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Abstract

The goal of this paper is to construct data—independent optimal
point sets for interpolation by radial basis functions. The interpola-
tion points are chosen to be uniformly good for all functions from the
associated native Hilbert space. To this end we collect various results
on the power function, which we use to show that good interpolation
points are always uniformly distributed in a certain sense. We also
prove convergence of two different greedy algorithms for the construc-
tion of near-optimal sets which lead to stable interpolation. Finally,
we provide several examples.
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1 Introduction

Interpolation by radial basis functions is an up-to-date and well-established
method for reconstructing multivariate functions from scattered data.

*This work has been done with the support of the Vigoni CRUI-DAAD programme,
for the years 2001-02, between the Universities of Verona and Géttingen.



The general concept can be described as follows. Suppose a set X =
{z1,...,2n8} CQ CR? of N distinct points coming from a compact subset
Q of R? is given. These points will be called data sites. Suppose further
that N data values f1,..., fn should be interpolated at the data sites. The
easiest approach is to fix a symmetric kernel function ® : Q x Q — R and
to form an interpolant

N
spx = > a®(,zj). (1)
=1

Obviously, the coefficients {«;} are determined by the interpolation condi-
tions sf x(xj) = fj, 1 < j < N. They are unique, if the interpolation matrix
Ap x = (P(xi,x))1<ij<n is invertible. If the matrices Ag x are even pos-
itive definite for all possible point sets X C €2, regardless of the number of
points, the function ® is called a positive definite kernel. It is often radial
in the sense ®(z,y) = ¢(||z — y||2) and therefore defined on R? x R?.

In this paper we will confine ourselves to the case of positive definite-
ness, neglecting conditionally positive definite functions. This is not a se-
rious restriction, because every conditionally positive definite kernel has an
associated, normalized positive definite kernel (see for example [4] and [?]).
Moreover, the experienced reader will notice without problems that many
of our proofs also work in the conditionally positive definite case.

The generality of this interpolation method allows to deal with any set
of data sites. Thus it leads immediately to the problem of finding good or
even optimal point sets for the reconstruction process. But despite of the
natural character of this problem, it was only addressed in [1, ?, ?]. While
the thesis [1] concentrated on numerical results, the other two publications
tried to investigate the problem theoretically, at least in certain special cases.
In particular, [?] shows how difficult it is to find truly optimal interpolation
points. The reason is simple: one has to minimize a highly nonlinear function
of Nd unknowns. Hence, we will use another approach here, which is based
on power Function estimates and geometric arguments.

The paper is organized as follows. In the next section we collect all
necessary material on positive definite kernels, power functions, and native
Hilbert spaces. In the third section, we introduce our concept of uniformly
distributed points for a general region Q C R? and show that the geom-
etry of the data set is determined by a global interpolation error. In the
next two section we introduce two different greedy methods for finding good
points and prove their convergence. The final section deals with numerical
examples.



2 Power Functions and Native Hilbert Spaces

Throughout this paper we assume Q C R? to be a compact subset of R?,
which satisfies a uniform cone condition. On  we have a positive definite
kernel ® : Q x Q@ — R. The interpolant (1) can also be written in the
following form. Let u; € Vx = span{®(-,z) : # € X} denote the cardinal
functions, i.e. u; satisfies u;(xy) = d; 4. Then the interpolant takes the form

N
srx = Y fx))uy. (2)
i=1

Moreover, the kernel ® defines on the space
Vo = span{®(-,z) : z € Q}

an inner product via

N M N M
> a0(,7), Y B®lyr) | =) o Be®(zyyk).
Jj=1 k=1

& 7j=1k=1

It can easily be seen that @ is the reproducing kernel of Vi with respect to
this inner product, i.e. every f € Vo can be represented by

f(x) = (f.9(z))s.

The closure of Vi leads to a Hilbert space with reproducing kernel ®, since
the above reproduction formula stays valid in the closure, showing how the
abstract elements in the closure can be interpreted as functions. This Hilbert
space is often called the native Hilbert space to ® and we will denote it by
Na(Q).

Obviously, an inclusion of the form ©Q; C Q9 leads to a continuous em-
bedding N3 (22) C Ng(€Q1) by restriction, whenever the kernel @ is defined
on the bigger set. In particular, if ® is a translation invariant or even radial
kernel, we have Ng(R?) C Ng(Q) for every Q C R?.

