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Starting from optimal recovery (in the sense of Micchelli, Rivlin, and Winograd)

of functions in reproducing kernel Hilbert spaces from function values at scatte-

red data points, we show that any continuously embedded translation{invariant

Hilbert subspace H of L

2

(IR

d

) that allows continuous point evaluation is neces-

sarily principal, i.e. it is the native space of a positive de�nite function �. If, in

addition, H is invariant under orthogonal transformations of IR

d

, the function �

necessarily is a positive de�nite radial basis function. This serves to show that

positive de�nite radial basis functions and their native spaces arise very naturally

and are by no means exotic theoretical constructions.

1 Introduction

Let H be a real Hilbert space of real{valued functions on some domain 
, and

assume that point{evaluation functionals are continuous, which is a very reasona-

ble assumption for applications. Then for any x 2 
 there is a Riesz representer

�

x

2 H for the point evaluation functional �

x

at x, i.e.

�

x

f = f(x) = (�

x

; f)

H

(1.1)

for all f 2 H; x 2 
. Now the function

K(x; y) := (�

x

; �

y

)

H

= �

y

(x) = K(y; x) (1.2)
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on 
� 
 is a reproducing kernel for H , because (1.1) can be rewritten as

f(x) = (K(x; �); f(�))

H

(1.3)

for all x 2 
; f 2 H . There is a well{established theory of reproducing{kernel

Hilbert spaces (see e.g. [2],[12] and applications in [3], [5], [6], and [8]), but we

concentrate here on its implications for the theory of multivariate interpolation

as an optimal recovery process in the sense of Micchelli, Rivlin, and Winograd.

To this end we additionally assume that any number N of di�erent point eva-

luation functionals is linearly independent in the dual of H . This has several

equivalent formulations, where X = fx

1

; : : : ; x

N

g � 
 always denotes an arbi-

trary set of N distinct points in 
:

� The functions �

x

1

; : : : ; �

x

N

are linearly independent in H .

� Any interpolation problem on X is uniquely solvable by functions from H .

� The matrix A

X

= (�

x

j

; �

x

k

)

1�j;k�N

= (K(x

j

; x

k

))

1�j;k�N

is positive de�-

nite.

The third version allows to forget about reproducing kernel Hilbert spaces by

using the following notion:

De�nition .1

A real{valued symmetric function K on 
�
 is positive de�nite, if all matrices

of the form

A

X

= (K(x

j

; x

k

))

1�j;k�N

(1.4)

are positive de�nite where N and X = fx

1

; : : : ; x

N

g � 
 vary.

In section 3 we shall address the inverse question whether any symmetric positive

de�nite function on 
�
 is a kernel function on some Hilbert space H of functions

on 
. See Schoenberg [15] for positive de�nite functions arising in the problem of

isometric embedding of metric spaces into Hilbert spaces.

The problem of optimal recovery of a function f 2 H from data f(x

1

); : : : ; f(x

N

)

on some set X = fx

1

; : : : ; x

N

g can be rephrased as the minimization problem

ksk

H

= Min! :

sj

X

= f j

X

s 2 H

By standard arguments the solution s

f;X

of this problem can be shown to exist

uniquely, and to be of the form

s

f;X

=

N

X

j=1

a

j

�

x

j

=

N

X

j=1

a

j

K(x

j

; �) (1.5)
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where the coe�cents a

j

are obtained by solving the system

N

X

j=1

K(x

j

; x

k

)a

j

= f(x

k

); 1 � k � N (1.6)

with the positive de�nite matrix A

X

of (1.4).

