
On the E�ciency of Interpolationby Radial Basis FunctionsRobert SchabackAbstract. We study the computational complexity, the error behavior,and the numerical stability of interpolation by radial basis functions. Itturns out that these issues are intimately connected. For the case ofcompactly supported radial basis functions, we consider the possibilityof getting reasonably good reconstructions of d-variate functions from Ndata at O(Nd) computational cost and give some supporting theoreticalresults and numerical examples.x1. Optimal RecoveryGiven function values f(x1); : : : ; f(xN ) on a discrete set X = fx1; : : : ; xNg ofscattered locations xj 2 IRd, we want to recover a function f on some givendomain 
 � IRd that contains X. Under certain assumptions to be statedbelow, an optimal reconstruction takes the form of interpolation by anotherfunction s 2 S � C(IRd) with s(xk) = f(xk); 1 � k � N . Due to theMairhuber{Curtis [3] theorem, the space S of interpolants must depend onX, as is the case for classical splines and �nite elements. However, the space Salso depends on the continuity requirements that we shall additionally impose,and these have to match those of f . We �x them by picking a (large) functionspace F that contains f and consists of real-valued functions on 
.Under the assumptions� F is a real Hilbert space,� the point evaluation functionals �x for x 2 
 are continuous on F ( i.e.,elements of the dual space F�),� the �x are linearly independent if they are distinct,the space S is optimally chosen for the above recovery problem if it takes theform S = SX;� = spanf �(� � xj) : 1 � j � N; xj 2 Xg;Proceedings of Chamonix 1996 309A. Le M�ehaut�e, C. Rabut, and L. L. Schumaker (eds.), pp. 309{318.Copyright oc 1997 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reproduction in any form reserved.



310 Robert Schabackwith �(x; y) := (�x; �y)F� (1)on 
� 
. This function is positive de�nite, meaning that the matrixAX;� = (�(xk � xj))1�j;k�N (2)is positive de�nite for any choice of X � IRd and any numberN of data pointsin X. We note in passing that geometric invariance principles of the functionspace F and the domain 
 carry over to invariance principles for the function�. The most important cases [25] are� Translation invariance for 
 = IRd : �(x; y) = �(x� y)� Euclidean invariance for 
 = IRd : �(x; y) = �(kx � yk2), the case ofradial basis functions� Orthogonal invariance for spheres 
 = Sd�1 � IRd : �(x; y) = �(xT y),leading to zonal basis functions.Anyway, the interpolant sf to f can be written assf = NXj=1�fj�(� � xj );and the interpolation conditions sf (xk) = f(xk); 1 � k � N lead to the linearsystem AX;��f = (f(x1); : : : ; f(xN ))T (3)for �f 2 IRN with the matrix of (2). The above setting is optimal in the sensethat for any given point x 2 
 the linear error functional f 7! f(x) � sf (x)has minimal norm in F� among all other linear recovery processes using thesame information, i.e., when compared to all error functionals of the formf 7! f(x) � NXj=1 gj(x)f(xj ):Among other optimality properties, this feature is the major link of the abovereconstruction process to the theories of information{based complexity [28]and optimal recovery [15]. Because we need the notation anyway, let us lookat the power function PX;�;g of the above linear process, which is de�nedas the norm of the above functional, and which depends on g = (g1; : : : ; gn).Using (1), the square of the power function is the explicitly available quadraticform P 2X;�;g(x) = k�x � NXj=1 gj(x)�xjk2F� =�(x; x) � 2 NXj=1 gj(x)�(x; xj )+ NXj=1 NXk=1gj(x)gk(x)�(xk ; xj )



