
Optimal Geometric HermiteInterpolation of CurvesRobert SchabackAbstract. Bernstein{B�ezier two{point HermiteG2 interpolants to planeand space curves can be of degree up to 5, depending on the situation. Wegive a complete characterization for the cases of degree 3 to 5 and provethat rational representations are only required for degree 3.x1. Introduction and OverviewWe consider recovery of curves from irregularly sampled data. If the curvesare to be represented by NURBS, we want to generate representations whichare minimal in the following sense:1. they should have a minimal number of knots,2. their degree should be as small as possible,3. polynomial pieces are preferred over rational ones, and4. the sampling and reconstruction process should be independent of theparametrization.Then evaluation algorithms are fast, and additional knot elimination will notbe necessary. Furthermore, using minimal degrees usually helps to preserveshape properties. Within the above setting, this paper continues the presen-tation [14] given at the Biri conference, and we solve some problems posedthere. In particular, the examples of [14] showed that the degree of G2 piece-wise polynomial or rational curve interpolants must necessarily be at least�ve in general, while there are cases that work with degree three (de Boor,H�ollig, and Sabin [1], H�ollig [9]) and degree four (Peters [11]). Here, we focuson the problem of determining the minimal degree that works in each speci�csituation, and we give a complete classi�cation. However, we omit Lagrangeinterpolation and con�ne ourselves to two{point Hermite interpolation in IR2or IR3. The presentation will mainly be in geometric terms; it started from acomplicated algebraic analysis with 19 di�erent cases as provided by C. Sch�utt[16].Mathematical Methods for Curves and Surfaces II 1Morten D�hlen, Tom Lyche, Larry L. Schumaker (eds.), pp. 1{12.Copyright oc 1998 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reproduction in any form reserved.



2 R. SchabackOur results will show that all degrees up to �ve actually occur in speci�ccases. If degrees four or �ve are necessary, one can get away with polynomialpieces. Rational pieces are sometimes required in cases that work with degreethree (e.g. H�ollig [9]). We provide a geometric approach to the full classi�-cation and illustrate it by numerous examples. However, the di�erent casesdepend crucially (and nonlinearly) on the sampled data, and the transitionfrom one case to another may be discontinuous or may involve singularities.We exhibit some examples for this behavior and provide a general techniquefor regularization of singular situations. However, shape{preserving propertiesand approximation orders still are open research problems.x2. Hermite Data for Two{point G2 InterpolationWe want to recover a regular and smooth curve f from data at two di�erentpositions y0; y1 2 IR3. If the curve f is locally reparametrized over [0; 1], werequire positional interpolation in the formf(i) = yi; i = 0; 1: (1)To make interpolated pieces G1 continuous, we assume normalized tangentdirections r0; r1 2 S2 := fr 2 IR3 : krk2 = 1g to be given such thatf 0(i)kf 0(i)k2 = ri; i = 0; 1: (2)Note that this is intended to generate interpolants that are regular at the datapositions. Furthermore, the �xed orientation of the tangents helps to avoidcusps. The tangent directions ri generate tangent rays Ri and tangent lines Lide�ned as Ri := fyi + (�1)i�iri : �i 2 IR>0gLi := fyi + �iri : �i 2 IRgat yi for i = 0; 1. Note that we let R1 point \backwards" to simplify subse-quent arguments.There are several possibilities for prescribing second order data for G2continuity. To be compatible with the purely planar situation, we requirenormalized binormal vectors �0; �1 2 S2 to be given together with nonnegativereal curvature values �0; �1. The given vectors �i should make sure that theorthogonality conditions�i ? f 0(i); �i ? f 00(i); i = 0; 1 (3)hold. Thus �i is orthogonal to the two vectors which span the linear part ofthe osculating hyperplane Pi at yi = f(i), if they are linearly independent.Note, however, that we do not assume this extra condition to be satis�ed.The additional scalar G2 interpolation conditions then are�f (i) = kf 0(i)� f 00(i)k2kf 0(i)k32 = �i; i = 0; 1;



