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Abstract. The Moving Least Squares (MLS) method provides an approxima-

tion û of a function u based solely on values u(xj) of u on scattered “meshless”

nodes xj . Derivatives of u are usually approximated by derivatives of û. In

contrast to this, we directly estimate derivatives of u from the data, without

any detour via derivatives of û. This is a generalized Moving Least Squares

technique, and we prove that it produces diffuse derivatives as introduced by

Nyroles et. al. in 1992. Consequently, these turn out to be efficient direct

estimates of the true derivatives, without anything “diffuse” about them, and

we prove optimal rates of convergence towards the true derivatives. Numerical

examples confirm this, and we finally show how the use of shifted and scaled

polynomials as basis functions in the generalized and standard MLS approxi-

mation stabilizes the algorithm.

Keywords: Moving least squares (MLS) approximation; Local polynomial re-

production; Full derivative; Diffuse derivative; Shifted scaled polynomials ba-

sis; Meshless methods.

1. Introduction

The Moving Least Squares (MLS) approximation has been introduced by [11]
inspired by the pioneering work of [19] to approximate surfaces in multidimensional
spaces. The MLS approximates the value u(x) of an unknown function u from given
data u(x1), . . . , u(xN ) at nodes x1, . . . , xN near x by a value

û(x) =
N∑
j=1

aj(x)u(xj) ≈ u(x),

where the functions aj(x) are called shape functions. In the sense of [6], this is
a meshless method, because it writes an approximate solution entirely in terms
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of nodal values. The error analysis of the method was presented in [12], [1] and
[20, 21] in different ways. In particular, we refer the reader to [12] for an account of
the background connection to Backus–Gilbert optimality and related papers, and
to [13] for the application to numerical integration.

There have been many meshless techniques based on the MLS approximation
for the numerical solution of differential equations in recent years. When setting
up large linear system for solving PDEs, MLS approximations are used to provide
approximations to derivatives Dαu(x). This can be done via Dαû(x) ≈ Dαu(x), i.e.
taking exact derivatives of the MLS solution, or via a direct estimation of Dαu(x)
from the data u(x1), . . . , u(xN ) near x.

This paper describes the second approach and links it to the concept of diffuse
derivatives introduced by [18]. It turns out that the second approach calculates
diffuse derivatives, and therefore these are a direct optimal estimation from the data.
We prove optimal convergence rates for the diffuse derivatives and give numerical
examples. A forthcoming paper by [16] will apply our results to make the Meshless
Local Petrov–Galerkin method (MLPG) by [5, 3, 4] considerably more effective.
This is the main motivation behind our approach.

This paper is organized as follows. Section 2 contains a review of the generalized
moving least squares (GMLS) approximation in a form very similar to [12]. In
section 3, classical and diffuse derivatives in the sense of [18] and their connections
to the GMLS are described. It is proven that diffuse derivatives are GMLS approx-
imations of true derivatives. The main contribution of the paper is in section 4
concerning error bounds for GMLS approximations of derivatives. Here, we follow
the analysis path introduced by [20, 21] and the concept of norming sets introduced
by [9], and adapt it to the approximation of derivatives. Finally, Section 5 provides
numerical examples, while Section 6 illustrates the implementation.

2. The Generalized Moving Least Squares (GMLS) Approximation

In the classical MLS, given a set {u(xj)} of values of an unknown function u in
a domain Ω ⊆ Rd at nodes xj ∈ Ω ⊆ Rd for 1 ≤ j ≤ N , the value u(x) at a fixed
point x ∈ Rd is approximately recovered by minimizing a certain weighted discrete
l2 norm. But here we start with a generalized version of Moving Least Squares.

Let u ∈ Cm(Ω) for some m ≥ 0, and let {λj(u)}Nj=1 be a set of continuous
linear functionals λj from the dual Cm(Ω)∗ of Cm(Ω). For a fixed given functional
λ ∈ Cm(Ω)∗, our problem is the approximate recovery of the value λ(u) from the
values {λj(u)}Nj=1. The functionals λ and λj , 1 ≤ j ≤ N , can, for instance, describe

point evaluations of u and its derivatives up to order m. The approximation λ̂(u)
of λ(u) should be a linear function of the data λj(u), i.e. it should have the form

λ̂(u) =
N∑
j=1

aj(λ)λj(u), (2.1)
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and the coefficients aj should be linear in λ. As in the classical MLS, we assume
the approximation equation (2.1) to be exact for a finite dimensional subspace
P = span{p1, p2, . . . , pQ} ⊂ Cm(Ω), i.e.