E�ciency of RBF Interpolation 311and its minimum is attained for g(x) = (g1(x); : : : ; gn(x))T solving the systemAX;�g(x) = (�(x; x1); : : : ;�(x; xN ))T :But this is the system that is uniquely solved by the functions uopt(x) =(uopt1 (x); : : : ; uoptn (x))T that make up the Lagrange form of the interpolantsf = NXj=1 �fj�(�; xj) = NXj=1 uoptj (x)f(xj ):Thus we have the inequalityPX;�;g(x) � PX;�;uopt(x) =: PX;�(x)betweeen these power functions, and the optimal recovery process is recog-nized as interpolation by linear combinations of functions �(�; xj ), as required.x2. ExamplesGlobal radial basis functions �(r) with �(kx�yk2) = �(x; y) are widely knowninstances of the above optimal recovery approach, though not fully covered byour simpli�ed presentation here (we omitted conditional positive de�niteness).If F is a Beppo-Levi space on 
 = IRd induced by a Sobolev-type seminorm,we get the examples [6]Polyharmonic splines �(r) = r�; � 2 IR>0 n2INThin-plate splines �(r) = r� log r; � 2 2INwhile the spaces F leading toMultiquadrics, inverse multiquadrics �(r) = (r2 + c2)�=2; � 2 IR n2INGaussians �(r) = e��r2 ; � > 0are quite small spaces of functions with in�nite di�erentiability. The precisecharacterization of these spaces requires generalized Fourier transforms andis not included here. Details can be found in the research papers [13,14,32]and in the survey articles [7,8,12,19,20,24]. The most important spaces forapplications are the Sobolev spaces W k2 (IRd), and these lead toSobolev splines �(r) = rk�d=2Kk�d=2(r); k > d=2with the Bessel or Macdonald function K� , which has exponential decay to-wards in�nity. Its singularity at zero is compensated by the rk�d=2 factor.In all of the above cases, the matrixAX;� = (�(kxj � xkk2)) is non-sparsein general, which makes the use of the optimal recovery process computa-tionally ine�ective. For thin-plate splines, however, there are sophisticated



312 Robert Schabacktechniques by Beatson, Newsam, and Powell [1,2,21,22] to overcome theseproblems. A somewhat more direct approach considers compactly supportedfunctions instead of the global ones described above. Examples are1) Euclidean hat function [29,18,24]2) Radialized tensor product B-Splines [24]3) Functions of Wu [31] (plus a related toolbox [27])4) Functions of Wendland, e.g. �(r) = (1� r)4+(4r + 1) [30]5) Functions of Buhmann [5]Case 4 has minimal degree bd=2c + 3k + 1 for given smoothness C2k andpositive de�niteness on IRd, and its related Hilbert space turns out to benorm-equivalent to a Sobolev space (see the contribution of Wendland inthis volume). For all of the above functions, the corresponding spaces Fcan be formally constructed along the lines of [26] based on [13]. Havingcompactly supported cases at hand, we devote the rest of the paper to thequestion of attaining an overall computational complexity of O(N � d) fora d-variate recovery problem based on N data. Note that this amounts tosolving the N �N system (3) by O(N) operations. This is the state-of-the-art in preconditioned multilevel techniques for �nite elements, and it is a veryimportant open research problem for general recovery processes.x3. Scaling E�ectsLet us consider a translation-invariant setting on IRd with �(x; y) = �(y; x) =�(x � y) for an even function � : IRd ! IR which we further assume to becompactly supported inside the unit ball. We introduce a scaling parameter� > 0, and write ��(�) := �(�=�)such that the support of �� �ts into a ball of radius �. For � su�ciently small,the matrix AX;�� will be diagonal, and then the system(3) is trivially solvableusingO(N) operations. However, the recovery will be a superposition of sharpspikes, and the reproduction quality will be hopelessly bad. Thus the questionfor computational complexity O(N � d) has to be recast as a question for theachievable reproduction quality while keeping that complexity �xed.But there is another problem hidden behind the scenery. The stability ofreconstruction, as described by the matrix norm kA�1X;��k, is closely related tothe reproduction quality. An Uncertainty Relation, as proven in [23], requiresP 2X;��(x)kA�1X[fxg;��k � 1;and makes recovery processes with small power functions notoriously unstable,if no special precautions like preconditioning are taken. The instability has astrong impact on the O(N) computational complexity for solving N �N sys-tems, since uniformly bounded condition numbers are an essential hypothesisthat cannot be discarded.



