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Abstract. Solving partial differential equations by collocation with radial
basis functions can be efficiently done by a technique first proposed by E. Kansa
in 1990. It rewrites the problem as a generalized interpolation problem, and the
solution is obtained by solving a (possibly large) linear system. The method has
been used successfully in a variety of applications, but a proof of nonsingularity
of the linear system still was missing. This paper shows that a general proof
of this fact is impossible. However, numerical evidence shows that cases of
singularity are rare and have to be constructed with quite some effort.

1 Introduction

A large variety of numerical techniques can be formulated as generalized inter-
polation problems on spaces of multivariate functions. An easy special case 1s
provided by collocation methods. These use an N-dimensional space S of

functions and N functionals A1, ..., ...Ax. The space S is spanned by functions
fi,..., f~, and then one looks for a function
N
f = Z Ozjfj €S
j=1

such that the system

N

Me(f) =D ahelfy), 1<k <N (1)

j=1
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is uniquely solvable for the coefficients ay,...,an. Note that (1) describes a

plain interpolation problem, if the functionals Ay, ..., ...An are point evaluations
Opyse-vy.0py. This is why (1) can be viewed as a generalized interpolation
problem.

This approach needs that the system (1)with the coefficient matrix

A= M(fi)icieen

is nonsingular. This paper concentrates on the question of singularity of such
matrices in the special case of spaces spanned by radial basis functions.

In fact, radial basis functions of the form
o(||z—yll2) z,y € R, ¢ : IR — IRxg

provide an easy and effective approach to spaces of multivariate functions. For
scattered “centers” xi,...,xn one can form the space

Si=span {g(]| - —zjl[2) 1<j< N}

and use this space in the above setting. If the data functionals are the point eval-
uation functionals dz,,...,...05z,, the problem is a pure interpolation problem
and the matrix A is symmetric with entries ¢(]|z; — z;|2).

However, even in this simple situation it may happen that the matrix is singular.
This occurs, for instance, in case of Hardy’s multiquadrics ¢(r) := v/r2 4 ¢? and
for thin—plate splines ¢(r) := r?logr.

One has to add a space IP?, of d—variate polynomials of order (=degree-1) at
most m and to kill the additional ¢ := dim [P, degrees of freedom by the
additional requirement

N
Zajp(xj) =0 for all p € IP¢, (2)

j=1

for the solution of the system (1). If m is chosen large enough (m > 1 for
multiquadrics, m > 2 for thin—plate splines), the resulting augmented system
will be nonsingular. We refer te reader to standard literature on radial basis
functions for a deeper understanding of these facts.

2 Kansa’s Technique

A special but important case occurs for collocation for the inhomogeneous
Dirichlet problem on a bounded domain Q C IR?, using multiquadrics. We
have m > 1 and split the functionals A1, ..., Ax in two parts:



e Lagrange data functionals d,,,...,d;,, for points on the boundary of the
domain €2,

=9 A AL, = 0y A for points

e Laplace data functionals Ay, e D,

in the closure of the domain.

Collocation is done with the span of the functions ¢(||- —z;||2), 1 < j < N plus
the functions in IP% . The additional condition (2) is imposed.

The method was first introduced by Ed Kansa [12, 13] and used successfully
(and for more general settings) by several other authors, e.g. [1, 2, 3, 14].

Hon et al. further extended the use of the MQ-RBFs on the numerical so-
lutions of various ordinary and partial differential equations including general
initial value problems [9], nonlinear Burgers’ equation with shock wave [10],
surface wind field computation from scattered data [5], complicated biphasic
and triphasic models of mixtures [7][8], shallow water equation for tide and cur-
rents simulation under irregular boundary [6], and free boundary problems like
American option pricing [11]. The computations showed the definite advantages
in using this truly mesh-free MQ-RBFs for solving various initial and boundary
values problems.

The corresponding (N +¢) x (N +¢) matrix was always found to be nonsingular,
but there was no proof of this fact. In this paper, we construct counterexamples,
but the construction shows that counterexamples are rare birds indeed.

In the above technique, the functionals d,,,...,d;, generating the space

s i=span {6 o(||- —tll) 1<j <N}

are different from the collocation functionals Ay, ..., Ay , making the collocation
matrix unsymmetric. Here, we used the superscript ¢ to denote action of a
functional with respect to the variable ¢. If one uses the collocation functionals
A1, ..., AN to generate the space

S = span{A§¢(|| —tll2) 1< N} ,

a symmetric collocation technique first proposed by Wu [16] results, and under
mild assumptions on ¢ and the functionals A, ..., Ay the symmetric collocation
matrix with entries ij\i(b(”g — 1||2) is positive definite. However, symmetric
collocation needs stronger regularity assumptions and usually provides inferior
numerical results (see e.g. Fasshauer [4]). This is why Kansa’s unsymmetric
collocation is to be preferred.



3 Theoretical Basis for Counterexamples

To be not too far away from any application, we took the Poisson equation on
the square Q = [—1,+1]? and fixed M = 8 Lagrange data points equidistantly
on the boundary (corners and mid—edges). Another 9 points for collocation
of Laplacian values were placed inside the square, and we vary these 9 points
later. Since applications have concentrated on multiquadrics, these were used
here, too. Since they require m = 1, we added a constant function and a
single additional condition (2) on the coefficients of the actual 17 radial basis
functions. This is the minimum requirement to make the pure interpolation
problem nonsingular. Altogether, we thus have an 18 x 18 matrix A(Y"), whose
entries are smooth functions of the elements of the Laplacian center set Y =
{1‘9, R l‘17} C [—1, —|—1]18.

