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Abstract

Besides using standard radial basis functions, there are a few good reasons
to look for kernels with special properties. This survey will provide sev-
eral examples, starting from an introduction into kernel construction tech-
niques. After providing the “missing” Wendland functions, we focus on
kernels based on series expansions. These have some very interesting spe-
cial cases, namely polynomial and periodic kernels, and “Taylor” kernels
for which the reproduction formula coincides with the Taylor formula. Fi-
nally, we review the use of kernels as particular or fundamental solutions
of PDEs, look at harmonic kernels and kernels generating divergence—free
vector fields. Numerical examples will be provided as we are going along.
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1 Kernel Basics

We start here with some notational background. Further details should be
taken from the book [28] of H. Wendland. A kernel

K:OxQ—=R (1)

on a set Q C R? is called positive (semi-) definite if for all finite point sets
X = {a1,...,an} C Q the associated kernel matriz (K(zj,2k)),<; <, 18
positive (semi-) definite.

Reproducing Kernels in Hilbert Spaces F of functions on 2 are kernels
K for which the reproduction property

(f,K(z,)))r=f(x)forallz € Q, feF. (2)

holds. Each positive semidefinite kernel is reproducing in a unique “native”
reproducing kernel Hilbert space (RKHS) associated to it, and each Hilbert
space of functions has a reproducing kernel if the point evaluation functionals
are continuous.

This survey focuses on some new nonstandard kernels that should get
more attention, and thus we have to omit the classical kernel constructions
summarized in [2§] or in a somewhat more compact form in [24]. They
comprise Whittle-Matérn-Sobolev kernels, polyharmonic functions, thin—
plate splines, multiquadrics, Gaussians, and compactly supported kernels.

Unfortunately, space limitations force us to be very brief with certain
recent interesting nonstandard constructions. We shall mention these only
briefly and provide more room for the special ones we want to focus on.

For numerical analysis, the most important use of kernels is that they
yield spaces of trial functions. Indeed, for each discrete set of points

Xy ={z1,...,2y} CO

the space
Up :=span{K(-,z;) : z; € X,,} (3)

spanned by translates of the kernel can serve for many purposes. Questions
related to these spaces concern their approximation properties. In particu-
lar, one can interpolate data f(xy) of a function f € F sampled at z;, € X,
by a trial function

SfX, = ZajK(-,xj) eU, (4)
j=1
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solving the linear system

st x,(Tr) = Zaj K(zg,zj) = f(zg) forall z, € X, . (5)
=) S————

Kernel matrix

2 Kernel-Based Error Bounds

Before we look at nonstandard kernels, we shall provide a nonstandard appli-
cation of kernels. This concerns the use of kernels for obtaining error bounds
for fairly general (in particular kernel-independent) interpolants. Consider
a quasi—interpolant of the form

Qf) =Y _ flaj)u (6)
j=1

to f on X, using functions uq,...,u, on . Note that interpolants take this
form when the basis is rewritten in Lagrange form, satisfying w;(xy) = ;.
Now consider the pointwise error functional

c0ulf) = £(@) = QUN@) = [0, =S @), | ()
j=1

in a space F of functions on 2 with continuous point evaluation. Then

[f(2) = QN (@) = lea(N < lleqall#~I fll7

yields a bound that separates the influence of f from the influence of the
quasi-interpolant. In a RKHS F with reproducing kernel K one has

(02,0y)F = K(x,y) for all z,y € Q

and thus the norm of the error functional can be explicitly evaluated as

P} x, 7)== |legullF = K(z,z)- 2Zuj(w)K(x,a;j)
non (7)
+ 375 wj@)un(@) K (o, o))

j=1 k=1

This provides the error bound

[f (@) = QUN)(2)] < Po.x,.7 @)l fllF (8)
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where the ()-dependent part is fully known. The function FPg x, 7 can be
called the Generalized Power Function.

If one minimizes Py x, r(x) for fixed x over all quasi-interpolants @ of
the form (@), it turns out that the minimum is attained when the u; are the
Lagrange basis of the kernel-based interpolant (#). This yields the standard
power function [28] of kernel-based interpolation. We denote it by Px,, r
and use it later.

In order to show how the above technique for error bounds works in
practice, we add two examples.

ExaMpPLE 1. The top left plot of Fig. [l shows the generalized power func-
tion for linear interpolation on the triangle spanned by the three points
(0,0),(1,0),(0,1) in R% The evaluation is done in the space WZ(R?), us-
ing the kernel K (r)r within the generalized power function, and where K,
is the modified Bessel function of order v. Note that the kernel-based in-
terpolant using Kj(r)r for interpolation must perform better, but is only
slightly superior. The optimal power function is the top right plot, while
the difference of the power functions is the lower plot.