N∑
j=1

aj(λ)λj(p) = λ(p) for all p ∈ P. (2.2)

The GMLS approximation λ̂(u) to λ(u) is numerically obtained as λ̂(u) = λ(p∗),
where p∗ ∈ P is minimizing the weighted least-squares error functional

N∑
j=1

(
λj(u)− λj(p)

)2
wj , (2.3)

among all p ∈ P, where we use positive weights w1, . . . , wN which later will be
chosen in a specific way to localize the approximation. Of course, we then have to
prove that (2.1) holds, but we shall get it only for the optimal solution.

Suppose the set point X = {x1, x2, . . . , xN} ⊂ Ω and x ∈ Ω. The classical MLS is
a special case of GMLS when λ and λj , 1 ≤ j ≤ N are point evaluation functionals
at x and xj , 1 ≤ j ≤ N and P is a finite–dimensional space of polynomials, while
the weights are of the form

wj = w(x, xj), 1 ≤ j ≤ N (2.4)

with a nonnegative weight function w that vanishes when the arguments are at a
certain distance.

Furthermore, the classical MLS has an equivalent formulation, which in our
generalization amounts to minimizing the quadratic form

1
2

N∑
j=1

a2
j (λ)/wj (2.5)

as a function of the coefficients aj(λ) subject to the linear constraints (2.2). By
some linear algebra arguments which arise already for the standard MLS and which
we repeat in the next section in order to care for the dependence on the weights, the
solutions p∗ and a∗(λ) = (a∗1(λ), . . . , a∗N (λ))T of the minimization problems (2.3)
and (2.5), respectively, are connected by the relation

λ̂(u) = λ(p∗) =
N∑
j=1

a∗j (λ)λj(u), (2.6)

which also proves (2.1).
Formally, the solution p∗ of the minimization problem (2.3) does not depend on λ.

By calculating p∗ from the data λj(u) first, one can obtain estimates of λ(u) for all
λ by just evaluating λ(p∗). This is very useful for approximating derivatives as long
as the weights are independent of λ, but needs some care because both problems
depend on the weights, and the weights will be connected to the functionals in most
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cases. This is the main implementation recipe in the general situation. We shall be
more precise in the next section.

3. Classical and Diffuse Derivatives

We take a closer look now at estimating derivative values

λα,x(u) := uα(x) = δxD
αu (3.1)

for fixed x ∈ Ω in standard multi-index notation with |α| ≤ m, and where δx

denotes the Dirac point–evaluation functional

δx : f 7→ f(x).

This situation was already mentioned as a special case in [12].
We now have to be more careful and take account of the weights. We use the

weights (2.4) like in the standard MLS, even when we take more general functionals
as in (3.1), but with the same x. By localization at a fixed point x, the indices
j ∈ {1, . . . , N} are restricted to

J(x) := {j : 1 ≤ j ≤ N, w(x, xj) > 0}

and we introduce a basis p1, . . . , pQ of P and the notation

u :=
(
u(xj), j ∈ J(x)

)T ∈ R|J(x)|

P :=
(
p`(xj)

)
j∈J(x), 1≤`≤Q

b :=(b1, . . . , bQ)T ∈ RQ

W :=
(
δjkw(x, xj)

)
j,k∈J(x)

p :=
Q∑
k=1

bkpk ∈ P

where almost everything depends on x. Then the problem (2.3) is

Minimize ‖
√
W (u− Pb)‖22 (3.2)

over all b ∈ RQ, and by classical least–squares argumentation, the solution b∗

satisfies the normal equations
Ab∗ = Bu, (3.3)

where A = PTWP and B = PTW . The matrix A is of order Q × Q and plays
an important role in the MLS approximation. The solution is unique if the rank
of A is Q. We assume this in what follows, i.e. we assume the data point set
X = {x1, . . . , xN} is P-unisolvent.

The minimization of (2.5) can be rewritten as

Minimize
1
2
aTW−1a

subject to PTa = pλ
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where pλ := (λ(p1), . . . , λ(pQ))T ∈ RQ. Introducing a Lagrange multiplier z∗(λ),
we have to construct the global minimizer a∗(λ) of

1
2
aTW−1a+ (z∗(λ))T (PTa− pλ)

with respect to a. Then the solution a∗(λ) is given by the two systems

a∗(λ) =WPz∗(λ)

PTa∗(λ) =pλ

which implies

PTWPz∗(λ) = pλ, a
∗(λ) = WP (PTWP )−1pλ.