Optimal Hermite Interpolation 3but it is more convenient to use the vectorial conditionsf 0(i)� f 00(i)kf 0(i)k32 = �i�i; i = 0; 1 (4)which also account for a proper orientation of the osculating hyperplanes withrespect to the curve data. Altogether, we thus consider �i�i for i = 0; 1 to bethe composite second{order data for G2 continuity in the sense of (4). Thevectors �i should always be normalized to length one, and �i = 0 must hold inthe degenerated case where f 0(i) and f 00(i) are linearly dependent. This maylook complicated at �rst sight, but it has the advantage that there is always a(generalized) osculating hyperplane Pi at yi = f(i) well{de�ned by its normal�i. We shall use the term osculating hyperplane in the above sense. Note thatthis setting also works for purely planar curves, and it models G2 continuityof adjacent interpolating curve pieces by ensuring continuity of osculatinghyperplanes.The linear part of the osculating hyperplane Pi at yi is spanned by tangentdirections ri and normal vectors ni := �ri � �i 2 S2 such that ri; ni, and�i = ri � ni form a Fr�enet frame at yi. Note that the ni are de�ned indirectlyhere via the vectors ri and �i. Figure 1 shows the arrangement of full G2 datawith the osculating hyperplanes, but without the tangent rays. The prescribedcurvature values are indicated by small circles in the osculating hyperplanes.These circles lie in the open halfspacesHi := fyi + �iri + 
ini : �i 2 IR; 
i 2 IR>0gwithin the osculating hyperplanes Pi, containing the normal vectors ni, andwe call these halfspaces admissible for reasons that will soon be apparent. Notethat the boundary of the halfspace Hi is the tangent line Li. The admissiblehalfspaces in Figure 1 are indicated by the normals n0 and n1 pointing up anddown in the osculationg planes at y0 and y1, respectively.
y1

y0

Fig. 1. Data for G2 interpolation.



4 R. Schabackx3. Necessary ConditionsLet us �rst look at conditions under which there is a polynomial or rationalsolution of degree n � 2 in Bernstein{B�ezier form. It must have control pointsb0; : : : ; bn 2 IR3 with the interpolation conditions (1) for positions satis�ed byb0 = y0; bn = y1: (5)For G1 data, the conditions (2) imply that b1 and bn�1 must lie on the tan-gent rays R0 and R1 at y0 = b0 and y1 = bn in the directions r0 and �r1,respectively: b1 = y0 + �0r0; bn�1 = y1 � �1r1; (6)where the real numbers �0; �1 must be positive to ensure regularity of theBernstein{B�ezier interpolant at the data positions.Now let us look at second{order conditions. The control points b0; b1; b2must lie in the osculating hyperplane P0 at y0, while bn�2; bn�1; bn lie in theosculating hyperplane P1 at y1, respectively. This impliesb2 = y0 + �0r0 + 
0n0;bn�2 = y1 � �1r1 + 
1n1; (7)with real numbers �i; 
i; i = 0; 1; and we shall see next that the 
i must benonnegative in order to account for (4). Using standard rational Bernstein{B�ezier notation with positive weights w0; : : :wn from e.g.[2,3,10], conditions(4) are equivalent to �0 = n� 1n w0w2w21 
0�20 ;�1 = n� 1n wnwn�2w2n�1 
1�21 ; (8)since the vectorial part is already accounted for by (7). This implies nonnega-tivity of the 
i. But we must be careful in case of �i = 0. This implies 
i = 0and forces b2+i(n�4) to lie on the tangent line Li at yi. Since we want to makesure that the control points b2 and bn�2 always lie in certain sets H0 and H1at y0 and y1, respectively, we have to rede�ne Hi byHi := fyi + �iri + sgn (�i)
ini : �i 2 IR; 
i 2 IR>0g:Thus Hi degenerates into the tangent line Li at yi in case �i = 0, but is anopen halfspace if �i > 0. As a warm{up exercise let us �rst look at the casen = 5.Theorem 1. There always is a polynomial solution of degree 5.Proof: For n = 5, the placement of the points b0; b1; b2 to satisfy the interpo-lation conditions at y0 is independent of the data at y1, since these only a�ect



