reprodutionproperty (5.11) to get f(x)2 = (f;	(x; �))2�� kfk2�k	(x; �)k2�= kfk2�	(x; x);where we used �Pf = 0 for the funtions f 2 F�;P(
). Then the assertionfollows by integration over 
.By the way, the above inequality shows in general how upper bounds forfuntions in the native spae an be derived from the behaviour of 	 on thediagonal of 
� 
. And, sometimes, the related geometri mean inequality	(x; y)2 � 	(x; x)	(y; y)is useful, following diretly from (6.1) or via f(x) := 	(x; y) from the aboveargument.x14. The onvolution mapping from L2 into F�;P(
)We now go the other way round and map L2(
) into the native spae.Theorem 14.1. Assume (13.1) to hold for a CPD funtion � on 
. Thenthe integral operator C(v)(x) := Z
 v(t)	(x; t)dt (14:1)of generalized onvolution type maps L2(
) ontinuously into the Hilbertspae F�;P(
) � N�;P(
). It has norm at most C2 and satis�es(f; v) = (f; C(v))� for all f 2 F�;P(
); v 2 L2(
); (14:2)i.e. it is the adjoint of the embedding of the Hilbert subspae F�;P(
) of thenative spae N�;P(
) into L2(
).Proof: We use the de�nition of M�;P(
) in Theorem 8.1 and pik some�nitely supported funtional � 2 LP(
) to get�(C(v)) = Z
 v(t)�x	(x; t)dt� kvkk�x	(x; �)k� C2kvkk�k�for all v 2 L2(
). In ase of f(t) := 	(x; t) with arbitrary x 2 
, equation(14.2) follows from the de�nition of the operator C and from the reprodutionproperty. The general ase is obtained by ontinuous extension.Of ourse, equation (14.2) generalizes to(f��Pf; v) = (f��Pf; C(v))� = (f; C(v))	 for all f 2 N�;P(
); v 2 L2(
)on the whole native spae N�;P(
). We add two observations following fromgeneral properties of adjoint mappings:



Native Hilbert Spaes 5Corollary 14.2. The range of the onvolution map C is dense in the Hilbertspae F�;P(
). The latter is dense in L2(
) i� C is injetive.To prove riteria for injetivity of C or, equivalently, for density of theHilbert spae F�;P(
) in L2(
), is an open problem, at least in the generalsituation. For SPD funtions �(x; y) = �(x � y) on 
 = IRd with a stritlypositive d{variate Fourier transform �̂ there is a neat argument due to A.L.Brown that does the job. In fat, if there is some v 2 L2(
) suh that(v;�(x; �))L2(
) = 0 for all x 2 
, then v̂ � �̂ = 0 must hold on IRd, and thenv = 0 in L2(
).We �nally remark that the above problem is related to the spei� way ofde�ning an SPD or CPD funtion via �nitely supported funtionals. Setion16 will shed some light on another feasible de�nition, and we an revisit theproblem in setion 20 after we have replaed Fourier transforms by eigenfun-tion expansions. x15. Improved onvergene resultsThe spae C(L2(
)) allows an improvement of the standard error estimates forreonstrution proesses of funtions from native spaes. Roughly speaking,the error bound an be \squared".Theorem 15.1. If an interpolatory reovery proess in the sense of Theorem11.1 is given, then there is a boundjf(x)� s�f (x)j � P �(x)kP �kkvkfor all f � �Pf = C(v) 2 N�;P(
); x 2 
; v 2 L2(
). Here, we denote theoptimized power funtion for the speial situation in Theorem 11.1 by P �.Proof: Taking the L2 norm of the standard error bound in Theorem 10.3, weget kf � s�fk � kP �kkf � s�fk	:Now we use (14.2) and the orthogonality relation from Theorem 11.3:kf � s�fk2	 = (f � s�f ; f � s�f )	= (f � s�f ; f)	= (f � s�f ; C(v))	= (f � s�f ; v)� kf � s�fkkvk� kP �kkf � s�fk�kvk:Canelling kf�s�fk� and inserting the result into the error bound of Theorem10.3 proves the assertion.An earlier version of this result, based on Fourier transforms and re-strited to funtions on 
 = IRd was given in [21℄. Note that Theorem 15.1