EXAMPLE 2. A harder case is given in Fig. Bl In this case, we started from
a grid, with spacing h = 0.02, in [~1, 1]? and we considered only the points
falling into the domain of the lower left plot, i.e. 5943 gridded points. Then,
the Vandermonde matrix for interpolation by polynomials of degree 6 was
formed, and a LU decomposition was calculated which selected 28 points by
pivoting [21]. This results in a degree 6 polynomial interpolation method
on the circled points of the lower left plot. This polynomial interpolant has
an error bound of the above form with the generalized power function for
W(R) using the kernel K3(r)r? given in the top left plot. The optimal
kernel-based interpolation process for the same points in the same function
space has the top right power function, while the difference of the power
functions is in the lower right plot.

3 Compactly Supported Kernels

First we observe that most of the results in this session are not particularly
new. In the univariate case, symmetric even—order B—splines are compactly
supported positive definite kernels, because their Fourier transforms are even
powers of sinc functions [I4]. The multivariate analogues of these would
be inverse Fourier transforms of even powers of Bessel functions as arising
already in [I2], but there are no explicit formulas available. Since 1995,
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Figure 1: Error of affine-linear interpolation in W22

however, there are two useful classes of compactly supported kernels due to
Z.M. Wu [29] and H. Wendland [27]. The ones by Wendland, having certain
advantages, we shall describe below. An addition to the zoo of compactly
supported functions was given in 1998 by M.D. Buhmann [I], but we shall
focus here on a very recent extension [20] to Wendland’s class of functions.
We recall that Wendland’s compactly supported kernels have the form

Bayo(r) = (1— )2 () (9)

where pg 1, is a polynomial of degree [d/2| + 3k + 1 on [0,1] and such that
the kernel K(z,y) = ®4x(llz — yll2) is in C?*, while pgx(r) is of minimal
degree for smoothness C?*. Finally, the kernel is reproducing in a Hilbert
space F norm-equivalent to W2d [2rh+1/ 2(Rd).

But if the dimension d is even, these functions do not generate integer—
order Sobolev spaces. This calls for new compactly supported Wendland—
type kernels that work for half-integer k, since it can be expected that
they always generate a space equivalent to Wzd /2kt1/2 (RY)
construction of Wendland ’s functions proceeds via

. In general, the

Gak(r) = Vas2)+h+1,5(T) (10)
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Figure 2: Polynomial interpolation, degree 6. Error in W24

with 1 (t2 _ T2)k_1
Y p(r) = / t(1— t)“Wdt, 0<r<1. (11)

But it turns out that the above formula, used so far only for integers k in
order to produce polynomials, can also be used for half-integers k. The
self-explanatory MAPLE® code line

wend:=int (t* (1-t) "mu* (t*xt-r*r) " (k-1)/(GAMMA (k) *2~ (k-1)),t=r..1);

runs for all reasonable and fixed choices of 1 and k where one half-integer
is allowed, while it fails if both p and k are genuine half-integers. A special
case is

V2 r
P2,1/2(r) = 37 (37"2 log <ﬁ> +(2r + 1)1 — r2> ,0<r (§121)

plotted in Fig. Blin the one dimensional case. It turns out that it generates

a Hilbert space norm—equivalent to W22 (R?), as expected. There are a few
additional results proven in [20]:
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Yk is positive definite on R? for > |[d/2 + k| + 1;

its d-variate Fourier transform for u = |d/2 + k| + 1 behaves like
@ (r_(d+2k+1)) for r — oo;

for d = 2m and k = n + 1/2 the kernel ¥|q/2|1r41/2,x generates
W2m+n+1 (R2m);

the new functions have the general form

2 r 2y, /
mn—1/2(1) = Pm—14nn(r?)10g | ———= | +@m—14nn(r")V1 — 12
(> , 1/2( ) Pm—1+n, ( ) g<1+m> dm—14n, ( )

(13)
with polynomials pp,—14n,n and ¢pn—14n,, of degree m — 1 + n.

Figure 3: The compactly supported kernel ¢ /o (r)

Interested readers should work out the case of integer k£ and half-integer p,
but these functions will not generate new classes of Sobolev spaces. To this
end, we suggest to have a look at hypergeometric functions.

4 Expansion Kernels

A kernel -
K(z,t) =Y Xjp;(2)p;(t) (14)
§=0

based on a sequence {¢;};>o of functions on 2 and a positive sequence
{Aj}j>0 of scalars can be called an expansion kernel if the summability
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condition

Z)\jgpj(a;)2 < oo for all x € Q (15)
j=0

holds. In other contexts, namely in Machine Learning, such kernels are
sometimes called Mercer kernels due to their well-known connection to pos-
itive integral operators [I8] and to the Mercer theorem. But they could also
be called Hilbert—Schmidt kernels, because the expansion arises naturally as
an eigenfunction expansion of the Hilbert—Schmidt integral operator

1(f)(x) = /Q K (,9) (4)dy.

and Mercer’s theorem just asserts existence of the expansion with positive
eigenvalues \; tending to zero for j — oo, while the eigenfunctions ¢; satisfy
I(¢j) = A\jpj, are orthonormal in Ly(©2) and orthogonal in the native Hilbert
space for K. Each continuous positive definite kernel K on a bounded
domain ) has such an expansion, which, however, is hard to calculate and
strongly domain—dependent.