In some more detail,

a∗j (λ) = wj

Q∑
k=1

z∗k(λ)λj(pk), (3.4)

where, due to our assumption of unisolvency, the z∗k(λ) are the unique solution of

Q∑
k=1

z∗k(λ)
N∑
j=1

wjλj(pk)λj(p`) = λ(p`), 1 ≤ ` ≤ Q. (3.5)

If λj = δxj , 1 ≤ j ≤ N , the two solutions are connected by

pTλb∗ = uTa∗(λ) =
∑
j∈J

a∗j (λ)u(xj)

which is (2.1).
The solution b∗ of the first problem is dependent on x via the weights and the

index set, but, except that, not on λ. If λ is independent of x, we can get an
approximation to λ(u) by

λ(p∗) = pTλb∗ =
Q∑
k=1

b∗kλ(pk). (3.6)

If we keep x fixed and let the multi-index α for λα,x = δxD
α vary, we have no

problems and can use

λ̂α,x(u) = pTλα,xb
∗ =

Q∑
k=1

b∗kp
(α)
k (x) (3.7)

to get estimates of all derivatives of u at x after the calculation of b∗, yielding (2.6).
With (3.1), we have

λ̂α,x(u) = D̂αu(x) =
Q∑
k=1

b∗kp
(α)
k (x) =

∑
j∈J(x)

a∗j,α(x)u(xj), (3.8)

where a∗j,α are generalized MLS shape functions that correspond to the above func-
tionals. Note that by (3.8) we have a direct estimation of Dαu from the data.
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The implementation of the method solves the weighted least–squares problem
(3.2) first, usually by a QR decomposition of

√
WP , avoiding the stability problems

induced by solving the normal equations (3.3). Once the solution vector b∗ is known,
all target functionals λ that use the same input data and weights can be estimated
via (3.6). Note that this requires evaluation of λ on polynomials only, not on any
shape functions. This can be used to accelerate certain meshless methods for solving
PDEs, as will be demonstrated in a follow–up paper ([16]) focusing on applications.

If a∗(λ) = WP (PTWP )−1pλ is requested, we decompose
√
WP = QR, where

Q is unitary and R is upper triangular to get PTWP = RTR. By some sim-
ple calculations, (WP )(PTWP )−1RT =

√
WQ. Using backward substitution,

(WP )(PTWP )−1 is derived from this, and a∗λ can be calculated directly. This
is what we need in GMLS derivatives when λ = δxD

α. For standard derivatives of
MLS sshape functions, some more but still straightforward calculations are needed.
For instance, first derivatives of shape functions are

Deia∗ =
[√

WQ(RT )−1
]
Dei(p) +

[(
ŴQ−

√
W−1QQT W̃Q

)
(RT )−1

]
p,

where Ŵ = Dei(W )
√
W−1 and W̃ =

√
W−1Ŵ . Both brackets are calculated using

backward substitution without taking inverses. Higher order derivatives can be
computed similarly, but in a more complicated way. Clearly, the direct estimation of
derivatives is computationally much more efficient than calculating the derivatives
of the MLS shape functions.

We now connect this to the notion of diffuse derivatives (see [7, 10, 18, 22]) that
we explain now. If we use the standard MLS with λ = δx, the vector b∗ comes out
the same as above, and the resulting approximation is

û(x) :=
Q∑
k=1

b∗kpk(x),

but it should be kept in mind that b∗ depends subtly on x via the weights and the
index set J(x). The derivatives of û at x, if calculations are done for varying x, will
thus not be what we did above, since the dependence of b∗ on x cannot be ignored.
If it is ignored, the value

Dα
dif (û)(x) :=

Q∑
k=1

b∗kp
(α)
k (x)

is called the diffuse derivative of û at x.

Theorem 3.1. The GMLS approximation when applied for λ = λα,x := δxD
α

and λj = δxj , 1 ≤ j ≤ N , calculates the diffuse derivative of the standard MLS.
The latter is a good approximation to Dαu(x), but is not the same as the standard
derivative Dαû(x). �
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For applications in meshless methods, the estimation of Dαu(x) via (3.1) is all
that is needed when setting up linear system of equations, since it is the best
weighted moving least squares estimate based on the data u(x1, ), . . . , u(xN ). It is
a completely unnecessary detour to go via û(x) and take derivatives thereof. We
shall support this theoretically and practically in what follows. As we shall see,
the accuracies of both schemes are nearly the same. Comparing the diffuse and
full (standard) derivatives of û, the computational cost of the diffuse derivatives
is considerably less. For the GMLS, we just have to calculate b∗, which takes
the same amount of work like in the standard MLS, and then we just need the
derivatives of the polynomial basis to get (3.7). Since polynomials of degree up to
m are exactly reproduced for all choices of weights, the full and diffuse derivatives
of these polynomials coincide ([10]).

The use of û and its derivatives is not necessary when setting up the linear
system. After solving, we will have approximations for the values u(xj) at the
nodes. Then, for postprocessing, it may be necessary to calculate exact derivatives
of the approximate solution û, e.g. for calculation of stress in elasticity problems.
At this time, it is up to the user whether exact or diffuse derivatives are calculated.
If users want to have a single solution function û with exact derivatives, they will
have to pay a price. If they can admit small errors, they can get away with diffuse
derivatives. For postprocessing, the use of diffuse derivatives makes a lot of sense
in certain situations, but not for setting up linear systems.