For a function f € Ng(Q2) we can express the interpolation error using
the cardinal representation (2) and the reproducing kernel property by

N
f(iE)—Sfyx(.iL') = f:é('ax)_zuj(x)é(':xj) y
=1



so that an application of the Cauchy-Schwarz inequality immediately leads
to

[/ (z) = syx(2)] < Po x(z)|fla (3)
with the power function P x taking the explicit form
N 2
Pix(x) = [®(,2) =Y uj(2)®( )
j=1 o
N N
= ®(z,z)—2 Zu]'(a:)q)(a:,a:j) + Z uj(x)ug(x) (), ).
i=1 Jk=1

In other words, the power function is nothing but the norm of the point-
wise error functional, and it can be numerically evaluated from the Lagrange
basis.

Typically, error estimates lead to the problem of bounding the power
function in terms of the fill distance,

hx,o = sup min |z — ;2.

This is, in general, done by considering the square of the power function for
a fixed z € Q as a quadratic form of the coefficient vector (u;(x),...,un(z)).
One can show that this vector minimizes the quadratic form over all vectors
u € RNV. Then a suitable vector (@i(z),...,un(z)) is constructed which
allows an easier way of handling the quadratic form and yields the error
bound in terms of the fill distance, because it provides an upper bound on
the square of the power function. We will not discuss the details here but
refer the reader to [6]. Instead, we remark that this minimization property
has another consequence. If X C Y are two point sets, then the associated
power functions must necessarily satisfy

P@X(;L') > Pq>’y($), T € Q,

because the Lagrange basis for X, extended by some zero functions, is ad-
missible for the minimization of the quadratic form with respect to Y. Note
that the above inequality holds pointwise and everywhere in Q. It will be
an important ingredient for the greedy methods to be described later.

To provide the reader with examples, we take a shift-invariant kernel
®(z,y) = ¢(x —y), where ¢ : R — R is integrable and thus has a Fourier
transform g/b\ defined by

$(w) = 2n)"Y? | p(a)e ™ da,
R‘i
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In this case, the native space norm of f becomes

2 _ (9r)-d/2 \]?(‘U)\Q w
1715 = (amy 2 [ Z

Hence, if $ satisfies
co(1+ [w]3) ™7 < plw) < Ca(1 + ||wl3) 7" (4)

with 8 > d/2 and two constants Cy > c4 > 0, the global native Hilbert
space Ng(R?) is norm-equivalent to the Sobolev space WQB (R?). Moreover,

the interpolation error can be bounded by

—d
1f = 575 N neio) < OB 0 1 s oy (5)

In case of infinitely often differentiable basis functions ¢, such as Gaus-
sians ¢(z) = e~®ll2 o > 0, or inverse multiquadrics ¢(z) = 1//]z[3 + 1
the error even decays exponentially, but only for functions from a rather
small native space.

3 Optimally Distributed Data Sites

Throughout this section we shall assume that our kernel @ is translation
invariant, integrable, and has a Fourier transform satisfying (4).

Our first goal is to show that a data set which allows good approximation
for all functions from the native space cannot have a large region in €
without centers. In other words the fill distance hx o must necessarily be
sufficiently small.

Theorem 3.1 Let Q be the closure of an open and bounded region in R¢ sat-
isfying an interior cone condition. Suppose that the kernel ® is translation
invariant and its generating function ¢ is integrable with a Fourier transform
satisfying (4) with 8 > d/2. Then for every a > (3 there exists a constant
M, > 0 with the following property. If € > 0 and X = {z1,..., zy} C Q
are given such that

1f = spxliw@ <elfle.  forall f € Wy (RY), (6)

then the fill distance of X satisfies

1
hX’Q < M,ea—d/2,



Proof: Without restriction, we can assume that 2 contains a sufficiently
small ball. We fix an integer k such that 2k > § + d/2. Next, we choose
a function ¢ € C2¥(R?) from [5] having support in the open unit ball and
being bounded by |9, rey = [1(0)| = 1. Elementary calculus gives

M) = Y SDh(w) = ) Y (i) = (-1 wl'Bw)

laj=¢ |a|=£
for all 0 < ¢ < k, where we have used the standard notation for partial

derivatives and the iterated Laplacian. Hence, if we define the constant

k

> (5)-vam

£=0

Ky =

Loo (R4)
we get

k

> () Ie1d)

