
On unsymmetri
 
ollo
ation by Radial BasisFun
tionsY. C. Hon, City University of Hong Kong 1R. S
haba
k, University of G�ottingen 2Abstra
t. Solving partial di�erential equations by 
ollo
ation with radialbasis fun
tions 
an be eÆ
iently done by a te
hnique �rst proposed by E. Kansain 1990. It rewrites the problem as a generalized interpolation problem, and thesolution is obtained by solving a (possibly large) linear system. The method hasbeen used su

essfully in a variety of appli
ations, but a proof of nonsingularityof the linear system still was missing. This paper shows that a general proofof this fa
t is impossible. However, numeri
al eviden
e shows that 
ases ofsingularity are rare and have to be 
onstru
ted with quite some e�ort.1 Introdu
tionA large variety of numeri
al te
hniques 
an be formulated as generalized inter-polation problems on spa
es of multivariate fun
tions. An easy spe
ial 
ase isprovided by 
ollo
ation methods. These use an N -dimensional spa
e S offun
tions and N fun
tionals �1; : : : ; :::�N . The spa
e S is spanned by fun
tionsf1; : : : ; fN , and then one looks for a fun
tionf = NXj=1�jfj 2 Ssu
h that the system �k(f) = NXj=1�j�k(fj); 1 � k � N (1)1Supported by City Univ. Strategi
 Resear
h Grant No. 70009432Visiting City Univ. of Hong Kong, sponsored by DFG1



is uniquely solvable for the 
oeÆ
ients �1; : : : ; �N . Note that (1) des
ribes aplain interpolation problem, if the fun
tionals �1; : : : ; :::�N are point evaluationsÆx1 ; : : : ; :::ÆxN . This is why (1) 
an be viewed as a generalized interpolationproblem.This approa
h needs that the system (1)with the 
oeÆ
ient matrixA := (�k(fj))1�j;k�Nis nonsingular. This paper 
on
entrates on the question of singularity of su
hmatri
es in the spe
ial 
ase of spa
es spanned by radial basis fun
tions.In fa
t, radial basis fun
tions of the form�(kx� yk2) x; y 2 IRd; � : IR! IR�0provide an easy and e�e
tive approa
h to spa
es of multivariate fun
tions. Fors
attered \
enters" x1; : : : ; xN one 
an form the spa
eS := span f�(k � �xjk2) 1 � j � Ngand use this spa
e in the above setting. If the data fun
tionals are the point eval-uation fun
tionals Æx1 ; : : : ; :::ÆxN , the problem is a pure interpolation problemand the matrix A is symmetri
 with entries �(kxi � xjk2).However, even in this simple situation it may happen that the matrix is singular.This o

urs, for instan
e, in 
ase of Hardy's multiquadri
s �(r) := pr2 + 
2 andfor thin{plate splines �(r) := r2 log r:One has to add a spa
e IP dm of d{variate polynomials of order (=degree-1) atmost m and to kill the additional q := dimIP dm degrees of freedom by theadditional requirement NXj=1�jp(xj) = 0 for all p 2 IP dm (2)for the solution of the system (1). If m is 
hosen large enough (m � 1 formultiquadri
s, m � 2 for thin{plate splines), the resulting augmented systemwill be nonsingular. We refer te reader to standard literature on radial basisfun
tions for a deeper understanding of these fa
ts.2 Kansa's Te
hniqueA spe
ial but important 
ase o

urs for 
ollo
ation for the inhomogeneousDiri
hlet problem on a bounded domain 
 � IR2, using multiquadri
s. Wehave m � 1 and split the fun
tionals �1; : : : ; �N in two parts:2



� Lagrange data fun
tionals Æx1 ; : : : ; ÆxM for points on the boundary of thedomain 
,� Lapla
e data fun
tionals �xM+1 = ÆxM+1�; : : : ;�xN = ÆxN� for pointsin the 
losure of the domain.Collo
ation is done with the span of the fun
tions �(k ��xjk2); 1 � j � N plusthe fun
tions in IP dm. The additional 
ondition (2) is imposed.The method was �rst introdu
ed by Ed Kansa [12, 13℄ and used su