Since the word “diffuse” may mislead readers to assume that these derivatives are
not first–choice, we ignore this term from now on and use D̂αu(x) or λ̂(u) instead,
to let the notation indicate that we have a direct and usually very good numerical
approximation to Dαu(x) or λ(u), respectively. For future work, we suggest to
drop the term diffuse derivative in favor of GMLS derivative approximation. There
is nothing diffuse or uncertain about it.

4. Error Bounds

In the MLS, and for other scattered data approximation methods, the quantities
fill distance and separation distance are important to measure the quality of data
points and to derive rates of convergence. For a set of points X = {x1, x2, . . . , xN}
in a bounded domain Ω ⊆ Rd, the fill distance is defined to be

hX,Ω = sup
x∈Ω

min
1≤j≤N

‖x− xj‖2,

and the separation distance is defined by

qX =
1
2

min
i 6=j
‖xi − xj‖2.
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A set X of data sites is said to be quasi-uniform with respect to a constant cqu > 0
if

qX ≤ hX,Ω ≤ cquqX . (4.1)

Also,
B(x, r) := {y ∈ Rd : ‖x− y‖2 ≤ r}

stands for the ball of radius r around x.
To be more precise with the generation of weights, we choose a continuous func-

tion φ : [0,∞)→ R that is positive on [0, 1/2] and supported in [0, 1], and define

wδ(x, y) = φ

(
‖x− y‖2

δ

)
,

for δ > 0 as a weight function. Then we define J(x) = {j ∈ {1, 2, ..., N} : ‖x −
xj‖2 ≤ δ}.

Henceforth, we use P = Pdm as a space of d-variate polynomials of degree at most
m and dimension Q =

(
m+d
d

)
.

At first, the convergence rate of a local polynomial reproduction system will be
presented and then we will show that the generalized MLS of the first section is a
local polynomial reproduction in the following sense.

Definition 4.1. Consider a process that defines for every Pdm–unisolvent set X =
{x1, x2, . . . , xN} ⊂ Ω and each multi-index α with |α| ≤ m a family of functions
sj,α : Ω→ R, 1 ≤ j ≤ N to approximate

Dαu(x) ≈
N∑
j=1

sj,α(x)u(xj)

for functions u ∈ Cm(Ω). Then we say that the process provides a local polynomial
reproduction of degree m on Ω if there exist constants h0, C1,α, C2,α > 0 such that

(1)
∑N
j=1 sj,α(x)p(xj) = Dαp(x), for all p ∈ Pdm, x ∈ Ω,

(2)
∑N
j=1 |sj,α(x)| ≤ C1,αh

−|α|
X,Ω , ∀x ∈ Ω,

(3) sj,α(x) = 0 if ‖x− xj‖2 > C2,αhX,Ω,

is satisfied for all |α| ≤ m and all X with hX,Ω ≤ h0.

This definition is a generalized form of Definition 3.1 presented in [21]. We
avoided the notation s(α)

j (x) since it is not true that sj,α = Dαsj,0, as suggested by
item 1 above.

For every sample point x ∈ Ω, and for the classical MLS with λ = δx, [21] has
proved

Theorem 4.2. If {sj,0(x)} is a local polynomial reproduction of order m, there
exists a constant C such that for all u(x) ∈ Cm+1(Ω∗) and all X with hX,Ω ≤ h0

the classical MLS solution û satisfies the error bound

|u(x)− û(x)| ≤ Chm+1
X,Ω |u|Cm+1(Ω∗) (4.2)
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where Ω∗ is the closure of
⋃
x∈ΩB(x,C2h0). The semi-norm in the right hand side

is defined by
|u|Cm+1(Ω∗) := max

|β|=m+1
‖Dβu‖L∞(Ω∗).

Using the same techniques, we can prove

Theorem 4.3. Suppose that Ω ⊂ Rd is bounded. Define Ω∗ to be the closure of⋃
x∈ΩB(x,C2h0). Define

D̂αu(x) :=
N∑
j=1

sj,α(x)u(xj),

where {sj,α} is a local polynomial reproduction of order m on Ω for |α| ≤ m. Then
there exists a constant C > 0 such that for all u ∈ Cm+1(Ω∗) and all X with
hX,Ω ≤ h0 there is an error bound

|Dαu(x)− D̂αu(x)| ≤ Chm+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.3)

Proof. Let p ∈ Pdm be an arbitrary polynomial. Using the properties of local poly-
nomial reproduction in Definition 4.1 yields∣∣∣Dαu(x)− D̂αu(x)

∣∣∣ ≤ |Dαu(x)−Dαp(x)|+
∣∣∣Dαp(x)−

N∑
j=1

sj,α(x)u(xj)
∣∣∣

≤ |Dαu(x)−Dαp(x)|+
N∑
j=1

|sj,α(x)| |p(xj)− u(xj)|

≤ ‖Dαu−Dαp‖L∞(D) + ‖u− p‖L∞(D)

N∑
j=1

|sj,α(x)|

≤ ‖Dαu−Dαp‖L∞(D) + C1,αh
−|α|
X,Ω ‖u− p‖L∞(D)

(4.4)

where D = B(x,C2,αhX,Ω). Now choose p to be the Taylor polynomial of u around
x. This gives for each |β| = m+ 1 and y ∈ Ω a ξ(y, β) ∈ Ω∗ such that

u(y) =
∑
|β|≤m

Dβu(x)
β!