For completeness, we add some of the well{known additional properties of this

optimal recovery scheme (see [3], [5], [6], and [8], for instance). If x is another

point of 
, one can ask for the best reconstruction of f(x) from known information

f(x

1

); : : : ; f(x

N

) by linear quasi{interpolation formulas of the form

q

f

(x) :=

N

X

j=1

f(x

j

) � u

j

(x):

where, since x is �xed, we can view u

j

(x) just as real numbers. The error is

representable as

f(x) =

0

@

�

x

�

N

X

j=1

u

j

(x)�

x

j

; f

1

A

H

and has the bound

jf(x)� q

f

(x)j � kfk

H

�



















�

x

�

N

X

j=1

u

j

(x)�

x

j



















H

which can be optimized by a best approximation of �

x

by �

x

1

; : : : ; �

x

N

. The

unique solution is given by u

�

j

(x) satisfying

N

X

j=1

K(x

j

; x

k

)u

�

j

(x) = K(x; x

k

); 1 � k � N

and it is evident that u

�

1

; : : : ; u

�

N

, now viewed as functions in H , provide the

Lagrange reformulation of the interpolant we already know:

s

f;X

=

N

X

j=1

f(x

j

)u

�

j

:

Thus the norm{minimal recovery process also minimizes the pointwise error.

In addition, s

f;X

is the best approximation to f from the span S

X

ofK(x

1

; �); : : : ; K(x

N

; �),

since the representation (1.5) implies

(s

h;X

; g)

H

=

N

X

j=1

a

j

g(x

j

)
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for all g; h 2 H , and we �nd

(s

h;X

; f � s

f;X

)

H

= 0

for all s

h;X

2 S

X

.

These three simultaneous optimality properties make interpolation via positive

de�nite functions in the sense of (1.5) a very useful tool for recovery of functions,

provided that the system (1.6) can be solved at reasonable computational cost.

This occurs if the matrix A

X

of (1.4) is sparse and well{conditioned (see [13], [14]

for overviews), or if special techniques like multipole expansions are applied in

order to increase computational e�ciency (see [1],[11]).

The next section will demonstrate how certain invariance properties of the Hilbert

space H a�ect the kernel function K, while section 3 will show that any positive

de�nite function K arises as a kernel of some Hilbert space. Finally, in section 4

we specialize to the case of translation{invariant Hilbert subspaces S of L

2

(IR

d

)

and show that any such space S is a reproducing kernel Hilbert space which can

alternatively be written as a space of functions whose L

2

Fourier transforms are in

a weighted L

2

space. The connection to the general setting is that K(x; y) takes

the form K(x; y) = �(x � y) for � : IR

d

! IR with �(��) = �(�) such that

^

� is

nonnegative and w = 1=

^

� is the weight function in the alternative representation

S = ff 2 L

2

(IR

d

) :

Z

j

^

f(!)j

2

w(!)d! <1g

that arises in the well{established theory of radial basis functions.

2 Invariance properties

We now assert that any invariance property ofH carries over toK. More precisely,

let us assume that the space H is invariant under a group T of transformations

on the domain 
, i.e.

(f(T �); g(T �))

H

= (f; g)

H

for all T 2 T ; f; g 2 H , where all T 2 T are mappings 
 ! 
 such that

f(T �) 2 H for all f 2 H; T 2 T . Then we have

�

x

(Ty) = (�

x

; �Ty)

H

= (�

y

; �

x

(T �))

H

= (�

y

(T

�1

�); �

x

)

H
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for all x; y 2 
; T 2 T , such that

�

Ty

(Tz) = �

y

(z) = K(y; z) = K(Ty; Tz) (2.1)

for all y; z 2 
; T 2 T , proving invariance of K with respect to T . We now

consider four important examples.

Example 1

If 
 is itself a real vector space, e.g. 
 = IR

d

, and if T is the group of all trans-

lations T

x

(z) = z � x, then

K(y; z) = K(y � z; 0)

follows from setting T = T

z

in (2.1). Then the space S

X

of functions of the

form (1.5) necessarily is a space of translates of the function �(�) := K(�; 0).

Thus interpolation by translates of a �xed function is a very natural (and in a

multiple sense optimal) approach to recovery in the sense of Micchelli, Rivlin, and

Winograd of functions in translation{invariant spaces.