essfully(and for more general settings) by several other authors, e.g. [1, 2, 3, 14℄.Hon et al. further extended the use of the MQ-RBFs on the numeri
al so-lutions of various ordinary and partial di�erential equations in
luding generalinitial value problems [9℄, nonlinear Burgers' equation with sho
k wave [10℄,surfa
e wind �eld 
omputation from s
attered data [5℄, 
ompli
ated biphasi
and triphasi
 models of mixtures [7℄[8℄, shallow water equation for tide and 
ur-rents simulation under irregular boundary [6℄, and free boundary problems likeAmeri
an option pri
ing [11℄. The 
omputations showed the de�nite advantagesin using this truly mesh-free MQ-RBFs for solving various initial and boundaryvalues problems.The 
orresponding (N+q)�(N+q) matrix was always found to be nonsingular,but there was no proof of this fa
t. In this paper, we 
onstru
t 
ounterexamples,but the 
onstru
tion shows that 
ounterexamples are rare birds indeed.In the above te
hnique, the fun
tionals Æx1 ; : : : ; ÆxN generating the spa
eS := spannÆtxj�(k � �tk2) 1 � j � Noare di�erent from the 
ollo
ation fun
tionals �1; : : : ; �N , making the 
ollo
ationmatrix unsymmetri
. Here, we used the supers
ript t to denote a
tion of afun
tional with respe
t to the variable t. If one uses the 
ollo
ation fun
tionals�1; : : : ; �N to generate the spa
eS := span��tj�(k � �tk2) 1 � j � N	 ;a symmetri
 
ollo
ation te
hnique �rst proposed by Wu [16℄ results, and undermild assumptions on � and the fun
tionals �1; : : : ; �N the symmetri
 
ollo
ationmatrix with entries �sj�tk�(ks � tk2) is positive de�nite. However, symmetri

ollo
ation needs stronger regularity assumptions and usually provides inferiornumeri
al results (see e.g. Fasshauer [4℄). This is why Kansa's unsymmetri

ollo
ation is to be preferred. 3



3 Theoreti
al Basis for CounterexamplesTo be not too far away from any appli
ation, we took the Poisson equation onthe square 
 = [�1;+1℄2 and �xed M = 8 Lagrange data points equidistantlyon the boundary (
orners and mid{edges). Another 9 points for 
ollo
ationof Lapla
ian values were pla
ed inside the square, and we vary these 9 pointslater. Sin
e appli
ations have 
on
entrated on multiquadri
s, these were usedhere, too. Sin
e they require m = 1, we added a 
onstant fun
tion and asingle additional 
ondition (2) on the 
oeÆ
ients of the a
tual 17 radial basisfun
tions. This is the minimum requirement to make the pure interpolationproblem nonsingular. Altogether, we thus have an 18� 18 matrix A(Y ), whoseentries are smooth fun
tions of the elements of the Lapla
ian 
enter set Y =fx9; : : : ; x17g � [�1;+1℄18.We 
arried out similar 
al
ulations for other radial basis fun
tions, and thereforewe des
ribe the te
hnique in somewhat more general terms. However, we usedthe same geometri
 setting in all 
ases. The determinant D(Y ) := detA(Y ) is asmooth fun
tion on [�1;+1℄18, and for a 
ounterexample it suÆ
es to �nd twonumeri
ally nondegenerate 
ases Y1; Y2 2 [�1;+1℄18 with D(Y1) � D(Y2) < 0.We 
an then 
on
lude that on any 
ontinuous path in [�1;+1℄18, joining Y1 andY2, the determinant must vanish at least on
e. But there are lots of su
h pathsthat avoid 
oales
ing points, and ea
h path gives at least one 
ounterexamplewith non
oales
ing points and zero determinant.To �nd two numeri
ally nondegenerate 
ases Y1; Y2 2 [�1;+1℄18 with D(Y1) �D(Y2) < 0, we ran a large number of evaluations of D(Y ), ea
h with a random
hoi
e of Y . It turns out that sign 
hanges of the determinant are very rare,and one just has to look for a single 
ase with the \wrong" sign of the determi-nant. We dis
arded examples where two of the 9 randomly 
hosen points withLapla
ian data had a distan
e less than 0.1, be
ause there are trivial zeros ofthe determinant whenever two points 
oales
e, and we do not want 
ases withvery small determinants in absolute value. Cases with a large 
ondition numberin relation to the absolute value of the determinant were dis
arded, too, be
ausethey do not provide safe examples. More pre
isely, we insisted on the 
ondition
ond (A(Y ))=j det(A(Y ))j < 1010when doing everything in 64{bit double pre
ision. However, it suÆ
es to verifya posteriori that the �nal ex
eptional example really has the \wrong" sign ofdeterminant, even with roundo� taken into 
onsideration.4 Numeri
al ResultsAfter 7846 samples for multiquadri
s with 
 = 0:5 we found an ex
eptional
on�guration with the following Lapla
e points:4