£=0

(1+ w3 (w)| = < Ky,

> (}) 080

£=0

which shows for every s < k that
P(w)| < Ky(1+ [w]3)F < Ky(1+ [w]3) .
Moreover, if we scale 1 by setting v, := 1 (-/h), we find

Pn(w)| = hip(hw)
< Kyh'(1+ B2 w|3)

_ 1 o
Kot (15 + lolB)

Kyh®™ (1+|w]3)

IN

whenever h € (0,1). Thus, if 2s > 3+ d/2, the function v, belongs to the
native space Wf(Rd) of ® and its norm can be bounded by

lgald = (2m) 2 / [n(@)
Rd

P(w)
K
< Cm e [ (1 lp)
C¢ Rd
— M2h2d74s.



Finally, if we set 2s = a + d/2 with o > 3 we have
d
[Ynlle < Mhz"".

Given an arbitrary X with fill distance h = hx o we can find a point = €
Q such that the ball of radius A around z contains no data point. We
interpolate the function v, shifted to that point. Then all data sites from
X are outside the support of 1)y, so that sy, x = 0. Then the standard error
bound leads to

d_
L= ¥nllze0) = l¥n — sy x L) < ellYnlle < Meh2™,

which immediately gives the stated result. O

Unfortunately, the constant M, tends to infinity when « tends to (.
Hence, we do not get

hi}tfﬂ < Ce

as we would have expected from (5), but we get as close as possible. More-
over, our proof does not work in case of the Gaussian, since it follows from
the Paley-Wiener theory that there cannot be a compactly supported func-
tion in the native space of the Gaussian. Both drawbacks can be remedied if
we make the additional assumption that X is already quasi-uniform, which
means that the fill distance hx o essentially behaves like the separation dis-
tance qx 1= minjzy ||z; — k|2
In this particular case we can define the function

N
fu=2C,y) = > uj(y) (- ;)
j=1

for every y € Q. For this function we obviously have

fy(¥) =55, x®) = Pox@llfyle,

i.e. there is equality in (3). Hence, the assumption on the approximation
properties of the set X gives

€ > Py x(y)

and the desired results follow from lower bounds on the power function.
Such lower bounds have been thoroughly studied (see for example [2]) but
are also in general given in terms of the separation distance. The paper
[3] contains lower bounds for all relevant basis functions. Quasi-uniformity
brings these bounds back to the fill distance.



4 A Greedy Data—Independent Method

For numerical purposes it is crucial to have a practical method that produces
well-distributed point sets. This can for example be achieved by a greedy
algorithm that generates larger and larger point sets by adding a maximum
of the power function with respect to the preceding set.

We start with X7 = {z1} for 1 € Q arbitrary. Then

Xj = X1 U{z;} with Ps x;_,(7;) = [|Po,x; L) 5> 2. (7)

Practically, we maximize over some very large discrete set X C €2 instead of
maximizing on .

It is the goal of this section to show convergence of this method in the
sense || P, x; 1) — 0 for j — co. To this end we make the additional
assumption that either € is convex and ® € C?(Q x Q) or, alternatively,
that ® € C%(Q; x Q) with Q; D Q being convex.

We start our convergence analysis by two lemmas on the power function.

Lemma 4.1 The power function has the alternative representations

2

N
Pix(z) = ®(z,z) = uj(x)d(z,z))
j=1
N
O(x,-) — Z O (x, x5)u;
=1 o

Proof: Since the cardinal functions u; satisfy

N
S un@)®(ag.ap) = Bleazy), 1< <N, ®)
k=1

the first equality follows immediately from the afore-given explicit form of
the power function. Moreover, (8) implies

N
uj(z) = Z ok ®(z, z1),
k=1

if (ovj1) denotes the inverse to (®(z;,xy)), so that

N N

(uj, up)o = Z Z U @ (T, Tm) = .

n=1m=1



This shows together with the reproducing property of the kernel that
2

N N
=Y Bz, x| = Blz,z) =2 B(wz) (D2, ), us)e
j=1 @ j=1
N
+ Z Q(x,2;)P(x, 2k) (uj, up) o
j.k=1

= 22% asasj
+Zu] O(z,x;),

which is P(%’X(x) by the first equality. O

Note that in the second equality of Lemma, 4.1 the argument x has moved
from u; to ® when compared to the definition of the power function.