6 Shabak, R.holds only for funtions in the range of the onvolution map C, i.e. in a sub-spae of the native spae. The study of the range of C is a hallenging task,beause there are numerial reasons to suggest that ertain boundary e�etsare involved. We shall ome bak to this issue in setion 19.x16. Positive integral operatorsWe now look at the operator C from the point of view of integral equations.The ompatness of C as an operator on L2(
) will be delayed somewhat,beause we �rst want to relate our de�nition of a positive de�nite funtionto that of a positive integral operator. The latter property will be ruial inlater setions.De�nition 16.1. An operator C of the form (14.1) is positive (nonnega-tive), if the bilinear form (w;C(v)); v; w 2 L2(
)is symmetri and positive (nonnegative) de�nite on L2(
).In our speial situation we an write(w;C(v)) = (C(w); C(v))�; v; w 2 L2(
)and getTheorem 16.2. If a symmetri and positive semide�nite funtion � on 
satis�es (13.1), then the assoiated integral operator C is nonnegative. If thisholds, positivity is equivalent to injetivity.Theorem 16.3. Conversely, if C is a nonnegative integral operator of theform (13.1) with a symmetri and ontinuous funtion � : 
�
! IR, then� is positive semide�nite on 
.Proof: We simply approximate point evaluation funtionals Æx by funtionalson L2(
) that take a loal mean. Similarly, we approximate �nitely supportedfuntionals by linear ombinations of the above form. The rest is standard,but requires ontinuity of �.Unfortunately, the above observations do not allow to onlude positivede�niteness of 	 from positivity of the integral operator C. It seems to bean open problem to bridge this gap. However, due to the symmetry of 	, theintegral operator C is always self{adjoint.>From here on, we will restrit ourselves to the stritly positive de�nite(SPD) ase. The main reason is to keep the presentation tehnially simple.The general ase an be treated either by going over to the regularized kernelgiven by (6.6) or by arefully rewriting the material of the following setions.



Native Hilbert Spaes 7x17. Compat nonnegative self{adjoint integral operatorsTo apply strong results from the theory of integral equations, we still needthat C is ompat on L2(
). This is implied by the additional onditionZ
 Z
 �(x; y)2dxdy <1 (17:1)whih is automatially satis�ed if our SPD funtion � is ontinuous and 
is ompat. Note the di�erene to (13.1), whih is just enough to ensureembedding of the native spae into L2(
). Note further that (17.1) rulesout ertain familiar ases like the Gaussian on IRd. It is an open problem tohandle this situation, and here may be a subtle di�erene between working onbounded or unbounded domains.>From now on, we assume � to be an SPD kernel satisfying (13.1) and(17.1). Then C is a ompat self{adjoint nonnegative integral operator. Nowspetral theory and the theorem of Merer [18℄ imply the following fats:1. There is a �nite or ountable set of positive real eigenvalues�1 � �2 � : : : > 0 and eigenfuntions '1; '2; : : : 2 L2(
) suh thatC('n) = �n'n; n = 1; 2; : : : :2. The eigenvalues �n onverge to zero for n ! 1, if there are in�nitelymany.3. There is an absolutely and uniformly onvergent representation�(x; y) =Xn �n'n(x)'n(y); x; y 2 
: (17:2)4. The funtions 'n are orthonormal in L2(
).5. Together with an orthonormal basis of the kernel of C, the funtions 'nform a omplete orthonormal system in L2(
).6. There is a nonnegative self{adjoint operator �pC suh that C = �pC �pCand with an absolutely and uniformly onvergent kernel representation�p�(x; y) :=Xn p�n'n(x)'n(y); x; y 2 
; (17:3)where �pC(v)(x) := Z
 v(t) �p�(x; t)dt; x 2 
; v 2 L2(
):We use the symbol �p� to denote the \onvolution square{root", beause�(x; y) = Z
 �p�(x; t) �p�(t; y)dt (17:4)is a generalized onvolution. We remark that this equation an be used foronstrution of new positive de�nite funtions by onvolution, and we providedetails in setion 20.The situation of �nitely many eigenvalues annot our for the standardase of ontinuous SPD kernels on bounded domains with in�nitely manypoints and linearly independent point evaluations. Otherwise, the rank ofmatries of the form (�(xj; xk))1�j;k�N would have a global upper bound.