8.273563011676801e-01 1.802418079135202e-012.394614691098507e-01 -3.252848579200380e-019.794477615409753e-01 -9.277954753152073e-01-9.372443072205616e-01 -2.431062149084667e-018.888265033666167e-01 -5.002654378769293e-011.633663452991128e-01 4.030965172700103e-01-9.984683087088486e-01 5.822021935983579e-02-7.520452098697639e-02 -3.715893613973583e-013.489601022326201e-01 1.330205365703536e-01A plot of these points is in Figure 1. This 
ase has determinant -1.265 and
ondition 23764.4, while the pre
eding sample (for instan
e) had determinant46.2. To make sure that there is no serious loss of a

ura
y, we 
al
ulated theapproximate inverse of A(Y ) and found the norm of the residual to be 6.5e-13. Further eviden
e was provided by looking at the full Gaussian eliminationpro
ess: the pivots were reasonable in all elimination steps. By our 
ontinuityargument, this example shows that a general proof of nonsingularity of theunsymmetri
 
oll
ation matrix is impossible.
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-1 -0.5 0 0.5 1Figure 1: Points leading to \wrong" sign of determinant. Here, the + marksstand for the Lagrange points on the boundary, the x marks are the randomLapla
e 
ollo
ation points in the interior, while the * mark is the Lapla
e 
ollo-
ation point that we later moved around to produ
e the plot of the determinantfollowing in the next �gure.If the most 
entral point y is moved around, the determinant d(y) := D(Y (y))produ
es a fun
tion on [�1;+1℄2, plotted in Figure 2.5
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5Figure 2: Determinant as fun
tion of single pointThere is a well{de�ned zero 
ontour line, and by a sequen
e of numeri
al ex-amples (minimization of the absolute value of the determinant on lo
ally re-�ned grids) we �nally got a strongly degenerate 
ase with a determinant of8.212515803804915e-11, where the *{marked point of Figure 1 has moved to thepla
e (x; y) = (-4.500777547787466e-01,5.271590048254461e-01) in Figure3.
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-1 -0.5 0 0.5 1Figure 3: Degenerate pointsThe points are still well{separated, but the 
ondition 6.04e+14 is extremely badand the determinant -8.4e-11 is extremely small. However, the row{sum normof the residual matrix still is 1.425951247620105e-02, proving that this 
ase isat the very edge of 
omputability with 64 bit double pre
ision 
oating pointnumbers.In 
ase of polynomial degree 1 we have to work wit a 20 � 20 matrix. It nowtakes 292372 samples to get a determinant of -0.125 against 1723.0 in the pre-6



vious sample, and with 
ondition 2.18e+5. The points are in Figure 4, and the
orresponding determinant plot is Figure 5.
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-1 -0.5 0 0.5 1Figure 4: Multiquadri
s 
ounterexample with linear polynomials added
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1.2Figure 5: Determinant plot of multiquadri
s 
ounterexample with linear poly-nomials addedThe te
hnique also works for Gaussians with no polynomials added, and it tookjust 390 samples. The matri
es now are 17 � 17. The points of the 
ase with\wrong" sign of determinant are in Figure 6, and the 
orresponding determinantplot is Figure 7.We 
arried out many test runs with Wendland's C2 fun
tion �(r) = (1�r)4+(1+4r) at various s
ales (i.e. using �(r=
) for di�erent 
 to have support radius 
).7
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ounterexampleFor suÆ
iently small 
 in relation to the minimal distan
e of data points, thesefun
tions will generate diagonal 
ollo
ation matri
es with nonzero entries onthe diagonal. But these nondegenerate 
ases have large dis
retization errorsand are thus pra
ti
ally useless. For this reason we tested 
ases with large 
only, but no 
ounterexamples were found so far. However, we do not believethat these 
ompa
tly supported radial basis fun
tions from [15℄ always generatenonsingular matri
es.5 Con
lusionWe have shown that there 
annot be a general proof of nonsingularity of matri
esarising from unsymmetri
 
ollo
ation with radial basis fun
tions. Sin
e nonsin-gularity was observed in all pra
ti
ally relevant 
ases, theoreti
al investigations
an now pro
eed to prove nonsingularity in restri
ted situations.8



For appli
ations, unsymmetri
 
ollo
ation still is preferable over symmetri
 
ol-lo
ation due to its superior performan
e. The pure existen
e of singular 
ases isno serious obje
tion to a valuable numeri
al te
hnique. For example, numeri
alanalysts still solve linear systems of equations even though they 
an be singularin 
ertain 
ases. There are reliable te
hniques to dete
t near{singularity of ma-tri
es, and if these te
hniques are in
orporated into running 
ode, appli
ationsare safeguarded.Referen
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