In the following result we use the notation 0; f to indicate the first order
partial derivative of f with respect to the coordinate j. Moreover, 8}@(3:, Y)
shall mean that this derivative is taken with respect to the first argument
of ®. The gradient will, as usual, be denoted by V.

Lemma 4.2 Suppose ® € C?(2 x Q). Then for every X = {z1,...,zx} C
Q and every 1 < k < d we have

\BkP(%’X(fEH < 2Ps x(1)\/0L0}®(z,z), z €.

Proof: The second representation of the power function in Lemma 4.1
allows us to derive

N N
BkP(%’X(m) =210i® ZB O(z,xj)u;, ®(z,-) — Zujé(x,xj)
J=1 j &
This implies

0P x(2)] < 2(0p®(z,) = ) OpP(z,2))uj|| Pox(z)

d

= 0

< 2P x()[|0p (e, )4

= 2P x(z)\/0L0}®(z, 1),



where the last inequality holds since Z;vﬂ 0} ®(z,z;)u; is the interpolant
to 0,®(z, z;) and hence equals its best approximant from Vx with respect
to the native space norm. O

Now it is time to come back to our greedy method described in (7). For
simplicity we define Pj := Pgp x,. Remember that the point z;,; is chosen
in such a way that Pj(z;41) = ||Pjl|r. (). Moreover, since X; C X;,1 we
have Pj(z) > Pjy1(z) > 0 for all z € Q.

Theorem 4.3 Suppose Q C R is compact and satisfies an interior cone
condition. Suppose further that ® € C?(Qy x Q) is a positive definite kernel
defined on a convex and compact region 1 D Q. Then, the greedy algorithm
defined in (7) converges at least like

1P 1.00(0) < cj='/d
with a constant C > 0.

Proof: From Lemma 4.2 it follows that there exists a constant Cy > 0 such
that
VP (z)|l2 < CyPj(x), reNjeN

Hence, there exists { and 7 on the line segment between z and z;,; with

Pi(z) = Pi(zjp1) + VPHE) - (z— zj41)
> P70 = VP (©)l2llz — 2412
> Pil7 ) — O IIPillpw@lle — zjtill2

1Pl 1) (1Pl L) — Cvllz — zj41]l2)

and, because of Pji(zj+1) = 0, we have

Pj2+1(33) = Pj2+1($j+1) + V‘PJZ(T’) (7 — mj1)
< 0+ CollPjalloo@llz — zjqlle
< Oyl Pillpellz — zj41ll2

Both inequalities together yield
Piz) = Pry(z) = 1Pllew) (1Pl — 2Cvllz — zj11l2)

1 2
> SlIBll 0

10



provided that
||Pj ||LOO(Q)

[z —zj41ll2 < 1Co

= 6j.

For such an z we can continue by

J
= (Pj(z) — Pj+1())(Pj(z) + Pj41(x))
< 2P|l 1) (Pj () — Piya(z)),

1
SIPIE o < PHw) - PRa)

which leads to
1Pl 1) < 4(Pj(2) = Piyi(z)),  for lz —zjpalla <650 (9)

If we look at z = zj, for some k < j, we see that Pj(z)) = Pjy1(zx) =0,
and thus ||z — zj41l2 > d; by (9), provided ||P;[|; (o) > 0. Since we can
assume that all || P;||1 . (o) are positive, and since the §; are nonincreasing,
we have ||z —x||2 > dp—1 > 6 forall k < £ < j. Hence, all zj, with k < j are
centers of disjoint balls B(zy, d;/2) of radius 6;/2. Moreover, the union of all
these balls is contained in the bounded region Q* = UzcqB(z, §1/2). Hence,
if we compare the volume of the union of all balls B(zy,d;/2), 1 <k < j to
the volume of Q*, we see that there is a constant C, independent of j, such
that 5(5;/2)? < C, and we finally get

||Pj||Loo(Q) =4Cvi; < 8Cv01/dj’1/d'

5 Geometric Greedy Method

Practical examples show that the greedy minimization of the power function
usually just tries to fill the currently largest hole in the data by placing a
new data point close to the center of that hole. This strategy is independent
of the radial basis in question:

e Let Q be a compact set in R, and start with Xo = (. Define the
distance of z € Q to Xy = () as some value which is not smaller than
the diameter of €2, e.g. the diameter of the bounding box.

e If X, is a finite subset of Q consisting of n points, pick 2,11 € Q\ X,
such that it has maximal distance to X, and form X, ; = X, U

{zny1}

11



If Q is finite, each step of the algorithm can be carried out in O(|Q2|) op-
erations, because one can keep for each x € Q) the current distance to its
nearest neighbor within X,,. Updating this array of length |{2| is done by
first calculating the |Q| values ||z — z,41]|2 and taking the componentwise
minimum with the existing distance array. The next point is then easily
found by picking the maximum of the array. This technique can be refined,
but we omit such arguments here.