8 Shabak, R.x18. The native spae revisitedThe ation of C on a general funtion v 2 L2(
) an now be rephrased asC(v) =Xn �n(v; 'n)'n;and it is reasonable to de�ne an operator L suh that (L�L)�1 = C formallyby L(v) =Xn (�n)�1=2(v; 'n)'n: (18:1)We want to show that this operator niely maps the native spae into L2(
),but for this we have to haraterize funtions from the native spae in termsof expansions with respet to the funtions 'n.Theorem 18.1. The native spae for an SPD funtion � whih generates anonnegative ompat integral operator on L2(
) an be haraterized as thespae of funtions f 2 L2(
) with L2(
){expansionsf =Xn (f; 'n)'nsuh that the additional summability onditionXn (f; 'n)2�n <1holds.Proof: We �rst show that on the subspae C(L2(
)) of the native spaeN�(
) we an rewrite the inner produt as(C(v); C(w))� = (v; C(w))=Xn (v; 'n)(C(w); 'n)=Xn (C(v); 'n)(C(w); 'n)�nBut this follows from (C(v); 'n) = �n(v; 'n) for all v 2 L2(
). Sine C(L2(
))is dense in N�(
) due to Corollary 14.2, and sine N�(
) is embedded intoL2(
), we an rewrite the inner produt on the whole native spae as(f; g)� =Xn (f; 'n)(g; 'n)�n for all f; g 2 N�(
): (18:2)The rest is standard.



Native Hilbert Spaes 9Corollary 18.2. The funtions p�n'n are a omplete orthonormal systemin the native spae N�(
).Proof: Orthonormality immediately follows from (18.2), and Theorem 18.1allows to rewrite all funtions from the native spae in the form of an or-thonormal expansion f =Xn (f;p�n'n)�p�n'nwith respet to the inner produt of the native spae.Corollary 18.3. The operator L de�ned in (18.1) maps the native spaeN�(
) into L2(
) suh that (12.1) holds. It is an isometry between its domainN�(
) and its range L2(
)=ker C = los( span f'ngn).Corollary 18.4. The operator �pC de�ned in (17.3) maps L2(
) onto thenative spae N�(
). Its inverse on N�(
) is L. Any funtion f in the nativespae has the integral representationf = Z
 v(t) �pC(�; t)dt (18:3)with a funtion v 2 L2(
).Corollary 18.5. The range of the mapping C onsists of the funtions f inL2(
) suh that the summability onditionXn (f; 'n)2�2n <1holds. It is an interesting open problem to generalize results for the radialase on 
 = IRd to this setting, replaing Fourier transforms by eigenfuntionexpansions. x19. Impliations for numerial tehniquesThe reonstrution of a funtion f on 
 from funtion values f(xk) on entersfx1; : : : ; xMg via a funtions(x) := MXj=1 �j�(xj ; x)is a reovery problem in the sense of setion 10, whose optimal solution in thesense of setion 11 for funtions f 2 N�(
) is provided by interpolation, i.e.by a solution of the systemf(xk) = MXj=1 �j�(xj ; xk) (19:1)