Thus, Real Analysis allows to rewrite fairly general kernels as expan-
sion kernels, but there also is a synthetic point of view going backwards,
namely constructing a kernel from the \; and the ¢; under the summability
condition ([IH).

The synthetic approach is the standard one in Machine Learning, and we
shall give it a general treatment here, leaving details of kernel construction
for Machine Learning to the specialized literature, in particular Part Three
of the book [25] by J. Shawe-Taylor and N. Cristianini.

In Machine Learning, the domain ) is a fairly general set of objects
about which something is to be learned. The set has no structure at all,
since it may consist of texts, images, or graphs, for instance. The functions
p; associate to each object x € ) a certain property value, and the full
set of the ¢; should map into a weighted {3 sequence space such that the
summability condition is satisfied, i.e. into

0
627[\ = {Cj}jZO : Z/\j|6j|2 < 0
j=0

with the inner product

({aj}j20, {05} 520) e = D Ajasb;.

J=0

page 9 of B



R. Schaback, S. De Marchi November 11, 2009

The map = — {@;(x)};>0 € fo,a is called the feature map. In specific ap-
plications, there will only be finitely many functions comprising the feature
map, but we focus here on the infinite case. To proceed towards a Hilbert
space of functions for which K is reproducing, one should look at the se-
quence A®(z) := {\jp;(x)};>0 of coefficients of the function K (z, -) for fixed
x € ). This sequence lies in the space ¢ -1 with an inner product defined
as above but using )\]-_1 instead of A;. Thus we should look at expansions
into the ¢; such that the coefficient sequences lie in £y 5-1.

If the feature functions ¢; are linearly dependent, there are problems
with non-unique coefficients for expansions into the ¢;. To handle this in
general, we refer the reader to the use of frames, as done in R. Opfer’s
dissertation [15].

Instead, we now assume linear independence of the ¢; over {2 and define
a space of functions

c2
Fimd 1@ = Y (D@« He(Ehsalin s = X 20 <
7>0 >0 Y
(16)
on the general set €. Clearly, all functions K (z,-) and all ¢; lie in this space,
and due to uniqueness of the coefficients we can define the inner product

(f,9)F :ZM for all f,g € F.

§>0 J

This space clearly is isometric to the Hilbert sequence space £ -1 and the
kernel K is reproducing in it while the functions ¢, are orthogonal in F
with
Ok .
(@), 01)F = A\ for all j,k > 0.

Thus, the synthesis approach recovers the orthogonality of the expansion
in the native Hilbert space of the kernel, though the ¢; were chosen fairly
arbitrarily.

Now it is time for some examples.

ExAaMPLE 3. We start with a simple one in R, namely

exp(~(—9)?) = Y Dt eyt en(—Y) (1)

n=0

=:pn(z) =:pn(y)
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which easily follows by expansion of the left-hand side. Normally, the native
space for this kernel would be defined via Fourier transforms, but by (I]) we
can write it as the Hilbert space of analytic functions with representations

f(z) = exp(—xz)z e’ with Z n;l" < 0.
n=0 n=0

ExaMPLE 4. Another case is given by the well-known formula

2242 — gy + 4242 . £
exp <_ yry > = V1-12) Hy(2)Hu(y)—  (18)
n=0

2(1 —¢2) n!

of Mehler (cf. [26]) with z,y € R, the Hermite polynomials H,, and a fixed
parameter t € (—1,1). The native Hilbert space consists of functions of the

form
n

fx) = cuHy(x) with tj" < 0.
n=0 n=0

EXAMPLE 5. A multiscale expansion kernel is
K(y) = Y N> o@z—k)p@y-k)
>0  keZ (19)

=0;(z,y)

considered by R. Opfer in his Ph.D. thesis [I5] [16]. It uses a refinable func-
tion ¢ : R? < R, compactly supported, and performs a wavelet-style super-
position into scale levels j and shifts k£ on multivariate grids. It generates
certain Sobolev spaces and allows kernel-based interpolants to be rewrit-
ten in terms of wavelet bases. Thus it provides a link between grid—based
wavelets and meshfree kernel-based methods. An example of such a kernel
is shown in Fig. Al

Another interesting expansion of given kernels can be obtained via the
Newton basis (cf. [I1]). Theidea is as follows. Take sets X,, := {x1,...,2,} C
Q c R? with fill distance

by i= WXy, ) :=sup min [y — ;|2 — 0 for n — oo.
yea 1<i<n

Then there is a unique Newton-like basis v, va, ..., Uy, ... with

v; € Span {K(-,zy), 1 <k <j}
vj(zp) = 0, 1<k<j
foslls = 1
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Figure 4: This multiscale kernel is taken from the title of the Ph.D. disser-
tation [I5] by R. Opfer.

and the remarkable expansion property

K(z,y) = Y va(@)oaly)., (20)
n=1

showing that kernel expansions are by no means unique if they are not
obtained via eigenfunction expansions. Here, we digressed from [II] by
using a different but much more natural normalization.

