
Optimal Data{independent Point Lo
ations forRadial Basis Fun
tion Interpolation�Stefano De Mar
hiUniversity of VeronaS.da Le Grazie, 15 - Ca` Vignal 2I-37137 - Verona, ItalyRobert S
haba
k Holger WendlandUniversit�at G�ottingenLotzestrasse 16-18, D-37083 G�ottingen, GermanyAbstra
tThe goal of this paper is to 
onstru
t data{independent optimalpoint sets for interpolation by radial basis fun
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The general 
on
ept 
an be des
ribed as follows. Suppose a set X =fx1; : : : ; xNg � 
 � Rd of N distin
t points 
oming from a 
ompa
t subset
 of Rd is given. These points will be 
alled data sites. Suppose furtherthat N data values f1; : : : ; fN should be interpolated at the data sites. Theeasiest approa
h is to �x a symmetri
 kernel fun
tion � : 
 � 
 ! R andto form an interpolant sf;X = NXj=1 �j�(�; xj): (1)Obviously, the 
oeÆ
ients f�jg are determined by the interpolation 
ondi-tions sf;X(xj) = fj, 1 � j � N . They are unique, if the interpolation matrixA�;X := (�(xi; xj))1�i;j�N is invertible. If the matri
es A�;X are even pos-itive de�nite for all possible point sets X � 
, regardless of the number ofpoints, the fun
tion � is 
alled a positive de�nite kernel. It is often radialin the sense �(x; y) = �(kx� yk2) and therefore de�ned on Rd � Rd .In this paper we will 
on�ne ourselves to the 
ase of positive de�nite-ness, negle
ting 
onditionally positive de�nite fun
tions. This is not a se-rious restri
tion, be
ause every 
onditionally positive de�nite kernel has anasso
iated, normalized positive de�nite kernel (see for example [4℄ and [?℄).Moreover, the experien
ed reader will noti
e without problems that manyof our proofs also work in the 
onditionally positive de�nite 
ase.The generality of this interpolation method allows to deal with any setof data sites. Thus it leads immediately to the problem of �nding good oreven optimal point sets for the re
onstru
tion pro
ess. But despite of thenatural 
hara
ter of this problem, it was only addressed in [1, ?, ?℄. Whilethe thesis [1℄ 
on
entrated on numeri
al results, the other two publi
ationstried to investigate the problem theoreti
ally, at least in 
ertain spe
ial 
ases.In parti
ular, [?℄ shows how diÆ
ult it is to �nd truly optimal interpolationpoints. The reason is simple: one has to minimize a highly nonlinear fun
tionof Nd unknowns. Hen
e, we will use another approa
h here, whi
h is basedon power Fun
tion estimates and geometri
 arguments.The paper is organized as follows. In the next se
tion we 
olle
t allne
essary material on positive de�nite kernels, power fun
tions, and nativeHilbert spa
es. In the third se
tion, we introdu
e our 
on
ept of uniformlydistributed points for a general region 
 � Rd and show that the geom-etry of the data set is determined by a global interpolation error. In thenext two se
tion we introdu
e two di�erent greedy methods for �nding goodpoints and prove their 
onvergen
e. The �nal se
tion deals with numeri
alexamples. 2



2 Power Fun
tions and Native Hilbert Spa
esThroughout this paper we assume 
 � Rd to be a 
ompa
t subset of Rd ,whi
h satis�es a uniform 
one 
ondition. On 
 we have a positive de�nitekernel � : 
 � 
 ! R. The interpolant (1) 
an also be written in thefollowing form. Let uj 2 VX = spanf�(�; x) : x 2 Xg denote the 
ardinalfun
tions, i.e. uj satis�es uj(xk) = Æj;k. Then the interpolant takes the formsf;X = NXj=1 f(xj)uj : (2)Moreover, the kernel � de�nes on the spa
eV
 = spanf�(�; x) : x 2 
gan inner produ
t via0� NXj=1 �j�(�; xj); MXk=1 �k�(�; yk)1A� := NXj=1 MXk=1�j�k�(xj; yk):It 
an easily be seen that � is the reprodu
ing kernel of V
 with respe
t tothis inner produ
t, i.e. every f 2 V
 