E�ciency of RBF Interpolation 313The above discussion forces us to study both the error and the stabilityin terms of scaling. To this end, we have to look at the standard forms oferror and stability bounds. We �x X, 
 and �, dropping these symbols inour notation. In case of error bounds, we can proceed as in [23] and boundthe optimal power function in terms of the data distanceh := supy2
 minxj2X ky � xjkby kP 2k1;
 � F (h=�);where F is a monotonic positive function on [0;1) with F (0) = 0. Note thatthe overall error is bounded bykf � sf k1;
 � F (h=�)kfkF�with an additional factor kfkF� depending on f and �, but we concentrateon power function bounds in the sequel. A recent improvement of the prooftechniques for error bounds [26] yields an additional factor F (h=�) in such abound, but for a more restrictive norm on f and under assumption of addi-tional boundary conditions.The stability bounds [18,16,23] are in terms of the separation distanceq := minxj 6=xk2X kxk � xjk;and take the form kA�1X k2 � G�1(q=�);where G also is a monotonic positive function on [0;1) which vanishes atzero.If the data are not too wildly scattered, they satisfy an asymptotic uni-formity condition 0 < c � qh � 1:This can be used to cast the Uncertainty Relation into the inequalityG(�) � F (�pd)between the functions F and G. In cases where � is of limited smoothness,these functions satisfy an asymptotic relationG(t) = �(t�) = F (t) (4)for su�ciently small t, where � increases with the smoothness of �. Detailscan be found in [23], but the rule of thumb is that for � generating a spaceequivalent to W k2 (IRd) we have � = k � d=2.



314 Robert Schabackx4. E�ciencyWe now look at special choices for h, q, and � and their connections. Inthe stationary case, the parameters h and � are proportional, and then theUncertainty Relation in the formP 2(x) � kA�1X[fxgk�1 � G(q=�)shows us that there will be no convergence of the power function to zero forh ! 0. This concides with M. Buhmann's �ndings [4] on the grid ZZd. Butthe error can be made small by making the ratio h=� small, and this amountsto working with increasing bandwidth of the matrix AX . We can roughlyaccount for the bandwidth by B := (�=h)dfor asymptotically uniformly scattered data, and we see that the power func-tion bound can be rephrased in terms of bandwidth B askP 2k1;
 � F (B�1=d);yielding an error factor that decreases with increasing bandwidth. This will becon�rmed by numerical evidence in the �nal section. Under the assumption(4) and ignoring constant factors from now on, we �ndkP 2k1;
 � B��=d;such that high-order methods have a strongly positive in
uence.Now we look at computational complexity. The condition of the matrixcan be roughly estimated byC = B � S = (�=h)d �G�1(q=�);where S is the stability, i.e., an upper bound for kA�1X k. The computationalcomplexity of, say, the conjugate gradient method then is O(N � B � pC),because each matrix-vector multiplication takes O(N �B) operations and thenumber of iterations is proportional to the square root of the condition. Sincewe assert an overall O(N) complexity, we look at the computational cost perdata item. This then isB � pC = (�=h)3d=2 �G�1=2(q=�);but we still have to relate it to the error behavior. Since this is (at leastpartially) ruled by P and its bound� = F 1=2(h=�);