If interpolation of a function f of the native space F in the points of
Xy :=={x1,...,2,} is performed by an interpolant

uf x, () = Z Aj(f) vi()

written in the new basis, the coefficients A;(f) are uniquely defined linear
functionals composed of the point evaluation functionals 4., for 1 < k < j,
generalizing divided differences. They turn out to be orthonormal in the dual
of the native space, being the Riesz representers of the v;. Furthermore, the
basis and the coefficients have the stability properties

n n
2 2 2 2
Y o) < K(z,x), D AN = llupx,|F < I1f1F
=1 =1

bounded above independently of n. The power function Py, # of the first
section has the representation

P}, rl2) = K(a,2) = 3 o3(@)
j=1

page 12 of B



R. Schaback, S. De Marchi November 11, 2009

implying

2

Un

() = P¥,_, 5(a) — P}, 7a) < P}, ple) — 0 for n — .

Details can be found in [21].

A useful strategy for choosing interpolation points is to pick x, as a
point where Py, , 7 attains its maximum. This technique goes back to [5],
and by the above argument, using P)%m £(xn) =0, it leads to

v2(z) < P)2<n717]_-(x) < P)2<n717]_-(xn) =vi(z,) forallneN, z€Q, (21)

proving that the basis has no extra oscillations.

ExaMPLE 6. For Fig. B we started with 201 x 201 = 40401 gridded points
in [-1,+1]2. From the points falling into the domain in the bottom right
plot, we picked 40 points x, adaptively by the above rule. The selected
points are shown in the bottom right plot, while the other plots show the
Newton basis functions wvo1, vsg, and vz7 illustrating their remarkable non—
oscillation properties. In this case, the kernel was the inverse multiquadric

K(r) = (1472

ExaMPLE 7. Within the degree 6 polynomial interpolation of Example 2
and Fig. 2, we can form a Newton—type basis by a pivoted LU decomposition
of the Vandermonde matrix. Figure Bl shows the resulting Newton basis
functions vg, v15, v27, and veg, and now the non—oscillation is a consequence
of pivoting by point permutations.

5 Polynomial Kernels

In Machine Learning, the introductory example for classification problems
involves a maximal margin around a separating hyperplane. A closer look
reveals that the bilinear kernel

K(z,y) =aly=x-y = (z,y)y for all z,y € R?

on R? is behind the scene. But since products of positive semi-definite
kernels are again positive semi-definite, one can generalize to homogeneous
polynomial kernels

K(z,y) = (2Ty)" = ") 2oy for all RY.
(z,y) = (=Ty)" = ) <a>$ y* for all z,y €

|lal=n
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Figure 5: Selected Newton basis functions

Furthermore, positive sums of positive semidefinite kernels are positive semidef-
inite. This leads on to the exponential kernel

— 1 1 (o
K(z,y) == exp(zly) := Z E(J:Ty)" = Z — <| ‘>ajayo‘ for all z,y € RY,
n=0

la!'\ «
acZd
(22)
and, more generally, to power series kernels
K(x,y):= Z car®y® for all z,y € RY (23)

a€Zd

as recently introduced in [30] by Barbara Zwicknagl with interesting results
on spectral convergence of interpolants. But we shall not deal with multi-
variate power series kernels in full generality here. Instead, we take a short
look at the polynomial and the univariate cases.

For polynomial interpolation of scattered locations X = {z1,...,z,} C
R?, the result will strongly depend on the geometry of the points and the
selection strategy of admissible degree—minimal solutions. The minimum
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Figure 6: Selected Newton basis functions for polynomials.

necessary degree m(X) is attained when the Vandermonde matrix Vx i,
with entries 2§, 1 < j < n, 0 < la] < k, has rank n for the minimal
possible k := m(X). Each degree-minimal polynomial interpolant to data

f(x1),..., f(z,) then has coefficients ¢, satisfying the linear system
Z cat] = f(z;), 1 <j<n
0<|a|<m(X)

or in shorthand
Vxm(x) €= fx, (24)

where the Vandermonde matrix will, in most cases, be non—square, making
the solution non—unique. All useful solvers must have some strategy of
selecting a solution. A particularly sophisticated technique is due to de
Boor and Ron [3, 4], but here we want to point out how polynomial kernels
come into play.