an be represented byf(x) = (f;�(�; x))�:The 
losure of V
 leads to a Hilbert spa
e with reprodu
ing kernel �, sin
ethe above reprodu
tion formula stays valid in the 
losure, showing how theabstra
t elements in the 
losure 
an be interpreted as fun
tions. This Hilbertspa
e is often 
alled the native Hilbert spa
e to � and we will denote it byN�(
).Obviously, an in
lusion of the form 
1 � 
2 leads to a 
ontinuous em-bedding N�(
2) � N�(
1) by restri
tion, whenever the kernel � is de�nedon the bigger set. In parti
ular, if � is a translation invariant or even radialkernel, we have N�(Rd) � N�(
) for every 
 � Rd .For a fun
tion f 2 N�(
) we 
an express the interpolation error usingthe 
ardinal representation (2) and the reprodu
ing kernel property byf(x)� sf;X(x) = 0�f;�(�; x)� NXj=1 uj(x)�(�; xj)1A� ;3



so that an appli
ation of the Cau
hy-S
hwarz inequality immediately leadsto jf(x)� sf;X(x)j � P�;X(x)kfk� (3)with the power fun
tion P�;X taking the expli
it formP 2�;X(x) := 





�(�; x)� NXj=1 uj(x)�(�; xj)





2�= �(x; x)� 2 NXj=1 uj(x)�(x; xj) + NXj;k=1uj(x)uk(x)�(xj ; xk):In other words, the power fun
tion is nothing but the norm of the point-wise error fun
tional, and it 
an be numeri
ally evaluated from the Lagrangebasis.Typi
ally, error estimates lead to the problem of bounding the powerfun
tion in terms of the �ll distan
e,hX;
 = supx2
 minxj2X kx� xjk2:This is, in general, done by 
onsidering the square of the power fun
tion fora �xed x 2 
 as a quadrati
 form of the 
oeÆ
ient ve
tor (u1(x); : : : ; uN (x)).One 
an show that this ve
tor minimizes the quadrati
 form over all ve
torsu 2 RN . Then a suitable ve
tor (eu1(x); : : : ; euN (x)) is 
onstru
ted whi
hallows an easier way of handling the quadrati
 form and yields the errorbound in terms of the �ll distan
e, be
ause it provides an upper bound onthe square of the power fun
tion. We will not dis
uss the details here butrefer the reader to [6℄. Instead, we remark that this minimization propertyhas another 
onsequen
e. If X � Y are two point sets, then the asso
iatedpower fun
tions must ne
essarily satisfyP�;X(x) � P�;Y (x); x 2 
;be
ause the Lagrange basis for X, extended by some zero fun
tions, is ad-missible for the minimization of the quadrati
 form with respe
t to Y . Notethat the above inequality holds pointwise and everywhere in 
. It will bean important ingredient for the greedy methods to be des
ribed later.To provide the reader with examples, we take a shift-invariant kernel�(x; y) = �(x � y), where � : Rd ! R is integrable and thus has a Fouriertransform b� de�ned byb�(!) = (2�)�d=2 ZRd �(x)e�ixT !dx:4



