On the Efficiency of Interpolation
by Radial Basis Functions

Robert Schaback

Abstract. We study the computational complexity, the error behavior,
and the numerical stability of interpolation by radial basis functions. It
turns out that these issues are intimately connected. For the case of
compactly supported radial basis functions, we consider the possibility
of getting reasonably good reconstructions of d-variate functions from N
data at O(Nd) computational cost and give some supporting theoretical
results and numerical examples.

§1. Optimal Recovery

Given function values f(x1),..., f(@n) on a discrete set X = {a1,..., 2N} of
scattered locations z; € R?, we want to recover a function f on some given
domain © C R? that contains X. Under certain assumptions to be stated
below, an optimal reconstruction takes the form of interpolation by another
function s € S C C(Rd) with s(zg) = f(2x), 1 < k < N. Due to the
Mairhuber—Curtis [3] theorem, the space S of interpolants must depend on
X, asis the case for classical splines and finite elements. However, the space S
also depends on the continuity requirements that we shall additionally impose,
and these have to match those of f. We fix them by picking a (large) function
space F that contains f and consists of real-valued functions on ).

Under the assumptions

o F is a real Hilbert space,

e the point evaluation functionals 6, for @ € Q are continuous on F (i.e.,
elements of the dual space F*),

e the ¢, are linearly independent if they are distinct,

the space S is optimally chosen for the above recovery problem if it takes the
form

S=Sxe=span{ ®(- —z;) : 1<j <N, z; € X},
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with

O(z,y) := (6u,0y) 7+ (1)
on {2 x Q. This function is positive definite, meaning that the matrix
Axe = (P(zr - xj))lgj,kgj\f (2)

is positive definite for any choice of X € R” and any number N of data points
in X. We note in passing that geometric invariance principles of the function
space F and the domain €2 carry over to invariance principles for the function
®. The most important cases [25] are

e Translation invariance for @ = R? : ®(z,y) = é(z — y)

e Euclidean invariance for Q = R : ®(z,y) = &(|lz — yl2), the case of
radial basis functions

e Orthogonal invariance for spheres Q = %1 ¢ R? : Oz, y) = ¢(zTy),
leading to zonal basis functions.

Anyway, the interpolant s/ to f can be written as

N
A= afel )
i=1

and the interpolation conditions s/ (zx) = f(x1), 1 < k < N lead to the linear
system

Ax,q)ozf = (f(:z;l),...,f(:sz))T (3)

for af € RY with the matrix of (2). The above setting is optimal in the sense
that for any given point x €  the linear error functional f s f(x) — s/ (z)
has minimal norm in F* among all other linear recovery processes using the
same information, i.e., when compared to all error functionals of the form

— Z gi(x)f(z;)

Among other optimality properties, this feature is the major link of the above
reconstruction process to the theories of information-based complexity [28]
and optimal recovery [15]. Because we need the notation anyway, let us look
at the power function Px ¢ 4 of the above linear process, which is defined
as the norm of the above functional, and which depends on g = (¢1,...,9n).
Using (1), the square of the power function is the explicitly available quadratic
form

Pi @ glx) = |0z — Zg] bz, |5+ =®(a, ) 229] (z,2;)

+ Z Z 9i()gr(x)®(zg, 7;)

7=1 k=1



and its minimum is attained for g(x) = (g1(), ..., gn(x))T solving the system
Axeg(z) = (D(z,21),..., (e, 2n))"

But this is the system that is uniquely solved by the functions u°?(z) =
(P (x),...,u"(z))T that make up the Lagrange form of the interpolant

f—ZafCI) L) :Zuc’pt

J=1
Thus we have the inequality

Px ¢ 4(2) 2 Px ¢ uort(z) = Px a(2)

betweeen these power functions, and the optimal recovery process is recog-
nized as interpolation by linear combinations of functions ®(-, x; ), as required.