A reasonable way to regularize the (possibly) ill-conditioned system (2I)
is to introduce a diagonal matrix A with positive entries A\, for 0 < |a| <
m(X) and to look for coefficient vectors of the form ¢ = AV):Q m(x)b with
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b € R™. This amounts to solving

Vi m(x) AV)?,m(X)b = fx (25)

for b, and now the matrix is symmetric and positive definite. It is an easy
exercise to figure out that the above technique minimizes [/c||o -1 under all
solutions of (Z4]) in the terminology of the previous section, and that the
matrix in (23) is the kernel matrix for the polynomial kernel

Kx(z,y) = Z Aaz%y® for all z,y € RY

0<|er| <m(X)

which is positive semidefinite on R% and positive definite on X. This ap-
proach yields a variety of minimal-degree polynomial interpolation tech-
niques, depending on which A\, are chosen. But it should be noted that
the de Boor-Ron method is not of this simple kind, since it takes addi-
tional effort to maintain homogeneous solutions for data from homogeneous
polynomials.

6 Taylor Spaces and Kernels

Now, we shall specialize power series kernels (Z3]) to the univariate case, but
we take a different starting point to arrive there.
The Taylor-MacLaurin series

o0

fl@) = Y 90

n=0

2
i (26)
can be viewed as a reproduction formula like the ones well-known from
kernel techniques. Indeed, it should take the form f(z) = (f, K(z,-))r in
some suitable RKHS F with kernel K, but we still have to find a suitable
space with a suitable kernel. Surprisingly, there are many spaces and kernels
that work!
In fact, all kernels of the form

K(l‘,t) = Z /\j

JEN

(xt)!
(41)*’

z,teR, A\j >0, NCN (27)

with the summability condition ([H) taking the form

x
Z/\jﬁ<oof0rallx6§2
= T Uh
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will be admissible here, and we allow the set N € N>( to be infinite but
otherwise arbitrary. Depending on the weights \;, the domain {2 can be all
R or just an interval.
The connection to expansion kernels is via ¢;(x) = 27/4!, and Section
Al teaches us that the native space F consists of all functions f of the form
o C?
flx) = chﬁ with Z 3 <o

JEN ) jeN "J

Then ¢; = £U)(0) leads to the space

fZ{f : f(x):Zf(j)(O)% for all z € Q, Z(f(j;ﬂ<oo}.

neN neN J
(28)
The Taylor formula as a reproduction formula now follows along the lines
of Section §l using the inner product

@(0)a) (0
(f,9)F = Z F70)g7(0) for all f,g € F.
Aj
neN
For a simultaneous discussion of all of these kernels, we go into the complex
plane by introducing z := xt and look at kernels

J
K(z) =Y Aj(j% (29)
JEN

on suitable discs D C C around zero. Then, all power series with positive
real coefficients are candidates, the coefficients determining the size of the
admissible disc D, while 2 C R must be in the interior of D.

In Table[, we collect some of these Taylor kernels and the corresponding
expansion coefficients.

Detailed results on these kernels are in [31], which is heavily relying on
[30]. The common punchline of [31] is

e The native Hilbert spaces for Taylor kernels can be characterized via
complex analysis.

e Interpolation of functions in native Taylor spaces by translates of Tay-
lor kernels are exponentially convergent.

Notice that this yields a large variety of results on univariate interpolation by
rational functions, exponentials, shifted logarithms, exponentials, hyperbolic
cosines, etc. Here, we only illustrate a single case.
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27 _
(1—2)L-1<|z[<1 N L
1-22)"T 1<z <1 ON (12
j — 1)15]
(l1-2)*aeN-1<|s]<1| N (a(ﬂ 1)')3
a_
log(1 — 7
_M,—ldzkl N (7
z ( ]+ 11)' :
2\—« 0% +j — ]
Hoe e s el - (a—1)!
exp(z) N 7l
sinh(z) ON + 1 i
sinh(z)/2 2N s
cosh(z) ON i
i

27, (2) 2N

HT(j +a+1)

Table 1: Some Taylor Kernels and the corresponding expansion coefficients

Theorem 1. (c¢f. [71/) The native Hilbert space Fr for the Szegd kernel
R(z,t) = (1 — xt)~! consists of real-valued functions whose complex exten-
sions lie in the Hardy space H2.