(y − x)β +
∑

|β|=m+1

Dβu(ξ(y, β))
β!

(y − x)β

= p(y) +
∑

|β|=m+1

Dβu(ξ(y, β))
β!

(y − x)β .
(4.5)

where

p(y) =
∑
|β|≤m

Dβu(x)
β!

(y − x)β . (4.6)

Hence

‖u− p‖L∞(D) ≤(C2,αhX,Ω)m+1
∑

|β|=m+1

1
β!
‖Dβu‖L∞(Ω∗)

≤Chm+1
X,Ω |u|Cm+1(Ω∗).

(4.7)
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Moreover, since Dαu ∈ Cm+1−|α|(Ω∗) the Taylor expansion of order m − |α| for
Dαu around x ∈ Ω exists. This gives for each |β| = m+ 1− |α| and every y ∈ Ω a
ζ(y, β) ∈ Ω∗ such that

Dαu(y) =
∑

|β|≤m−|α|

Dβ+αu(x)
β!

(y−x)β+
∑

|β|=m+1−|α|

Dβ+αu(ζ(y, β))
β!

(y−x)β . (4.8)

The first part of the right hand side of equation (4.8) is clearly Dαp(y) with p(y)
defined in equation (4.6). Therefore∥∥Dαu−Dαp

∥∥
L∞(D)

≤ Chm+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.9)

Combining (4.7) and (4.9) with (4.4) leads to (4.3). �

Now it suffices to show that the family of functions {a∗j,α} in (3.8) forms a local
polynomial reproduction in sense of Definition 4.1. It can be done by the concept
of norming sets, introduced by et.al [9]. Before that we need some definitions.

Definition 4.4. A set Ω ⊂ Rd is said to satisfy an interior cone condition if there
exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit
vector ξ(x) exists such that the cone

C(x, ξ, θ, r) :=
{
x+ ty : y ∈ Rd, ‖y‖2 = 1, yT ξ ≥ cos θ, t ∈ [0, r]

}
is contained in Ω.

Let V be a finite-dimensional vector space with norm ‖.‖V and let Λ ⊆ V ∗ be
a finite set consisting of N functionals. Here, V ∗ denotes the dual space of V
consisting of all linear and continuous functionals defined on V .

Definition 4.5. Λ is a norming set for V if the mapping T : V → T (V ) ⊆ RN

defined by T (v) = (λ(v))λ∈Λ is injective. The operator T is called the sampling
operator.

Theorem 4.6. ([9], [15] and [21]) Suppose V is a finite-dimensional normed linear
space and Λ = {λ1, ..., λN} is a norming set for V , T being the corresponding
sampling operator. For every λ ∈ V ∗ there exists a vector s ∈ RN depending only
on λ such that, for every v ∈ V ,

λ(v) =
N∑
j=1

sjλj(v),

and

‖s‖RN∗ ≤ ‖λ‖V ∗‖T−1‖.

Theorem 3.8 of [21] proves:
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Theorem 4.7. If Ω ⊂ Rd is compact and satisfies an interior cone condition with
radius r and angle θ ∈ (0, π/2), for fixed number m if the set X satisfies

hX,Ω ≤
r sin θ

4(1 + sin θ)m2
, (4.10)

then Λ = {δx1 , . . . , δxN } is a norming set for Pdm(Ω) and ‖T−1‖ ≤ 2.

Also it is easy to show that

Proposition 4.8. Λ = {δx1 , . . . , δxN } forms a norming set for Pdm(Ω) if and only
if X ⊂ Ω is Pdm-unisolvent.

One the other side, from Proposition 2.2 of [17] and 11.6 of [21], we have:

Proposition 4.9. Suppose that Ω ⊂ Rd is bounded and satisfies an interior cone
condition with radius r and angle θ. If p ∈ Pdm and |α| ≤ m then

‖Dαp‖L∞(Ω) ≤
(

2m2

r sin θ

)|α|
‖p‖L∞(Ω). (4.11)

If V = Pdm(Ω) and λ = δxD
α, in the situation of Theorem 4.7, using (4.11) and

(4.10) it is easy to show

‖λ‖V ∗ ≤
(

2m2

r sin θ

)|α|
≤
(
2(1 + sin θ)

)−|α|
h
−|α|
X,Ω .