In this 
ase, the native spa
e norm of f be
omeskfk2� = (2�)�d=2 ZRd j bf(!)j2b�(!) d!:Hen
e, if b� satis�es
�(1 + k!k22)�� � b�(!) � C�(1 + k!k22)�� (4)with � > d=2 and two 
onstants C� � 
� > 0, the global native Hilbertspa
e N�(Rd ) is norm{equivalent to the Sobolev spa
e W �2 (Rd). Moreover,the interpolation error 
an be bounded bykf � sf;XkL1(
) � Ch��d=2X;
 kfkW�2 (Rd): (5)In 
ase of in�nitely often di�erentiable basis fun
tions �, su
h as Gaus-sians �(x) = e��kxk2 , � > 0, or inverse multiquadri
s �(x) = 1=pkxk22 + 1the error even de
ays exponentially, but only for fun
tions from a rathersmall native spa
e.3 Optimally Distributed Data SitesThroughout this se
tion we shall assume that our kernel � is translationinvariant, integrable, and has a Fourier transform satisfying (4).Our �rst goal is to show that a data set whi
h allows good approximationfor all fun
tions from the native spa
e 
annot have a large region in 
without 
enters. In other words the �ll distan
e hX;
 must ne
essarily besuÆ
iently small.Theorem 3.1 Let 
 be the 
losure of an open and bounded region in Rd sat-isfying an interior 
one 
ondition. Suppose that the kernel � is translationinvariant and its generating fun
tion � is integrable with a Fourier transformsatisfying (4) with � > d=2. Then for every � > � there exists a 
onstantM� > 0 with the following property. If � > 0 and X = fx1; : : : ; xNg � 
are given su
h thatkf � sf;XkL1(
) � �kfk�; for all f 2W �2 (Rd); (6)then the �ll distan
e of X satis�eshX;
 �M�� 1��d=2 :5



Proof: Without restri
tion, we 
an assume that 
 
ontains a suÆ
ientlysmall ball. We �x an integer k su
h that 2k > � + d=2. Next, we 
hoosea fun
tion  2 C2k0 (Rd) from [5℄ having support in the open unit ball andbeing bounded by k kL1(Rd) = j (0)j = 1. Elementary 
al
ulus givesd�` (!) = Xj�j=` `!�![D� (!) = b (!) Xj�j=` `!�! (i!)2� = (�1)`k!k2`2 b (!)for all 0 � ` � k, where we have used the standard notation for partialderivatives and the iterated Lapla
ian. Hen
e, if we de�ne the 
onstantK := 




 kX̀=0 �k̀�(�1)`d�` 




L1(Rd)we get���(1 + k!k22)k b (!)��� = ����� kX̀=0 �k̀�k!k2`2 b (!)����� = ����� kX̀=0 �k̀�(�1)`d�` (!)����� � K ;whi
h shows for every s � k thatj b (!)j � K (1 + k!k22)�k � K (1 + k!k22)�s:Moreover, if we s
ale  by setting  h :=  (�=h), we �ndj
 h(!)j = hd b (h!)� K hd(1 + h2k!k22)�s= K hd�2s� 1h2 + k!k22��s� K hd�2s �1 + k!k22��s ;whenever h 2 (0; 1). Thus, if 2s > � + d=2, the fun
tion  h belongs to thenative spa
e W �2 (Rd) of � and its norm 
an be bounded byk hk2� = (2�)�d=2 ZRd j
 h(!)j2b�(!) d!� (2�)�d=2K 
� h2d�4s ZRd(1 + k!k22)��2sd!=: M2h2d�4s: 6



Finally, if we set 2s = �+ d=2 with � > � we havek hk� �Mh d2��:Given an arbitrary X with �ll distan
e h = hX;
 we 
an �nd a point x 2
 su
h that the ball of radius h around x 
ontains no data point. Weinterpolate the fun
tion  h shifted to that point. Then all data sites fromX are outside the support of  h so that s h;X = 0. Then the standard errorbound leads to1 = k hkL1(
) = k h � s h;XkL1(
) � �k hk� �M�h d2��;whi
h immediately gives the stated result. 2Unfortunately, the 
onstant M� tends to in�nity when � tends to �.Hen
e, we do not get h��d=2X;
 � C�as we would have expe
ted from (5), but we get as 
lose as possible. More-over, our proof does not work in 
ase of the Gaussian, sin
e it follows fromthe Paley-Wiener theory that there 
annot be a 
ompa
tly supported fun
-tion in the native spa
e of the Gaussian. Both drawba
ks 
an be remedied ifwe make the additional assumption that X is already quasi-uniform, whi
hmeans that the �ll distan
e hX;
 essentially behaves like the separation dis-tan
e qX := minj 6=k kxj � xkk2.In this parti
ular 
ase we 
an de�ne the fun
tionfy = �(�; y)� NXj=1 uj(y)�(�; xj)for every y 2 
. For this fun
tion we obviously havejfy(y)� sfy;X(y)j = P�;X(y)kfyk�;i.e. there is equality in (3). Hen
e, the assumption on the approximationproperties of the set X gives � � P�;X(y)and the desired results follow from lower bounds on the power fun
tion.Su
h lower bounds have been thoroughly studied (see for example [2℄) butare also in general given in terms of the separation distan
e. The paper[3℄ 
ontains lower bounds for all relevant basis fun
tions. Quasi-uniformitybrings these bounds ba
k to the �ll distan
e.7