Theorem 2. (cf. [31]) For each 0 < a < 1 there are constants ¢, hg > 0
such that for any discrete set X C I = [—a,a] with fill distance h < hy and
any function f € Fr, the error between f and its rational interpolant of the
form

1
Z‘J'EX J

on the set X, is bounded by

1 = srxllyaa < & 1 lLpy - (31)

7 Periodic Kernels

For spaces of 2r—periodic functions, there are some nice and useful kernels.
We list now some interesting examples.

page 18 of B



R. Schaback, S. De Marchi November 11, 2009

ExAMPLE 8. Consider

=1 1 1 1
nz::l 2 cos(n(z —y)) = Z(x —y)* - 577(33 —y)+ EW2

for x — y € [0, 27] with periodic extension. Notice that the above series is a
polynomial of degree 2 in x —y. An example is provided in the top left plot
of Fig. [@

EXAMPLE 9. In more generality, the functions

e}

1
Z % cos(n t) (32)

n=1

represent polynomials of degree 2k on [0, 27].
To see this, consider Hurwitz-Fourier expansions

| T
m

By, - _ : —m 2minx
(gj) (27Tl)m Z " ¢

n=—00,n#0

of the Bernoulli polynomials B,, of degree m on [0, 1] (for details see, e.g.
http://mathworld.wolfram.com/BernoulliPolynomial.html). If we set
t = 2wz and m = 2k, we get

+oo
Bor(sk) = (_1)k+1% Z n~2k(cos(nt) + isin(nt))
n=—o00,n#0

+oo
= 2(—1)k+! ((22:))2; z_:ln_zk cos(nt)

that proves our claim.

ExXAMPLE 10. But there are still some other nice cases due to A. Meyenburg
[9], namely

[e.e]

Z % cos(n(z —y)) = cos(sin(z —y)) - exp(cos(z —y))

& ()
icosn;zg— - 1 — 5 cos(z —y)

n§::02n iz =) 1—cos(z—y)+ 3
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Figure 7: Periodic kernels

depicted in Fig. [ on the top right and bottom left, and

A1 —(=1)re ™
exp(—2|z|]) = ;Z EH_—)MCOS(nx), x € [—m, ],
n=0
4—x 0< oz <27—4
K(z) = 8—2r 2n—4< 2z <4
4—-2r+x 4< x <27
16 = 4sin?(2
= ?—Fz%gn)cos(nx).

The final one is plotted in the bottom right of Fig. [

The analysis of general kernels of the form

(% + Z A cos(n(z — y)))

n=1

ST

(% + Z A (cos(nx) cos(ny) + sin(nx) sin(ny)))

n=1

can proceed via the Mercer theorem, since the functions

7 cos(nx), sin(nx), n > 1 (34)
are orthonormal under
1 [t7
=1 [ fwao
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Thus, for instance,

+m
K(x —t) cos(mt)dt

—T

+7 0
= % / cos(mt) (% + Z An (cos(nz) cos(nt) + sin(nz) sin(nt))> dt
o n=0

= Ay cos(mz)
proves that the eigenvalues of the kernel are \; with the eigenfunctions being
exactly the standard Lo—orthonormal basis ([B4]). Therefore the kernel is in
Mercer expansion form, and the native space F consists of all functions
representable as Fourier series

flx) = % + Z (a; cos(jx) + bjsin(jx))

with the summability condition

a2+ b?
ZM<OO
Aj

J=0

Jj=1

and the inner product

o 4(F)ai(9) +b;(f)bi(9)

(f?g)f::: Aj

j=0
Note that the weights A\, = n~ 2% in [B2) lead to Sobolev—type native spaces,
while the kernels in (B3]) generate spaces of 2r—periodic functions with entire
or meromorphic extensions into C, respectively.
Of course, one can omit the sinus terms above, and then one gets periodic
kernels that link to Chebyshev polynomials.

ExaMPLE 11. For instance, the kernel

o0

1
]((x,y):ZZEE%;EZ%(x)]%(y)
on [—1,1] can be transformed by substitution z = cos(¢), y = cos(¢) into

e}

Z % cos(ny) cos(ny)
n=0
= 33 (eos(nlip + ) + cos(nl — 1))
n=0
= 5 leos(sin(p + ) - explcos(ip + 1) +cos(sin(p ) - exp(eos(p — )]
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8 Kernels for PDEs

Various well-known kernels have connections to Partial Differential Equa-
tions. To start with, we look at homogeneous differential equations Lu = 0
with a linear elliptic differential operator L on a bounded domain  c R¢. A
fundamental solution solves the distributional differential equation Lu = 6,
for fixed x, and it thus can be written as a kernel K (z,-).

For example, in this sense, the thin—plate spline kernel

K(z,y) = ||lz — yll3log(|x — yl2) for all z,y € R

is the fundamental solution of the biharmonic equation A? = 0 in R?, and
the full class of polyharmonic kernels are fundamental solutions of powers
of the Laplace operator in various dimensions. The Method of Fundamental
Solutions [2] solves homogeneous differential equations Lu = 0 on bounded
domains by superimposing fundamental solutions K (-,z;) using points x;
outside the domain in order to avoid singularities in the domain. There are
various ways to select the points z; properly (see e.g. [19]).