Consequently we can state:

Corollary 4.10. Let Ω ⊂ Rd be bounded and satisfy an interior cone condition
with radius r and angle θ. If X = {x1, . . . , xN} ⊂ Ω and (4.10) is satisfied, then
there exist for every x ∈ Ω real numbers sj,α(x) such that

N∑
j=1

|sj,α(x)| ≤ 2
(
2(1 + sin θ)

)−|α|
h
−|α|
X,Ω ,

and
N∑
j=1

sj,α(x)p(xj) = Dαp(x)

for all p ∈ Pdm.

Now we should convert this global existence result to the local situation. It can
be done using the fact that for every point x ∈ Ω we can find a cone C(x) that is
completely contained in Ω and since every cone itself satisfies a cone condition, we
can apply Corollary 4.10 to the cone C(x) and Y = X ∩ C(x). Therefore, as in
Theorem 3.14 of [21], we can prove:
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Theorem 4.11. If Ω ⊂ Rd is compact and satisfies an interior cone condition with
radius r and angle θ ∈ (0, π/2), for fixed m ∈ N there exist constants

C1,α = 2
(
2(1 + sin θ)

)−|α|
, C2,α =

16(1 + sin θ)2m2

3 sin2 θ
, h0 =

1
C2

such that for every X ⊂ Ω with hX,Ω ≤ h0 and every x ∈ Ω we can find real
numbers sj,α(x), 1 ≤ j ≤ N such that they form a local polynomial reproduction as
in Definition 4.1.

Now using the minimal property of a∗j,α in (3.8), we can show these functions
form a local polynomial reproduction. This comes in the following theorem. The
proof is same as the proof of Theorem 4.7 of [21].

Theorem 4.12. Suppose that Ω ⊂ Rd is compact and satisfies an interior cone
condition with radius r and angle θ ∈ (0, π/2). Fix m ∈ N. Let h0, C1,α, and
C2,α denote the above-mentioned constants. Suppose that X satisfies (4.1) and
hX,Ω ≤ h0. Let δ = 2C2,αhX,Ω. Then the basis functions a∗j,α from (3.8) provide a
local polynomial reproduction as in Definition 4.1 with constant C̃1,α and C̃2,α that
can be derived explicitly.

Finally using Theorems 4.3 and 4.12 we conclude the following corollary that
includes the order of convergence of the MLS approximation and its diffuse deriva-
tives.

Corollary 4.13. In the situation of Theorem 4.12, define Ω∗ to be the closure of⋃
x∈ΩB(x,C2,αh0). Define

D̂αu(x) :=
N∑
j=1

a∗j,α(x)u(xj)

where a∗j,α(x) are functions derived from the MLS approximation in (3.8). Then
there exists a constant c > 0 such that for all u ∈ Cm+1(Ω∗) and all X ⊂ Ω with
hX,Ω ≤ h0 which are quasi–uniform in the sense of (4.1) with the same constant
cqu we have

‖Dαu(x)− D̂αu(x)‖L∞(Ω) ≤ ch
m+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.12)

The error estimates of MLS approximation and its full derivatives are given in [2]
and [23] using different strategies. They have proved that the error of full derivatives
of order |α| is of order O(hm+1−|α|) where h plays the same role as hX,Ω. Thus,
direct estimation of derivatives from function values is recommendable instead of
taking full or diffuse derivatives of the classical MLS solution û.

Following a suggestion of a referee, we finally point out that [14] uses triangulation–
based weights to eliminate the requirement of quasi–uniform node placement. It
seems to be an open problem to extend this to truly meshless methods avoiding
triangulations.
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5. Numerical Examples

To confirm the above theoretical bounds, we look at MLS approximation for
Franke’s function

u(x̄, ȳ) =
3
4
e−1/4((9x̄−2)2+(9ȳ−2)2) +

3
4
e−(1/49)(9x̄+1)2−(1/10)(9ȳ+1)2)

+
1
2
e−1/4((9x̄−7)2+(9ȳ−3)2) − 1

5
e−(9x̄−4)2−(9ȳ−7)2

on [0, 1]2 which is a standard test function for 2D scattered data fitting since the
seminal survey of [8]. Note that (x̄, ȳ) denotes the two components of x ∈ R2. First,
regular node distributions with distance h along each axis are used. A compactly
supported RBF which possesses continuous derivatives up to order 4 is used as
weight function, and the shifted scaled polynomials (see Section 6) are employed as
basis functions.