4 A Greedy Data{Independent MethodFor numeri
al purposes it is 
ru
ial to have a pra
ti
al method that produ
eswell{distributed point sets. This 
an for example be a
hieved by a greedyalgorithm that generates larger and larger point sets by adding a maximumof the power fun
tion with respe
t to the pre
eding set.We start with X1 = fx1g for x1 2 
 arbitrary. ThenXj := Xj�1 [ fxjg with P�;Xj�1(xj) = kP�;Xj�1kL1(
); j � 2: (7)Pra
ti
ally, we maximize over some very large dis
rete set X � 
 instead ofmaximizing on 
.It is the goal of this se
tion to show 
onvergen
e of this method in thesense kP�;XjkL1(
) ! 0 for j ! 1. To this end we make the additionalassumption that either 
 is 
onvex and � 2 C2(
 � 
) or, alternatively,that � 2 C2(
1 � 
1) with 
1 � 
 being 
onvex.We start our 
onvergen
e analysis by two lemmas on the power fun
tion.Lemma 4.1 The power fun
tion has the alternative representationsP 2�;X(x) = �(x; x)� NXj=1 uj(x)�(x; xj)= 





�(x; �)� NXj=1�(x; xj)uj





2� :Proof: Sin
e the 
ardinal fun
tions uj satisfyNXk=1 uk(x)�(xj ; xk) = �(x; xj); 1 � j � N; (8)the �rst equality follows immediately from the afore-given expli
it form ofthe power fun
tion. Moreover, (8) impliesuj(x) = NXk=1�jk�(x; xk);if (�jk) denotes the inverse to (�(xj; xk)), so that(uj ; uk)� = NXn=1 NXm=1�jn�km�(xn; xm) = �jk:8



This shows together with the reprodu
ing property of the kernel that





�(x; �)� NXj=1�(x; xj)uj





2� = �(x; x)� 2 NXj=1�(x; xj)(�(x; �); uj)�+ NXj;k=1�(x; xj)�(x; xk)(uj ; uk)�= �(x; x)� 2 NXj=1 uj(x)�(x; xj)+ NXj=1 uj(x)�(x; xj);whi
h is P 2�;X(x) by the �rst equality. 2Note that in the se
ond equality of Lemma 4.1 the argument x has movedfrom uj to � when 
ompared to the de�nition of the power fun
tion.In the following result we use the notation �jf to indi
ate the �rst orderpartial derivative of f with respe
t to the 
oordinate j. Moreover, �1j�(x; y)shall mean that this derivative is taken with respe
t to the �rst argumentof �. The gradient will, as usual, be denoted by r.Lemma 4.2 Suppose � 2 C2(
�
). Then for every X = fx1; : : : ; xNg �
 and every 1 � k � d we havej�kP 2�;X(x)j � 2P�;X(x)q�1k�2k�(x; x); x 2 
:Proof: The se
ond representation of the power fun
tion in Lemma 4.1allows us to derive�kP 2�;X(x) = 20��1k�(x; �)� NXj=1 �1k�(x; xj)uj ;�(x; �) � NXj=1 uj�(x; xj)1A� :This impliesj�kP 2�;X(x)j � 2





�1k�(x; �)� NXj=1 �1k�(x; xj)uj





� P�;X(x)� 2P�;X(x)

�1k�(x; �)