§2. Examples

Global radial basis functions ¢(r) with ¢(||x—yl|2) = ®(z,y) are widely known
instances of the above optimal recovery approach, though not fully covered by
our simplified presentation here (we omitted conditional positive definiteness).
If F is a Beppo-Levi space on © = R? induced by a Sobolev-type seminorm,
we get the examples [6]

Polyharmonic splines ¢(r) = 7%, 8 € R \2IN
Thin-plate splines ¢(r) = rflogr, 5 € 2N

while the spaces F leading to

Multiquadrics, inverse multiquadrics ¢(r) = (r? + ¢2)#/2, 3 € R\2N

Gaussians ¢(r) = e_ar2, a>0

are quite small spaces of functions with infinite differentiability. The precise
characterization of these spaces requires generalized Fourier transforms and
is not included here. Details can be found in the research papers [13,14,32]
and in the survey articles [7,8,12,19,20,24]. The most important spaces for
applications are the Sobolev spaces Wzk(IRd), and these lead to

Sobolev splines ¢(r) = rk_d/sz_d/z(r), k>d/2

with the Bessel or Macdonald function K ,, which has exponential decay to-
wards infinity. Its singularity at zero is compensated by the r*=4/2 factor.
In all of the above cases, the matrix Ax ¢ = (¢(||z; — x||2)) is non-sparse
in general, which makes the use of the optimal recovery process computa-
tionally ineffective. For thin-plate splines, however, there are sophisticated



techniques by Beatson, Newsam, and Powell [1,2,21,22] to overcome these
problems. A somewhat more direct approach considers compactly supported
functions instead of the global ones described above. Examples are

1) Euclidean hat function [29,18,24]

2) Radialized tensor product B-Splines [24]

3) Functions of Wu [31] (plus a related toolbox [27])

4) Functions of Wendland, e.g. ¢(r) = (1 —r)4(4r 4+ 1) [30]
)

5) Functions of Buhmann [5]

Case 4 has minimal degree |d/2] + 3k + 1 for given smoothness C?* and
positive definiteness on IR?, and its related Hilbert space turns out to be
norm-equivalent to a Sobolev space (see the contribution of Wendland in
this volume). For all of the above functions, the corresponding spaces F
can be formally constructed along the lines of [26] based on [13]. Having
compactly supported cases at hand, we devote the rest of the paper to the
question of attaining an overall computational complexity of O(N - d) for
a d-variate recovery problem based on N data. Note that this amounts to
solving the N x N system (3) by O(N) operations. This is the state-of-the-
art in preconditioned multilevel techniques for finite elements, and it is a very
important open research problem for general recovery processes.

§3. Scaling Effects

Let us consider a translation-invariant setting on R? with ®(z,y) = ®(y, z) =
é(x — y) for an even function ¢ : R? — IR which we further assume to be
compactly supported inside the unit ball. We introduce a scaling parameter
6 > 0, and write

9s(-) 7= (/)

such that the support of ¢; fits into a ball of radius 6. For ¢ sufficiently small,
the matrix Ay 4, will be diagonal, and then the system(3) is trivially solvable
using O(N) operations. However, the recovery will be a superposition of sharp
spikes, and the reproduction quality will be hopelessly bad. Thus the question
for computational complexity O(N - d) has to be recast as a question for the
achievable reproduction quality while keeping that complexity fixed.

But there is another problem hidden behind the scenery. The stability of
reconstruction, as described by the matrix norm HA)_(T% ||, is closely related to
the reproduction quality. An Uncertainty Relation, as proven in [23], requires

P% o, (Ol AUy 6, 1 2 1,
and makes recovery processes with small power functions notoriously unstable,
if no special precautions like preconditioning are taken. The instability has a
strong impact on the O(N') computational complexity for solving N x N sys-
tems, since uniformly bounded condition numbers are an essential hypothesis
that cannot be discarded.



The above discussion forces us to study both the error and the stability
in terms of scaling. To this end, we have to look at the standard forms of
error and stability bounds. We fix X, Q and ¢, dropping these symbols in
our notation. In case of error bounds, we can proceed as in [23] and bound
the optimal power function in terms of the data distance

h :=sup min ||y — z;
sup min [y~ 2

by
| P?||oc,2 < F(R/6),

where F' is a monotonic positive function on [0, c0) with F(0) = 0. Note that
the overall error is bounded by

If = s'lloc. < F(R/8)]| £l 7,

with an additional factor ||f||r, depending on f and ¢, but we concentrate
on power function bounds in the sequel. A recent improvement of the proof
techniques for error bounds [26] yields an additional factor F(h/6) in such a
bound, but for a more restrictive norm on f and under assumption of addi-
tional boundary conditions.