INSERT TABLE 1

Table 1 presents the ratios of errors for the function and its first and second
standard and GMLS derivatives in a fixed and sufficiently fine test point mesh of
size 31× 31 on [0, 1]2. “Ratio0”, “Ratio1” and “Ratio2” refer to the ratios of error
of the function, its first derivative with respect to x̄ and its second derivative with
respect to x̄, respectively. The distance h is divided by 2 row by row, so the ratio
is computed by

log2

(
‖e(h)‖∞
‖e(h/2)‖∞

)
. (5.1)

We consider both standard and GMLS derivatives. The results are presented for
m = 1, 2, 3 and δ = 1.5mh. According to theoretical bounds, the ratios should
be approximately m + 1 − |α|. As we can see, the numerical results confirm the
analytical bounds. Also it is evident that there is no significant difference between
the rates of convergence of standard and GMLS derivatives. Note that with m = 1
we can not recover the second derivatives. In this example, for instance, the CPU
time needed to compute the second GMLS derivative with h = 0.1/16 (N = 25921)
and m = 2 in the above test point mesh is 2.60 sec, while it is 3.35 sec. for the
standard derivative.

Now, we choose the set of centers to be Halton points in [0, 1]2. We use the
following commands in Matlab to generate such sets:

p = haltonset(2,’Skip’,1e3,’Leap’,1e2);

N = 1000; % number of selected centers

X = net(p,N);

The first 1000 Halton points are depicted in Fig. 1.
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INSERT FIGURE 1

Following [20], it is in general too expensive to compute hX,Ω exactly. Therefore
we used the approximation hX,Ω ≈ h = 1/

√
N together with δ = 1.5mh. The

maximum errors and ratios, which are provided in a regular mesh 31× 31 in [0, 1]2,
are presented in Tables 2 and 3 for the first and the second derivatives with
respect to first variable, respectively, for m = 3. The approximate fill distance
h is divided by 2 consecutively and the ratios are computed by (5.1). One can
see that the theoretical bounds are obtained and the results are nearly the same
for both standard and GMLS derivatives. The CPU time required to execute the
GMLS subroutine for computing the second derivative with N = 16000 in the
above-mentioned test point mesh is 2.03 sec, while it is 3.40 sec for the standard
MLS derivative subroutine.

INSERT TABLE 2

6. Some Notes on Numerical Implementation

Sometimes, the set
B = {xα}0≤|α|≤m (6.1)

is used as a basis for Pdm in the MLS approximation. The choice of this basis is
important and has quite some influence on the matrix A = PTWP and thus on the
matrix R obtained from the QR decomposition of

√
WP . This has major effects

on stability, especially when the normal equations (3.3) are used directly. As an
example, consider the unit square [0, 1]2 in R2 with regular node distribution of
distance h and fix m = 2. In Fig. 2, the determinants and condition numbers of A
are depicted in terms of decreasing h at a sample point (π/4, π/4) ∈ [0, 1]2 on the
left and right side, respectively. As we see, the results get worse as h decreases.

INSERT FIGURE 2

To overcome this drawback it is better to use the shifted scaled basis polynomials.
The shifted basis, which for example was used by [12] and [20], can be defined for
fixed z by

Bz = {(x− z)α}0≤|α|≤m (6.2)

and the shifted scaled basis by

Bzh =
{

(x− z)α

h|α|

}
0≤|α|≤m

, (6.3)

where h can be qX , hX,Ω or an average of them for a quasi–uniform set X. In all
cases, z is an evaluation point such as a test point or a Gaussian point for integration
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in weak-form based techniques. Fig. 3 shows the same results as before for the
shifted scaled basis functions.

INSERT FIGURE 3

The effect of this variation is shown in Fig. 4, where we have illustrated the maxi-
mum error of reconstruction of Franke’s function and its first and second derivatives
with respect to x̄ on [0, 1]2 with and without shifted scaled basis functions. Nu-
merical instabilities are evident on the left side, where the basis (6.1) is applied.

INSERT FIGURE 4

To analyze this phenomenon, we use the notations A = PTWP , where the basis
B is employed and Az = P (· − z)TWP (· − z) and Azh = P ( ·−zh )TWP ( ·−zh ) where
Bz and Bzh are used, respectively. By using

(x− z)α =
∑
β≤α

(
α

β

)
(−1)|α−β|zα−β︸ ︷︷ ︸
Cz(α,β)

xβ =
∑
β≤α

Cz(α, β)xβ

we have P (· − z) = PCz, where Cz is a Q by Q triangular matrix with diagonal
elements 1. It is clear that Az = CTz ACz and det(A) = det(Az). On the other side,
we set

Hh = diag
{

1,
1
h
, · · · , 1

h︸ ︷︷ ︸
( d
d−1) times

,
1
h2
, · · · , 1

h2︸ ︷︷ ︸
(d+1
d−1) times

, · · · , 1
hm

, · · · , 1
hm︸ ︷︷ ︸

(d−1+m
d−1 ) times

}
Q×Q

.