E�ciency of RBF Interpolation 315we can combine the above identities under the assumptions (4) and asymptoticuniformity of the data. If we express everything by bandwidth B, we have tokeep in mind that large bandwidth B and small error � are intimately relatedby � = F 1=2(B�1=d):Then the computational complexity per data point and related to the error isB � pC=� = (�=h)3d=2 �G�1=2(q=�)F�1=2(B�1=d)= B3=2B�=d:If we express everything by the bound � for the power function, we getB � pC=� = ��2�3d=�for the computational complexity per data point and related to the error.The consequence of this bound is that higher-order methods should be usedfor increasing space dimension d, because then �=d can be kept in a feasiblerange. x5. Numerical EvidenceThe following tables were obtained by interpolation of Franke's function [11]on N = (2n+1)2 regularly distributed data points by Wendland's C2 function�(r) = (1 � r)4+(1 + 4r) with varying support scale � and bandwidth B, themaximum number of nonzero entries in each row/column of the interpolationmatrix.N/B 5 9 13 21 25 29 37 459 8.0509 5.4807 5.3385 5.3521 5.3806 5.4089 5.4845 5.544225 4.4284 1.2000 0.9532 0.9210 0.8963 0.8719 0.8399 0.818781 4.6422 1.1014 0.8827 0.7237 0.6762 0.6310 0.5362 0.4666289 4.3543 0.8139 0.7562 0.7672 0.7110 0.6605 0.5441 0.46051089 4.2275 0.7813 0.7898 0.7921 0.7363 0.6830 0.5643 0.47864225 4.2164 0.7791 0.8008 0.8046 0.7486 0.6950 0.5757 0.488316641 4.2132 0.7786 0.7791 0.7630 0.7096 0.6580 0.5451 0.460866049 4.2123 0.7786 0.7179 0.7658 0.7130 0.6611 0.5477 0.4633Table 1. Stationary case, maximum error on domain.The �rst table contains the stationary case h=� =const. where the band-width B is the relevant parameter. Note that for B �xed there is no con-vergence for N ! 1, while an increase of B decreases the error gradually.Each entry can be calculated by a O(N) computational complexity, the factorincreasing with bandwidth B.



316 Robert SchabackN/� 0.0625 0.125 0.25 0.5 1 2 4 89 12.9202 12.9202 12.9202 12.0378 5.4724 5.5349 5.8105 5.903025 12.8825 12.4130 10.0098 1.1960 0.8177 0.6902 0.6996 0.718681 12.8825 11.3262 1.1004 0.4664 0.3616 0.3692 0.3713 0.3718289 11.4934 0.8139 0.4300 0.1180 0.0433 0.0273 0.0244 0.02551089 0.7813 0.4474 0.1175 0.0277 0.0090 0.0070 0.0065 0.00414225 0.4562 0.1182 0.0273 - - - - -16641 0.1228 - - - - - - -Table 2. Nonstationary case, maximum error on domain.The columns of the second table contain the fully nonstationary case� = const. where the interpolation matrix usually is non-sparse for large� and cannot be treated with O(N) computational complexity. The errorbehavior for N ! 1 is good, but bad condition does not allow large valuesof N for large �.N/B 9 13 21 25 29 37 459 5.48067 5.33852 5.35213 5.38056 5.40887 5.48450 5.5442425 0.93277 0.78306 0.70164 0.69314 0.68419 0.68081 0.6846981 0.42254 0.38226 0.35683 0.35762 0.36036 0.36862 0.37383289 0.06797 0.05173 0.03522 0.03304 0.03148 0.03041 0.028891089 0.08255 0.02560 0.01866 0.01195 0.01106 0.01054 0.009264225 0.03001 0.00974 0.00682 0.00411 0.00375 0.00356 0.0029816641 0.01142 0.00346 0.00236 0.00136 0.00123 0.00117 0.0009466049 0.00516 0.00130 0.00083 0.00043 0.00038 0.00036 0.00027Table 3. Multilevel case, maximum error on domainThe third table uses a stationary scheme again, but proceeds verticallythrough the columns by interpolating residuals of the previous step at the �nerdata set. This is the multilevel technique that also has been used by Floaterand Iske [9,10], and it shows linear convergence at a O(N) computationalcomplexity. A proof for this behavior still is missing. First results for asimilar technique are in [17]. References1. Beatson, R. K., and G. N. Newsam, Fast evaluation of radial basis func-tions: I. Advances in the theory and applications of radial basis functions,Comput. Math. Appl. 24 (1992), 7{19.2. Beatson, R. K., and G. N. Newsam, Fast evaluation of radial basis func-tions: Moment based methods, preprint, 1995.
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