�= 2P�;X(x)q�1k�2k�(x; x);9



where the last inequality holds sin
e PNj=1 �1k�(x; xj)uj is the interpolantto �1k�(x; xj) and hen
e equals its best approximant from VX with respe
tto the native spa
e norm. 2Now it is time to 
ome ba
k to our greedy method des
ribed in (7). Forsimpli
ity we de�ne Pj := P�;Xj . Remember that the point xj+1 is 
hosenin su
h a way that Pj(xj+1) = kPjkL1(
). Moreover, sin
e Xj � Xj+1 wehave Pj(x) � Pj+1(x) � 0 for all x 2 
.Theorem 4.3 Suppose 
 � Rd is 
ompa
t and satis�es an interior 
one
ondition. Suppose further that � 2 C2(
1�
1) is a positive de�nite kernelde�ned on a 
onvex and 
ompa
t region 
1 � 
. Then, the greedy algorithmde�ned in (7) 
onverges at least likekPjkL1(
) � Cj�1=dwith a 
onstant C > 0.Proof: From Lemma 4.2 it follows that there exists a 
onstant Cr > 0 su
hthat krP 2j (x)k2 � CrPj(x); x 2 
; j 2 N:Hen
e, there exists � and � on the line segment between x and xj+1 withP 2j (x) = P 2j (xj+1) +rP 2j (�) � (x� xj+1)� kPjk2L1(
) � krP 2j (�)k2kx� xj+1k2� kPjk2L1(
) � CrkPjkL1(
)kx� xj+1k2= kPjkL1(
) �kPjkL1(
) � Crkx� xj+1k2�and, be
ause of Pj+1(xj+1) = 0, we haveP 2j+1(x) = P 2j+1(xj+1) +rP 2j (�) � (x� xj+1)� 0 + CrkPj+1kL1(
)kx� xj+1k2� CrkPjkL1(
)kx� xj+1k2:Both inequalities together yieldP 2j (x)� P 2j+1(x) � kPjkL1(
) �kPjkL1(
) � 2Crkx� xj+1k2�� 12kPjk2L1(
)10



provided that kx� xj+1k2 � kPjkL1(
)4Cr =: Æj :For su
h an x we 
an 
ontinue by12kPjk2L1(
) � P 2j (x)� P 2j+1(x)= (Pj(x)� Pj+1(x))(Pj(x) + Pj+1(x))� 2kPjkL1(
)(Pj(x)� Pj+1(x));whi
h leads tokPjkL1(
) � 4 (Pj(x)� Pj+1(x)) ; for kx� xj+1k2 � Æj : (9)If we look at x = xk for some k � j, we see that Pj(xk) = Pj+1(xk) = 0,and thus kxk � xj+1k2 > Æj by (9), provided kPjkL1(
) > 0. Sin
e we 
anassume that all kPjkL1(
) are positive, and sin
e the Æj are nonin
reasing,we have kx`�xkk2 > Æ`�1 � Æj for all k < ` � j. Hen
e, all xk with k � j are
enters of disjoint balls B(xk; Æj=2) of radius Æj=2. Moreover, the union of allthese balls is 
ontained in the bounded region 
� = [x2
B(x; Æ1=2). Hen
e,if we 
ompare the volume of the union of all balls B(xk; Æj=2), 1 � k � j tothe volume of 
�, we see that there is a 
onstant C, independent of j, su
hthat j(Æj=2)d � C, and we �nally getkPjkL1(
) = 4CrÆj � 8CrC1=dj�1=d: 25 Geometri
 Greedy MethodPra
ti
al examples show that the greedy minimization of the power fun
tionusually just tries to �ll the 
urrently largest hole in the data by pla
ing anew data point 
lose to the 
enter of that hole. This strategy is independentof the radial basis in question:� Let 
 be a 
ompa
t set in Rd , and start with X0 = ;. De�ne thedistan
e of x 2 
 to X0 = ; as some value whi
h is not smaller thanthe diameter of 
, e.g. the diameter of the bounding box.� If Xn is a �nite subset of 
 
onsisting of n points, pi
k xn+1 2 
 nXnsu
h that it has maximal distan
e to Xn and form Xn+1 := Xn [fxn+1g. 11