Unfortunately, fundamental solutions usually have a singularity, and this
calls for new kernels that are singularity—free homogeneous solutions of dif-
ferential operators. We now show how to do this for the Laplace operator in
2D, i.e. we construct kernels on R? that are harmonic in each variable and
singularity—free.

Real and imaginary parts of holomorphic complex functions are har-
monic. Thus the parts " cos(ny) and r" sin(ny) of 2™ = r"exp(iny) are
harmonic. We can introduce two polar coordinate variables (r, ), (s,1))
and write down a harmonic expansion kernel

K((r,¢); (s,9)))

[e.9]

1
— Z Hc%rns" cos(n(p — 1))
n=0

= exp(c?rscos(p — 1)) - cos(c?

rssin(p — 1))
using the periodic exponential kernel from (B3]) again.

For error and convergence analysis and application to the solution of
Poisson problems we suggest the reader to refer to the recent paper [23]. An
interesting result from that paper is the following theorem.

Theorem 3. If the boundary function r(p) of the domain Q C R? is in C*
and if the above kernel is chosen, the native space of the kernel restricted to
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the boundary is continuously embedded in Sobolev space W2k [0,27]. Further-
more, interpolation on the boundary by harmonic kernels yields an overall
error of order hF=1/2 in the Loo(Q) norm.

EXAMPLE 12. An illustration is given in Fig. B In that example, we look
at harmonic interpolation on a few points on the boundary of a cardioid,
but we do not provide fixed interpolation data. Instead, we calculate the
power function which describes the pointwise norm of the error functional, as
pointed out in the first section. But since harmonic functions are completely
determined by their boundary values, the power function should be small in
the interior of the domain even if there are no data points.

*‘1 *O.‘B *0‘6 *0‘.4 *0‘2 (‘) 0‘2 O‘,A 0.‘6
Figure 8: Harmonic interpolation.

ExXAMPLE 13. One can also use the harmonic kernel to interpolate scattered
data sampled from harmonic functions. An example of interpolation of
exp(x) cos(y) is displayed in Fig. @ The interpolation points were selected
adaptively from a larger scattered sample, as displayed in the bottom right
figure.

Besides going for homogeneous solutions, one can also construct inhomo-
geneous solutions via special kernels. The idea is simple: if a PDE Lu = f
is to be solved, take translates K(-,z;) of a smooth kernel K, apply L
to these translates and approximate the function f by particular solutions
fj = LK(-,z;). If the error in the approximation

f ~ Zajfj (35)
j=1
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Figure 9: Interpolation with harmonic kernel

is small, the PDE Lu = f is solved appproximatively by
n
u= ZajK(',xj).
j=1

This does not account for any boundary conditions, but these can be at-
tained in a second step constructing a homogeneous solution to be added
to u. This two—step procedure is called the dual reciprocity method [17] and
arose in the context of boundary element techniques.

If L is elliptic, the application of L to a positive definite translation—
invariant kernel will not destroy the positive definiteness. Hence the recovery
problem (BH) can be done by kernel interpolation. For general operators, one
can often go backwards, starting from f; = K(-,x;) and find an analytic
solution u; of Lu; = f;. But one can also use the positive definite kernel
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Kp(z,y) := L*LYK (x,y) where L is applied to both x and y, perform kernel
interpolation of f with it to get coefficients solving

ZKL(a:j,a:k)aj = f(zx), 1<k<n
j=1

and then use

u = Z LK (z,-)oy
j=1

for an approximative solution of Lu = f. In the meantime, there are various
papers providing kernels as particular solutions, see e.g. [10)].

Note that users must be aware to handle higher—order derivatives of
kernels in order to implement these procedures. We shall comment this
later.

9 Special Kernels

Sometimes one runs into new kernels when looking at special solutions of
PDEs. An example is the equal width equation

U + Uy — PUger = 0, 2, € R. (36)

This nonlinear transport or wave equation has a special traveling soliton

solution
u(z,t) = 3 csech? <(m — 1z — ct)/@) . (37)

The speed c is always one third of the amplitude, having the typical nonlinearity-
based effect that higher waves travel faster. Surprisingly, the soliton kernel

K(z —y) := sech? (x — y) (38)

is positive definite. This follows, because the hyperbolic secant has a positive
Fourier transform which is again a hyperbolic secant, thus positive. This
implies positive definiteness of the hyperbolic secant and consequently also
for its square. A plot of the square of the hyperbolic secant (1/cosh)?(-) is
displayed in Fig.