Optimal Hermite Interpolation 5b3; b4; b5. One can pick any real value of �0 and any two values of �0 > 0 and
0 � 0 that are related by (8) in the special form5�0�20 = 4
0 (9)for a degree 5 polynomial. The same thing is done on the other side. Thusthere always is a solution, and the degrees of freedom can be visualized bysimply picking any two points b2 and b3 = bn�2 in the admissible sets H0and H1 at y0 and y1, respectively. Equations (9) will then place the pointsb1 and b4 = bn�1 on the tangent lines to satisfy the curvature requirements.However, they allow additional degrees of freedom for these control points ifzero curvature data are prescribed.Note that a practical solution to this interpolation problem will requiresome strategy to handle the excessive degrees of freedom. We shall commenton this in section 8. Furthermore, the above discussion shows that there alwaysis a variety of polynomial solutions of degree 5 that can be used instead ofsolutions with smaller degrees that we construct later. Note �nally that thedegree 5 case can even occur in purely planar situations, namely if tangentsare parallel and in
ection points are required (see Figure 2). Nonplanar caseswith minimal degree 5 will follow in the next section.

Fig. 2. Planar data for degree 5.x4. Cases of Degree 4 or LessLet us now derive necessary conditions for cases that can possibly be handledby polynomial or rational pieces of degree n � 4. By degree elevation, itsu�ces to look at n = 4. Then we see from the preceding discussion that thecontrol point b2 = bn�2 must lie in the intersection of the admissible sets H0and H1 at y0 and y1. This yieldsTheorem 2. The minimal degree solution is of degree 5 (and a polynomial)i� the admissible sets H0 and H1 do not intersect.Proof: It remains to show that we can construct an interpolant of degree atmost 4 if there is a nonempty intersection. But this is clear from the degree



6 R. Schaback5 technique and our de�nition of the sets Hi. Instead of (9) we now use4�0�20 = 3
0: (10)Any choice of b2 = bn�2 from the intersection will work. This technique ispartially covered by the work [11] of Peters.x5. Cases of Degree 3 or LessIf there is a solution of degree 3, there is a solution of degree 4 by degreeelevation. Therefore the intersection S = H0 \ H1 is not empty. But fordegree n = 3 we have b1 2 R0 \H1; b2 2 R1 \H0and this implies b1 2 R0 \ S; b2 2 R1 \ S: (11)Theorem 3. There is a solution of degree 3 or less, i� the sets R0\S and R1\S are not empty. In general, this solution is rational and uniquely dependenton the choice of points from (11).Proof: We have to carry out the construction of the interpolant if both setsin (11) are not empty. All control points b0; : : : ; b3 are now assumed to satisfyeither (1) or (11). This de�nes positive values of the �i and nonnegativevalues of the 
i with sgn (
i) = sgn (�i) for i = 0; 1 via (6) and (7). Thus onecannot assume (8) to be satis�ed with equal weights. But when going over toa rational solution, one can �x w1 = w2 = 1 and pick positive values of w0and w3 to satisfy (8). This coincides with the technique introduced by H�ollig[9]. x6. Geometric CharacterizationsTo arrive at a more geometric description of the above cases, we have to lookat the possible forms of nonempty intersections S of the two admissible setsH0 and H1. To this end, we �rst check the nonempty intersection of the twoosculating hyperplanes P0 and P1. It can be a single line or a full hyperplane.The latter case implies full planarity of the problem and will be discussed laterin section 7. Let the intersection of the osculating hyperplanes be a line thatwe call the pivot line from now on. On the pivot line, the nonempty intersectionS of the two admissible sets H0 and H1 must be a simply connected set S.Either S consists of a single point or S contains an open subset of the pivotline. The latter case cannot occur if both curvature values are prescribed tobe zero. It provides multiple solutions of degree 4.Solvability with degree at most 3 will require both tangent rays R0 andR1 to hit the pivot line within the set S. This will usually �x the two controlpoints b1 and b2 uniquely, and the central piece of the control net will lie