10 Shabak, R.for the oeÆients �j . We now look at this numerial problem from theviewpoint of integral operators, and our goal is to show that we get some newhints for further researh.In view of Corollary 18.4 and (18.3) we an writeZ
 v(t) �pC(xk; t)dt = Z
 �pC(xk; t) MXj=1 �j �pC(xj ; t)dtto see that we are reovering v from the funtions �pC(xj ; t) via best approx-imation in L2(
). The oeÆients �j in the system (19.1) have a naturalinterpretation via the approximationv(t) � MXj=1 �j �pC(xj ; t):The above argument is a simple impliation of the fat that all funtions ffrom the native spae are solutions of the operator equationf = �pC(v); v 2 L2(
):Sine this is (under ertain assumptions) an integral equation of the �rst kind,numerial problems will automatially arise whenever the funtion f is not inthe range of the operator �pC, i.e. if f is not in the native spae. But wesee what atually happens: the numerial proess is a best approximationin L2(
) with respet to the funtions �pC(xj; t) and thus always numeri-ally exeutable. The above argument also sheds some light on why in [19℄the treatment of funtions f outside the native spae atually worked aftertrunation of the Fourier transform. The applied tehnique suitably regular-izes the ill{posed integral equation problem, and it still guarantees optimalapproximation orders for given smoothness of f .We now make things worse and turn to the operator equationf = C(v); v 2 L2(
):Again, this is an integral equation of the �rst kind, and its solvability requiresthat f be in the range of C. This is preisely the situation of Theorem15.1, and we get some explanation for the improved onvergene rate. Theinterpretation of the oeÆients �j in the system (19.1) now is somewhatdi�erent: f(xk) = Z
 v(t)�(xk; t)dt = MXj=1 �j�(xj ; xk)makes it reasonable to ompare with a quadrature formulaZ
 g(t)dt � MXj=1 �jg(xj)



Native Hilbert Spaes 11to arrive at �j � �jv(xj):This implies that for smooth f and fairly regular on�gurations the oeÆ-ients at nearby points should be similar, and it provides a �rst tehnique toprolong values of oarse approximations to oeÆients regarding �ner enterdistributions. This observation (in a somewhat di�erent form) was made byJ�org Wenz [23℄.Another possible progress from here is the investigation of multilevel teh-niques, taking the eigensystem of C into aount. Researh in this diretionis urrently going on.x20. Constrution of positive de�nite funtionsWe now know that many stritly positive de�nite funtions � on a domain 
indue a positive integral operator in L2(
) and have a representation (17.2).But we an turn things upside down and de�ne � by (17.2), starting witha omplete orthonormal system f'ngn in L2(
) and a sequene f�ngn ofnonnegative numbers, onverging to zero. In some sense, this approah ismore general than the original one, beause disontinuous or singular fun-tions may result, depending on the deay of �n for n ! 1. Furthermore,the orthonormal systems arising from eigenfuntion expansions are somewhatspeial, beause they are smoother than general L2 funtions. We thus haveto expet a wider lass of funtions � when starting from (17.2).To atually arry out the onstrution, we �rst observe that � de�ned by(17.2) is a generalized positive semide�nite funtion in the sense that(�; �)� :=Xn �n�('n)�('n) (20:1)is a ontinuous bilinear form on the dual of L2(
). We annot use the standardde�nition, beause point evaluations are not ontinuous. Note here that forany funtional � in the dual of L2(
) we havek�k2 =Xn �('n)2 <1and thus an bound the bilinear form by(�; �)2� �  Xn p�n�('n)2! Xn p�n�('n)2! :The bilinear form is an inner produt, if all �n are positive. Now we an de�nethe future native spae via Theorem 18.1 and provide it with the bilinear form(18.2). The Riesz map R�;
 omes out to beR�;
(�) = �x�(x; �) =Xn �n�('n)'n



12 Shabak, R.as expeted, and the dual of the native spae will be the losure of all fun-tionals � in the dual of L2(
) under the inner produt (20.1). Naturally, thedual of the native spae will be larger than the dual of L2(
), i.e. L2(
) itself.If some of the �n are zero, we see that we get something like a generalizedonditionally positive de�nite ase, and regularization of the kernel along thelines of setion 6 just does the right thing. Finally, it now is somewhat morelear why onditions for injetivity of C are nontrivial: one may be in asituation where some of the �n are zero, and then everything has to be donemodulo the kernel of C or, equivalently, the span of the 'n with �n = 0.A look at (17.4) reveals another tehnique to onstrut positive semidef-inite funtions. In fat, if some funtion P : 
 � 
 ! IR has the propertyP (x; �) 2 L2(
) for all x 2 
, we an form the generalized onvolution�(x; y) := Z
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