A much more important class of PDE-dependent kernels generates diver-
gence—free vector fields. Note that Computational Fluid Dynamics problems
in 2D or 3D wusually require the calculation of a divergence—free velocity
field, for example when solving Navier—Stokes equations. But standard trial
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Figure 10: The function (1/cosh)?2.

spaces, like finite elements, do not care for this directly. They introduce
divu = 0 as an additional condition and have to take care for Lagrange
multipliers turning the PDE into a saddle—point problem.

The construction of divergence—free vector fields can be done starting
from a smooth translation-invariant scalar kernel K (z —y) on R%. Then a
matriz—valued kernel

D(z) = (—A-I;+ VVDK(2), 2=z —y (39)

is formed, and each row or column is then a divergence—free vector field
R? — R? The most important references on the topic are [T3, [, 8, 6.

Note that divergence—free vector fields v have the property that the in-
tegral of vTn over each closed curve (or surface in 3D) must be zero, where
n is the normal. For compactly supported divergence—free 2D vector fields
this means that the integral over v’ n on each curve through the support
must vanish. This makes it interesting to see special cases of divergence—free
vector fields obtained via scalar kernels.

EXAMPLE 14. Starting from the Gaussian kernel, we get Fig. [l with two
vortices, and similarly in Fig. for the compactly supported Wendland
kernel K (r) = (1—7)% (144r). This vector field then is compactly supported
on the unit disc.

ExampLE 15. Figure[[d shows an interpolation of a divergence—free vector
field from scattered data. This is useful when recovering velocity fields from
measurements or locally calculated values.

page 26 of B



R. Schaback, S. De Marchi November 11, 2009

e I B By S e e e w w w
SR S S R R A i
0.8*\\\\\‘\‘&LJ¢///*\\\\\X
\‘\\\\\\¥¥l¢//r\\\\\
0.6_\\\\\\\‘&\‘&&“ PO U S
ﬂ\)\\\\\\\\\\\\ vov o
L T NN NN NNV ]
D D N R
T I NNANNNNNNY T T
AR NN R
T NN T T T
T IO T T
-0.2 . L *\\\\\\\\\\\\\ﬂ
AR R R R RN
-0.4 N \\\\\\\\\\\\‘*
LU S NN \\\\\\\\\\\\\‘
06k NN N N T N
AR
_0.8,\\\\\§///¢tl&{\‘\\\\\,
NSNS s e ey
= = o3 45 4 92 0 6z o4 o5 65 1

Figure 11: Divergence-free field from Gaussian kernel

At this point, readers might fear that the evaluation of higher derivatives
of kernels is a cumbersome and error—prone procedure. But this is not
true, due to the following technique based on rewriting radial kernels as
é(r) = f(r?/2) in f-form. Then it can be observed (cf. [22]) that all
standard classes of radial kernels in f—form are closed under differentiation.
Typical cases are

e Sobolev/Whittle/Matérn functions ¢, (r) := K, (r)r” have f], = —f,_1,

e Wendland functions ¢4 x(r) have f&k = —fd+2,k—1-

10 Conclusion

The goal of this journey through a zoo of nonstandard kernels was to en-
courage users to do their own kernel engineering. There are many ways
to tailor kernels for special purposes, and there always is the technique of
generalized power functions for error evaluation, no matter how strange or
special the recovery process is.
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page 27 of B



R. Schaback, S.

De Marchi

November 11, 2009

!
[
\

|
N
~

1 1 1 !

77 1 1

D R A A

=~ -

e e S

[

08 06 04

s
0.2

o

04

06

N

1 1 AR}

~

-~ -

[ NN

o

<

-

[ NN

4]

- - /_Ofx NN - -
<~
B 2 N

- - 7

NN

/////

B

Figure 12: Divergence-free field from Wendland kernel

University of Verona, ex 60% funds, as the second author was working
there. Moreover, the paper contains ideas presented at the Second Dolomites
Workshop on Constructive Approximation and Applications, held in Alba di
Canazei (Ttaly), 4-9 Sept. 2009. MATLAB® and MAPLE® programs are
available from the research web pages of the authors.

page 28 of B



R. Schaback, S. De Marchi November 11, 2009

1k PPN N N S S T SR R
P N R
S IIIINS SR AN AR
//,/{,,\\\\\\\\\\W\M
08k PSP PSRN \\\\\‘\N\& 1
VA~ NN N H/Y
N \\'\,\:\\‘\\N
////,ﬁ,\\\\\\ﬁx\;
L Lo - = N \
L RS SR PR R R
R NS |
I R \T\’(X'(TT
04+ J/‘A,.«;\\w\iﬁT?
- , BRI
‘i‘éh vttt
‘&’\\\\,f,rrrfyfg
) ot
02 Lree Jm%%
\\\4\ \\\\\\ /fffff
N R //fffff
0 CN NN s - A A f
-0.2 1 1 1 1 1 1
-0.2 0 0.2 04 0.6 08 1 12

Figure 13: Divergence-free interpolation
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