It is obvious that P ( ·−zh ) = PCzHh andAzh = HhA
zHh, hence det(Azh) = det(Az)

[
det
(
Hh

)]2 =
det(A)

[
det
(
Hh

)]2. Using the combinatorial formula
m∑
j=0

jCd−1+j
d−1 = dCm+d

d+1 =: ρ,

we have det
(
Hh

)
= h−ρ, therefore

det(Azh) = h−2ρ det(A).

This is the reason why the determinant of Azh remains constant as h decreases.
Consequently, we have

det(Rzh) = h−ρ det(R),

where Rzh is upper triangular matrix obtained by QR decomposition of
√
WP ( ·−zh ).

We can also estimate the condition numbers of both matrices Azh and Rzh. Since
P ( ·−zh ) = PCzHh and due to the uniqueness property of QR decomposition of
full-rank matrices, we have

Rzh = RCzHh.
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Finally, cond(Cz) = 1 and cond(Hh) = hm yield

cond(R) ≈
√

cond(A), cond(Rzh) ≈ cond(R)hm, cond(Azh) ≈ cond(A)h2m.

(6.4)
Although the QR decomposition gives stable results in many cases, (6.4) implies
that the shifted scaled basis is recommendable even when the QR method is applied.
In numerical results presented in the previous section, we followed this strategy.

The quantity h can be replaced by a function which varies in accordance with
the node density in Ω, see [?].

7. Conclusion and Outlook

This paper implies that “diffuse” derivatives used within certain applications of
the moving–least–squares method (MLS) can be stably implemented and induce no
loss in accuracy, because they are identical to direct optimal estimates of deriva-
tives provided by the generalized moving least squares (GMLS) of this paper. In
particular, the orders of convergence of both derivatives to the exact values turn
out to be the same, and the computational efficiency of GMLS derivatives is better.
On the side, we investigated the stabilization effect of shifted scaled polynomial
bases. In a forthcoming paper ([16]), the GMLS will be applied to enhance the
computational efficiency of the meshless local Petrov-Galerkin (MLPG) method of
Atluri and his colleagues ([5, 4, 3]) significantly.
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Table 1

The ratios of errors of Franke’s function and its first and second standard

and GMLS derivatives

Ratio1 Ratio2

h Ratio0 standard GMLS standard GMLS

m = 1

0.1 − − − − −
0.1
2

1.82 1.39 1.38 − −
0.1
4

1.94 0.99 0.98 − −
0.1
8

1.99 0.98 0.98 − −
0.1
16

2.00 0.95 0.95 − −
m = 2

0.1 − − − − −
0.1
2

3.06 1.37 1.37 1.33 1.34

0.1
4

3.72 1.80 1.79 1.50 1.48

0.1
8

3.93 1.95 1.94 1.22 1.21

0.1
16

3.86 1.98 1.98 1.13 1.12

m = 3

0.1 − − − − −
0.1
2

2.23 1.99 2.05 0.88 0.84

0.1
4

3.36 3.30 3.30 1.59 1.55

0.1
8

3.82 3.80 3.81 1.88 1.87

0.1
16

3.95 3.95 3.95 1.97 1.97

Table 2

Maximum and ratios of errors of the first standard and GMLS

derivatives of Franke’s function at Halton points with m = 3

Standard GMLS

N h ‖e‖∞ ratio ‖e‖∞ ratio

1000 0.03162 7.89× 10−2 − 7.76× 10−2 −

4000 0.01581 1.08× 10−2 2.87 1.08× 10−2 2.84

16000 0.00791 2.00× 10−3 2.43 1.99× 10−3 2.45

64000 0.00395 1.08× 10−4 4.22 1.08× 10−4 4.20
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Table 3

Maximum and ratios of errors of the second standard and GMLS

derivatives of Franke’s function at Halton points with m = 3

Standard GMLS

N h ‖e‖∞ ratio ‖e‖∞ ratio

1000 0.03162 8.00× 100 − 7.77× 100 −

4000 0.01581 2.16× 100 1.87 2.17× 100 1.84

16000 0.00791 5.76× 10−1 1.93 5.74× 10−1 1.92

64000 0.00395 1.40× 10−1 2.04 1.41× 10−1 2.03
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Figure 1. First 1000 Halton points
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Figure 2. Determinants (left) and condition numbers (right) of
A at sample point (π/4, π/4) using basis (6.1)
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Figure 3. Determinants (left) and condition numbers (right) of
A at sample point (π/4, π/4) using basis (6.3)
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Figure 4. Approximation errors of Franke’s function (solid lines
and circles), its first derivative (dash lines and triangles) and its
second derivative (dot lines and squares) using basis (6.1) (left)
and basis (6.3) (right).