We carried out similar calculations for other radial basis functions, and therefore
we describe the technique in somewhat more general terms. However, we used
the same geometric setting in all cases. The determinant D(Y) := det A(Y) is a
smooth function on [—1,+1]'® and for a counterexample it suffices to find two
numerically nondegenerate cases Y7, Y2 € [—1,+1]*® with D(Y7) - D(Y3) < 0.
We can then conclude that on any continuous path in [—1, 4+1]'® joining Y7 and
Y5, the determinant must vanish at least once. But there are lots of such paths
that avoid coalescing points, and each path gives at least one counterexample
with noncoalescing points and zero determinant.

To find two numerically nondegenerate cases Y1, Yo € [—1,+1]'® with D(Y7) -
D(Y2) < 0, we ran a large number of evaluations of D(Y), each with a random
choice of Y. It turns out that sign changes of the determinant are very rare,
and one just has to look for a single case with the “wrong” sign of the determi-
nant. We discarded examples where two of the 9 randomly chosen points with
Laplacian data had a distance less than 0.1, because there are trivial zeros of
the determinant whenever two points coalesce, and we do not want cases with
very small determinants in absolute value. Cases with a large condition number
in relation to the absolute value of the determinant were discarded, too, because
they do not provide safe examples. More precisely, we insisted on the condition

cond (A(Y))/| det(A(Y))] < 1010

when doing everything in 64-bit double precision. However, 1t suffices to verify
a posteriori that the final exceptional example really has the “wrong” sign of
determinant, even with roundoff taken into consideration.

4 Numerical Results

After 7846 samples for multiquadrics with ¢ = 0.5 we found an exceptional
configuration with the following Laplace points:



8.273563011676801e-01 1.802418079135202e-01
2.394614691098507e-01 -3.252848579200380e-01
9.7944776154097563e-01 -9.277954753152073e-01
-9.372443072205616e-01 -2.431062149084667e-01
8.888265033666167e-01 -5.002654378769293e-01
1.633663452991128e-01 4.030965172700103e-01
-9.984683087088486e-01 5.822021935983579e-02
-7.520452098697639e-02 -3.715893613973583e-01
3.489601022326201e-01 1.330205365703536e-01

A plot of these points is in Figure 1. This case has determinant -1.265 and
condition 23764.4, while the preceding sample (for instance) had determinant
46.2. To make sure that there is no serious loss of accuracy, we calculated the
approximate inverse of A(Y) and found the norm of the residual to be 6.5e-
13. Further evidence was provided by looking at the full Gaussian elimination
process: the pivots were reasonable in all elimination steps. By our continuity
argument, this example shows that a general proof of nonsingularity of the
unsymmetric collcation matrix is impossible.
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Figure 1: Points leading to “wrong” sign of determinant. Here, the + marks
stand for the Lagrange points on the boundary, the x marks are the random
Laplace collocation points in the interior, while the * mark is the Laplace collo-
cation point that we later moved around to produce the plot of the determinant
following in the next figure.

If the most central point y is moved around, the determinant d(y) := D(Y (y))
produces a function on [—1,+1]?, plotted in Figure 2.
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Figure 2: Determinant as function of single point

There is a well-defined zero contour line, and by a sequence of numerical ex-
amples (minimization of the absolute value of the determinant on locally re-
fined grids) we finally got a strongly degenerate case with a determinant of
8.212515803804915e-11, where the *-marked point of Figure 1 has moved to the
place (z,y) = (-4.500777547787466e-01,5.271590048254461e-01) in Figure
3.
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Figure 3: Degenerate points

The points are still well-separated, but the condition 6.04e+14 is extremely bad
and the determinant -8.4e-11 is extremely small. However, the row—sum norm
of the residual matrix still is 1.425951247620105e-02, proving that this case is
at the very edge of computability with 64 bit double precision floating point
numbers.

In case of polynomial degree 1 we have to work wit a 20 x 20 matrix. It now
takes 292372 samples to get a determinant of -0.125 against 1723.0 in the pre-



vious sample, and with condition 2.18e+45. The points are in Figure 4, and the
corresponding determinant plot is Figure 5.
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Figure 4: Multiquadrics counterexample with linear polynomials added

Figure 5: Determinant plot of multiquadrics counterexample with linear poly-
nomials added

The technique also works for Gaussians with no polynomials added, and it took
just 390 samples. The matrices now are 17 x 17. The points of the case with
“wrong” sign of determinant are in Figure 6, and the corresponding determinant
plot is Figure 7.

We carried out many test runs with Wendland’s C* function ¢(r) = (1—r)3 (14
4r) at various scales (i.e. using ¢(r/c) for different ¢ to have support radius ¢).
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Figure 6: Gaussian counterexample
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Figure 7: Determinant plot of Gaussian counterexample

For sufficiently small ¢ in relation to the minimal distance of data points, these
functions will generate diagonal collocation matrices with nonzero entries on
the diagonal. But these nondegenerate cases have large discretization errors
and are thus practically useless. For this reason we tested cases with large ¢
only, but no counterexamples were found so far. However, we do not believe
that these compactly supported radial basis functions from [15] always generate
nonsingular matrices.

5 Conclusion

We have shown that there cannot be a general proof of nonsingularity of matrices
arising from unsymmetric collocation with radial basis functions. Since nonsin-
gularity was observed in all practically relevant cases, theoretical investigations
can now proceed to prove nonsingularity in restricted situations.



For applications, unsymmetric collocation still is preferable over symmetric col-
location due to its superior performance. The pure existence of singular cases is
no serious objection to a valuable numerical technique. For example, numerical
analysts still solve linear systems of equations even though they can be singular
in certain cases. There are reliable techniques to detect near—singularity of ma-
trices, and if these techniques are incorporated into running code, applications
are safeguarded.
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