Example 2

If, more generally, 
 is a topological group with unity 1, the function K takes the

form

K(y; z) = K(y � z

�1

; 1);

and this approach was treated in detail by Gutzmer [7].

Example 3

If we take 
 = IR

d

and allow Euclidean rigid{body transformations of the form

T

Q;x

(y) := Qy � x

where Q is an arbitrary orthogonal d by d matrix, then by suitable choice of Q we

get

K(y; z) = K(y � z; 0) = K(ky � zk

2

� e

1

; 0) =: �(ky � zk

2

) (2.2)

for all y; z 2 IR

d

, where e

1

is the �rst unit vector and � : IR

�0

! IR is a scalar

function. Thus the space S

X

now is generated by translates of a \radial basis

function" �.

Example 4

If we work on the sphere 
 = S

d�1

� IR

d

and again allow all orthogonal trans-

formations on IR

d

, we end up with a kernel of the special form

K(y; z) = �(y

T

z); y; z 2 S

d�1

� IR

d
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where � : [�1;+1] ! IR is a real{valued function. This special case was treated

in Schoenberg [16].

Note that the general de�nition of positive de�niteness of K is applicable in all

of these cases. The solution of the system (1.6) will uniquely exist if K is positive

de�nite, and there is no need for any Hilbert space interpretation of K, if one just

wants to work with functions of the form (1.5). Thus the construction of \nice"

positive de�nite functions can be carried out independently, and this was actually

done in a series of recent papers on the radial case [13], [17], [18].

3 Native spaces

But the construction of a symmetric and positive de�nite function K will always

generate a suitable reproducing{kernel Hilbert space H such that (1.3) holds.

This was already done in special situations (see the surveys [13], [14] and their

references), but the technique works in general.

If K : 
� 
! IR is symmetric and positive de�nite on some domain 
, we �rst

de�ne the space

S =

8

<

:

N

X

j=1

a

j

K(x

j

; �) : a

j

2 IR; N 2 IN; x

j

2 
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=

;

:

Any function from S has a unique representation

f

a;X

=

N

X

j=1

a

j

K(x

j

; �) (3.1)

where a = (a

1

; : : : ; a

N

) 2 IR

N

and X = fx

1

; : : : ; x

N

g is a set of N distinct points

of 
. If we de�ne �

x

= K(x; �) and

(�

x

; �

y

)

S

:= K(x; y)

for all x; y 2 
, this de�nition extends to a scalar product on all of S, because

K is positive de�nite. Then (1.3) holds by de�nition for all functions of the form

(3.1), such that S becomes a reproducing{kernel semi{Hilbert space. Its closure

H can be abstractly de�ned, and if i : S ! H is the canonical injection, then for

all abstract elements f 2 H and all points x 2 
 one can de�ne a value

f(x) := (i�

x

; f)

S

that turns f into a function on 
 and H into a reproducing{kernel Hilbert space

of functions on 
 having K as its kernel. In this sense one can call H the \native"
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space for the positive de�nite symmetric function K. Note that this technique

applies to all of the special cases described in Section 2. In particular, the positive

de�nite functions on the topological group SO(3) constructed by Gutzmer [7]

generate Hilbert spaces of functions on SO(3) that deserve further study.

The functions f in H will have nice localization properties, if the value f(x) at

some x 2 
 is independent of values of f at points far from x. From (1.1) we can

see that this requires the representer �

x

to be locally supported around x, and

then (1.2) implies that K(x; y) should be small if x and y are far away from each

other. In the Hilbert space dual H

0

of H the point evaluation functionals �

x

and

�

y

will then be orthogonal. So far we have left open what \near" means in 
. The

standard example is 
 = IR

d

with Euclidean distance and Euclidean invariance of

H . Then K is radial in the sense of (2.2) and � should be compactly supported

around the origin. Examples of such functions, consisting of a single polynomial

piece each, were given in [13] and by Wu [18] and Wendland [17].