Optimal Hermite Interpolation 7

Fig. 3. Rational Solutions of Degree 3.completely in S on the pivot line, since S is simply connected. This is whythe degree 3 case usually has a unique rational solution in the nonplanar case.For illustration, look at the left case of Figure 3 which has the samedata as Figure 1. The tangent rays R0 and R1 are now emanating out of theosculating hyperplanes, and they hit the vertical pivot line in the background.The normals at the data locations indicate that the admissible halfspace onthe left is pointing upward, while the one on the right is pointing downward.Thus the intersection S of the two halfspaces is an open bounded interval onthe pivot line. The two boundary points of S lie on the tangent rays, andthey precisely form the sets of (11). Consequently, there is a unique rationalsolution of degree 3, as drawn into the �gure. The two tangent rays and theset S on the pivot line form the control polygon. This situation is typical forcases with degree 3, and note that the solution looks unexpectedly \straight".This is due to the fact that it cares for the boundary curvature by weightadjustment, introducing a tension{like e�ect. The picture on the right simplyhas smaller curvature requirements, and the tension e�ect disppears.x7. Planar DataFor purely planar cases, the above theorems apply without modi�cation. Butthe preceding paragraph needs another argument, since now the osculatinghyperplanes always coincide and there is no pivot line. For nonzero curvaturedata, the set S is an intersection of two halfspaces in the plane, and thisintersection will in general be a cone. Since the tangents are the boundary linesof the halfspaces, the vertex of the cone will in general be at the intersectionof the tangents. The two tangents split the plane into four cones, and one ofthose is S, depending on the direction of the normals at the data positions.Each point of S, when used as b2, will each lead to a degree 4 solution.Reduction to degree 3 is based on the sets in (11), and these are partsof the bounding rays of the cone, because the tangent rays are parts of theboundary lines of the admissible halfspaces. The admissible sections of theboundary of the cone are precisely the intersections of the tangent rays withthe cone's boundary.



8 R. SchabackIn contrast to the space curve case, the degree 3 solution in the planarcase will thus be nonunique. One can try to use the freedom to get awaywith a polynomial solution. But this is a hazardous task, since it leads to twoquadratic equations with two unknowns that have to be solved on a restricteddomain. The paper [1] of de Boor, H�ollig, and Sabin treats the special caseof fully convex data, while the short unpublished note [13] works for a simplein
ection point. The approach of this paper can be easily applied to generatevarious other situations in which a degree 3 polynomial solution may exist.
S S

Fig. 4. Planar polynomial solutions of degree 3.Figure 4 shows two planar cases where the set S forms a nondegeneratetwo{dimensional cone. On the left we have the situation treated by de Boor,H�ollig, and Sabin in [1]. The cone S is pointing downwards, and the controlpoints b1; b2 can vary along the tangent rays up to their intersection. Thepicture on the right has the cone directed upwards because both normals arepointing upwards, and the control points can vary on the tangent rays fromthe intersection up to in�nity, leading to a cusp if they are su�ciently far up.This actually happens, if they are moved to generate the shown polynomialsolution.However, since the sets of (11) are nonempty in general, one can getaway with a variety of degree 3 rational solutions, and good ones will keep thecontrol points at reasonable distances from the data positions. The papers[4,5,6,7,8] by T. N. T. Goodman and his collaborators deal with methods topick a suitable solution with shape preserving properties. For instance, theright{hand case of Figure 4 could better be handled by a rational solutionwith control points near the vertex of the cone S. The cusp would be avoided,but bringing the control points too near to the vertex will result in a solutionlooking like a straight line, because the weights at the positions will becomelarge in order to cope with curvature data prescribed there. See Figure 6 fora similar situation in IR3:x8. Regularization of Degree 5 SolutionsFor picking a useful solution in case of ambiguities we adopt a very simplescheme that �rst distinguishes between \good" and \bad" data. Imagine that



Optimal Hermite Interpolation 9at the position y0 a large curvature �0 > 0 is required. The curvature radiusR0 = ��10 then is very small, and the curve will have second order contact tothe circle of radius R0 with center c0 := y0+R0n0 in the osculating hyperplane.To allow some leeway, one could say that it should locally stay within a \trustregion" of, say, radius 4R0 around the position y0. But if the second positiony1 is further away, we should decide that this is a \bad" case. Look at Figure5 for illustration.
R 4R

Good Bady0

Fig. 5. Regions for good and bad y1.More precisely, we �x a constant K > 1 and say that the data are bad aty0 if �0ky1 � y0k2 > K. The same can be done at y1. For regularizing caseswith degree 4 or 3, we cannot split the problem into two separate parts, andthen we call a data set bad ifp�0�1ky1 � y0k2 > K:The main implication of good and bad situations is that we use di�erentstrategies to handle them. The good cases are regularized towards good ap-proximation properties for dense samples. Note that for a dense sample ofdata from a smooth curve we have only good pieces, since the distances getsmall while the curvature values are bounded.The bad pieces are regularized for good asymptotic behavior when cur-vature tends to in�nity. This sounds strange, but it can be done by movingcontrol points near to the data locations, and the resulting curves simply in-terpolate bad data pieces by nearly straight curves with \high tension". Thisavoids unreasonable large loops, cusps, and wiggles, keeping the control pointsnear the data locations.Let's study the details for degree 5, and we can do this around y0 locally,�xing the control points b0; b1; b2 properly. For a dense sample from a smoothcurve, the distances kbi+1� bik2 are each about A=5, where A is the arclengthof the curve between y0 and y1. This arclength can be estimated bya = ��1 + �20�224 �



10 R. Schabackfor small values of � = ky0 � y1k2 up to terms of order �ve in � (see [12]for details). Using (6) and (8), we take �0 = a=5; �0 = 2a=5, and pick
0 = a2�0=20 from (9). Since a�0 stays bounded by our criterion for \good"pieces, this works nicely for dense data samples. A proper convergence analysiswould be an interesting project.For \bad" cases we want to make �0 proportional to ��10 in order to let thecontrol point b1 move towards b0 for extremely large curvature values. Usingthis proportionality and making the transition to the \good" case continuous,a short calculation yields the recipec = K4 �1 + K224 ��0 = 4c5�0�0 = 2�0
0 = 4c25�0satisfying (9). Note that �0; �0, and 
0 are proportional to ��10 .For true space curves, the cases of degree 3 usually are unique. For degree4, the regularization technique needs modi�cation, because the control pointb2 is restricted to S on the pivot line. After �0 and 
0 are estimated as above,one can in general �nd a point b02 on the pivot line satisfying (8). The samecan be done from the other side, resulting in some point b12. But these pointsneed not lie in S, though they often are good guesses for the actual point b2.If just one is feasible, we take it, and if both are feasible, we take the one thatis nearer to its corresponding tangent ray. If both are unfeasible (this is a rareexception), then S must be a bounded interval on the pivot line, and we takethe mean of its bounds, ignoring our previous estimates. This complicatedstrategy works well in most cases, but improvements seem to be possible. Acomparison with the strategy of Peters [11] is still missing. Details of theregularization technique will be found in [15].x9. Computational RemarksIf data from a smooth space curve are sampled, one can observe that mostpieces can be handled by rational interpolation of degree 3, i.e.,with H�ollig'stechnique frm [9]. The exceptions usually are solvable by polynomials of degree4, and it needs special tricks to produce cases where degree 5 actually isneeded. The interpolation is stable, especially if the above regularizationtechnique is used. The whole process seems to be largely shape{preservingdue to the technique of picking the smallest possible degree.x10. Transitions between CasesIt would be desirable to have an interpolation process that depends smoothlyon the data. But this is not possible if we insist on minimal degrees and if we



Optimal Hermite Interpolation 11always prefer polynomial pieces over rational ones. The main reason for thisis that the rational solution of degree 3 often is unique, but cannot in generalgo continuously over into a polynomial of degree 4 or 5. The left picture ofFigure 6 shows a rational degree 3 case with an extremely small interval S onthe pivot line. A small rotation of one of the osculating planes lets the intervaldisappear, and then one gets the degree 5 solution on the right{hand side. Butthis solution cannot in general be near to a degree three truly rational curvewith nearly coalescing inner control points. The latter gets so much tensionthat it �nally looks very much like a straight line. This special transitionsituation forces the control points b1 and b2 to lie nearly on the tangent raysfrom the opposite position. This in turn yields very small values of the �i and
i, and the curvature requirements are satis�ed by extremely large weights aty0 = b0 and y1 = b3, making the solution look like a straight line.

Fig. 6. Neighboring solutions of degree 3 and 5.Note how the degree 5 solution is smoothed out by our regularization.The tangent rays make up most of the control polygon for degree 3 due to thestrong tension e�ect. However, for degree 5 the control polygon nicely usesthe leeway in the admissible halfspaces.Acknowledgments. Help in proofreading was provided by Christoph Schr�o-der. References1. deBoor, C., K. H�ollig, and M. Sabin, High accuracy geometric Hermiteinterpolation, Comput. Aided Geom. Design 4 (1987), 269{278.2. Farin, G. Curves and Surfaces for Computer-Aided Geometric Design,Academic Press, San Diego, 19883. Farin, G. Rational curves and surfaces, Mathematical Methods in Com-puter Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.),Academic Press, New York, 1989
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