It turns out that the above greedy algorithm works nicely when it comes
to finding subsets of Q of size n with small fill distance hx o and large
separation distance ¢gx. Define

1 .
3 .00 lz —yll2

n ‘=
dy(z) := min ||z —
n(z) Jnin [z = yll2
hy = max dy (z) = max min |z = yll2 = dn(2pt1) = hx, 0

Lemma 5.1 The geometric greedy algorithm produces point sets which are
quasi-uniform. To be more precise,

1 1
hn > gn > Ehnfl > §hn for all n > 2.

Proof: The left-hand and right-hand sides are clear. For X5 we have

1 1 1
q2 == §||£C1 —zallo = §d1($2) = §h1-

%hn—l and look at

Assume ¢, >
. 1 .
gn+1 = N | {n, ) mfgp H$n+1 - $||2
. 1
= min qn,idn($n+1)>
= min | gn, §hn
to get

. 1 1 1
Gn+1 2 min <§hnla Ehn> > §hn

12



If Q is a bounded region in R?, the geometric greedy method constructs
asymptotically uniformly distributed data sets that cover {2 in an asymp-
totically optimal way. In fact, the balls with centers in X,, and radius h,,
cover (), while those with radius ¢, are disjoint. With

Q= {y e R? : dist(y,Q) < g}

we find
nglv vol(2y,)

<
vol(Q) < nhlvy

and see that both h, and g, decay asymptotically like n='/¢. Note that this
rate also occurs in the proof of Theorem 4.3, but only for the J,, and ¢,.

6 Examples

We start with two examples on the domain [—1,1]2. Everything was dis-
cretized on a regular set of 71 x 71 = 5041 points, and the greedy method
was executed until the norm of the power function fell under 2 - 10~°. For
the Gaussian with scale 1, this required 48 points distributed as shown in
Figure 1. The “error” in the right—hand figure is HPNHQLOO(Q)

nachsehen, ob Quadrat oder nicht.....

with decay as a function of the number N of data points. As determined
by the regression line in the figure, the decay is like N=7-2 .

0.8 . +

0.6

0.4

0.2

-0.2 .

-0.4

-0.6

-08 + +

-08 -06 -04 -0.2 0 02 04 06 08 N

Figure 1: Gaussian
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Figure 2 uses the C? Wendland function with scale 15. It requires N = 100
points to depress the power function down to 2-1075. The error decays like
N9 as determined by the regression line in the figure.

Error

0.8, + +

0.6

0.4 +

02 1 107k ]

Figure 2: Wendland’s function

Figure 3 shows the error decay when the Gaussian power function is evalu-
ated on the data supplied by the geometric greedy method up to Xyg. The
final error is larger by a factor of 4, and the estimated decrease of the error
is only like n %!, In case of Wendland’s function in Figure 4 the error factor
is only 1.4, while the estimated decay order is -1.72.

Error

0.8

0.6

04

0.2

E -08 -06 -04 -0.2 0 02 04 06 08 N

Figure 3: Gaussian, geometric greedy data
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0.8

0.6

0.4
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-02 *

-04p *

-0.6

-0.8f"

I . . ; M . . 10° 10" 10°
-08 -06 -04 -02 0 0.2 0.4 06 0.8 N

Figure 4: Wendland function, geometric greedy data

Note that for asymptotically uniformly distributed points we would theoret-
ically get an arbitrarily high decay rate in case of the Gaussian, while for
Wendland’s function we expect a decay rate of

?7?7??. The C? function has an hy g order of 3,i.e. | Po x| (0) <
Ch%%,. Hence if hxo ~ N~'/? we would expect an N order of —3
for the non-squared case. 7777

Though the geometric greedy algorithm can be proven to generate an
asymptotically optimal sequence, its independence of the kernel makes it
still inferior to the greedy algorithm that takes maxima of the power func-
tion. However, so far there is no proof that the latter algorithm generates a

sequence with h, < Cn~Y% as required for asymptotic optimality.
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