4 Translation Invariant Native Subspaces of L

2

(IR

d

)

To be able to apply Fourier transform techniques we now specialize to translation{

invariant Hilbert subspaces H of L

2

(IR

d

). We assume the embedding A : H !

L

2

(IR

d

) to be continuous and point evaluation functionals to be linearly indepen-

dent. Since L

2

(IR

d

) itself is translation{invariant, the embedding A and its adjoint

A

�

are translation{invariant, i.e. they commute with the translation operator

(T

x

f)(y) := f(y � x); x; y 2 IR

d

; f 2 L

2

(IR

d

)

written as an operator on H or L

2

(IR

d

). This is trivial for A and follows for A

�

from

(A

�

T

x

f; T

x

g)

H

= (T

x

f; AT

x

g)

L

2

= (T

x

f; T

x

Ag)

L

2

= (f; Ag)

L

2

= (A

�

f; g)

H

= (T

x

A

�

f; T

x

g)

H

for all g 2 H; f 2 L

2

; x 2 IR

d

.
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Now for all f 2 L

2

and x 2 IR

d

we get the representation

(A

�

f)(x) = (�

x

; A

�

f)

H

= (A�

x

; f)

L

2

=

Z

IR

d

f(y)�

x

(y)dy

=

Z

IR

d

f(y)�

0

(y � x)dy

= (f � �

0

(��))(x)

of A

�

as a convolution with �

0

(��). By the way, symmetry of K implies �

0

(��) =

�

0

(�) and

^

�

0

(�) 2 IR. Taking Fourier transforms we get

d

A

�

f =

^

f �

^

�

0

(4.1)

and the scalar product on H can be rewritten on the subspace A

�

(L

2

) � H as

(A

�

f; A

�

g)

H

= (f; AA

�

g)

L

2

= (

^

f;

d

AA

�

g)

L

2

= (

^

f;

d

A

�

g)

L

2

=

Z

IR

d

^

f � ĝ �

^

�

0

for all f; g 2 L

2

(IR

d

). Since any f 2 A

�

(L

2

) can be written as f = A

�

h

f

with

some h

f

2 L

2

(IR

d

),

(f; g)

H

= (A

�

h

f

; A

�

h

g

)

H

=

Z

IR

d

^

h

f

�

^

h

g

�

c

�

0

is a representation of the abstract inner product on H when restricted to the

subspace A

�

(L

2

) by an integral over L

2

functions. Since one can admit any L

2

function for h

f

and h

g

, we get positivity of

c

�

0

, except for (possibly) a set of

measure zero in IR

d

. Thus we can use (4.1) to write

^

f =

c

h

f

c

�

0

(4.2)

for all f 2 A

�

(L

2

) � H � L

2

, and

(f; g)

H

=

Z

IR

d

^

f � ĝ

c

�

0

for all f; g 2 A

�

(L

2

). This induces an intermediate Hilbert space

A

�

(L

2

) = H

1

= ff 2 L

2

(IR

d

) : j

^

f j n

q

^

�

0

2 L

2

(IR

d

)g

between A

�

(L

2

) and H , but since (A

�

(L

2

))

?

= f0g in H we can identify H

1

and

H . This �nally proves
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Theorem .2

Any translation{invariant continuously embedded Hilbert subspace H of L

2

(IR

d

)

which admits continuous and linear independent point evaluation functionals is the

native space of a positive de�nite L

2

function � : IR

d

! IR

d

with �(��) = �(�)

and can be written as the space

H =

(

f 2 L

2

(IR

d

) :

Z

j

^

f(!)j

2

^

�(!)

d! <1

)

;

while

^

� is positive almost everywhere. If H is invariant under Euclidean trans-

formations on IR

d

, then � is a radial function.

In view of the de�nition of principal shift{invariant spaces as in [4] we can interpret

Theorem .2 as a general su�cient criterion for translation{invariant subspaces of

L

2

(IR

d

) to be principal and to be generated by a radial basis function.
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