If 
 is �nite, ea
h step of the algorithm 
an be 
arried out in O(j
j) op-erations, be
ause one 
an keep for ea
h x 2 
 the 
urrent distan
e to itsnearest neighbor within Xn. Updating this array of length j
j is done by�rst 
al
ulating the j
j values kx � xn+1k2 and taking the 
omponentwiseminimum with the existing distan
e array. The next point is then easilyfound by pi
king the maximum of the array. This te
hnique 
an be re�ned,but we omit su
h arguments here.It turns out that the above greedy algorithm works ni
ely when it 
omesto �nding subsets of 
 of size n with small �ll distan
e hX;
 and largeseparation distan
e qX . De�neqn := 12 minx6=y2Xn kx� yk2dn(x) := miny2Xn kx� yk2hn := maxx2
 dn(x) = maxx2
 miny2Xn kx� yk2 = dn(xn+1) = hXn;
:Lemma 5.1 The geometri
 greedy algorithm produ
es point sets whi
h arequasi-uniform. To be more pre
ise,hn � qn � 12hn�1 � 12hn for all n � 2:Proof: The left{hand and right{hand sides are 
lear. For X2 we haveq2 := 12kx1 � x2k2 = 12d1(x2) = 12h1:Assume qn � 12hn�1 and look atqn+1 = min�qn; 12 minx2Xn kxn+1 � xk2�= min�qn; 12dn(xn+1)�= min�qn; 12hn�to get qn+1 � min�12hn�1; 12hn� � 12hn: 212



If 
 is a bounded region in Rd , the geometri
 greedy method 
onstru
tsasymptoti
ally uniformly distributed data sets that 
over 
 in an asymp-toti
ally optimal way. In fa
t, the balls with 
enters in Xn and radius hn
over 
, while those with radius qn are disjoint. With
n := fy 2 Rd : dist(y;
) � qng:we �nd nqdnv1 � vol(
n)vol(
) � nhdnv1and see that both hn and qn de
ay asymptoti
ally like n�1=d. Note that thisrate also o

urs in the proof of Theorem 4.3, but only for the Æn and qn.6 ExamplesWe start with two examples on the domain [�1; 1℄2. Everything was dis-
retized on a regular set of 71 � 71 = 5041 points, and the greedy methodwas exe
uted until the norm of the power fun
tion fell under 2 � 10�5. Forthe Gaussian with s
ale 1, this required 48 points distributed as shown inFigure 1. The \error" in the right{hand �gure is kPNk2L1(
)na
hsehen, ob Quadrat oder ni
ht.....with de
ay as a fun
tion of the number N of data points. As determinedby the regression line in the �gure, the de
ay is like N�7:2 .
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Figure 2 uses the C2 Wendland fun
tion with s
ale 15. It requires N = 100points to depress the power fun
tion down to 2 � 10�5. The error de
ays likeN�1:9 as determined by the regression line in the �gure.
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NFigure 2: Wendland's fun
tionFigure 3 shows the error de
ay when the Gaussian power fun
tion is evalu-ated on the data supplied by the geometri
 greedy method up to X48. The�nal error is larger by a fa
tor of 4, and the estimated de
rease of the erroris only like n�6:1. In 
ase of Wendland's fun
tion in Figure 4 the error fa
toris only 1.4, while the estimated de
ay order is -1.72.
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NFigure 4: Wendland fun
tion, geometri
 greedy dataNote that for asymptoti
ally uniformly distributed points we would theoret-i
ally get an arbitrarily high de
ay rate in 
ase of the Gaussian, while forWendland's fun
tion we expe
t a de
ay rate of?????. The C2 fun
tion has an hX;
 order of 32 ,i.e. kP�;XkL1(
) �Ch1:5X;
. Hen
e if hX;
 � N�1=2 we would expe
t an N order of �34for the non-squared 
ase. ????Though the geometri
 greedy algorithm 
an be proven to generate anasymptoti
ally optimal sequen
e, its independen
e of the kernel makes itstill inferior to the greedy algorithm that takes maxima of the power fun
-tion. However, so far there is no proof that the latter algorithm generates asequen
e with hn � Cn�1=d, as required for asymptoti
 optimality.Referen
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