The stability bounds [18,16,23] are in terms of the separation distance

¢i=_ min llze =,

and take the form
IAY |2 < G (g/0),

where G also is a monotonic positive function on [0, 00) which vanishes at
ZETO.
If the data are not too wildly scattered, they satisfy an asymptotic uni-
formaty condition
q
0<e<L =<1
=35

This can be used to cast the Uncertainty Relation into the inequality
G(-) < F(-Vd)

between the functions F' and G. In cases where ¢ is of limited smoothness,
these functions satisfy an asymptotic relation

G(t) = O(t") = F(t) (4)

for sufficiently small ¢, where 3 increases with the smoothness of ¢. Details
can be found in [23], but the rule of thumb is that for ¢ generating a space
equivalent to WF(R?) we have § = k — d/2.



64. Efficiency

We now look at special choices for h, ¢, and ¢ and their connections. In
the stationary case, the parameters h and ¢ are proportional, and then the
Uncertainty Relation in the form

P*(2) 2 ALy |7 2 Gla/9)

shows us that there will be no convergence of the power function to zero for
h — 0. This concides with M. Buhmann’s findings [4] on the grid Z¢. But
the error can be made small by making the ratio h/6 small, and this amounts
to working with increasing bandwidth of the matrix Ax. We can roughly
account for the bandwidth by

B :=(§/h)?

for asymptotically uniformly scattered data, and we see that the power func-
tion bound can be rephrased in terms of bandwidth B as

1P?||oc. < F(BTHY),

yielding an error factor that decreases with increasing bandwidth. This will be
confirmed by numerical evidence in the final section. Under the assumption
(4) and ignoring constant factors from now on, we find

1P?|loc. < BT/,

such that high-order methods have a strongly positive influence.
Now we look at computational complexity. The condition of the matrix
can be roughly estimated by

C=B-5=(/n)" G (q)o),
where S is the stability, i.e., an upper bound for ||A%'||. The computational
complexity of, say, the conjugate gradient method then is O(N - B - \/6),
because each matrix-vector multiplication takes O(N - B) operations and the
number of iterations is proportional to the square root of the condition. Since

we assert an overall O(N) complexity, we look at the computational cost per
data item. This then is

BT = 5/ 7 g/,

but we still have to relate it to the error behavior. Since this is (at least
partially) ruled by P and its bound

e=FY%(h/§),



we can combine the above identities under the assumptions (4) and asymptotic
uniformity of the data. If we express everything by bandwidth B, we have to
keep in mind that large bandwidth B and small error € are intimately related
by

€ — Fl/Z(B_l/d).

Then the computational complexity per data point and related to the error is

B-VC/e=(6/h)*W* .G Y2(q)5)F~Y/* (B~
= B3/2BA/d,

If we express everything by the bound e for the power function, we get
B-V(C[e=e 27348

for the computational complexity per data point and related to the error.
The consequence of this bound is that higher-order methods should be used
for increasing space dimension d, because then 3/d can be kept in a feasible
range.

§5. Numerical Evidence

The following tables were obtained by interpolation of Franke’s function [11]
on N = (2n+1)? regularly distributed data points by Wendland’s C? function
¢(r) = (1 —r)3(1 + 4r) with varying support scale 6 and bandwidth B, the
maximum number of nonzero entries in each row/column of the interpolation
matrix.

N/B 5 9 13 21 25 29 37 45
9 8.0509 5.4807 5.3385 5.3521 5.3806 5.4089 5.4845 5.5442

25 | 4.4284 1.2000 0.9532 0.9210 0.8963 0.8719 0.8399 0.8187
81 4.6422 1.1014 0.8827 0.7237 0.6762 0.6310 0.5362 0.4666
289 | 4.3543 0.8139 0.7562 0.7672 0.7110 0.6605 0.5441 0.4605
1089 | 4.2275 0.7813 0.7898 0.7921 0.7363 0.6830 0.5643 0.4786
4225 | 4.2164 0.7791 0.8008 0.8046 0.7486 0.6950 0.5757 0.4883
16641 4.2132 0.7786 0.7791 0.7630 0.7096 0.6580 0.5451 0.4608
66049 | 4.2123 0.7786 0.7179 0.7658 0.7130 0.6611 0.5477 0.4633

Table 1. Stationary case, maximum error on domain.

The first table contains the stationary case h/é =const. where the band-
width B is the relevant parameter. Note that for B fixed there is no con-
vergence for N — oo, while an increase of B decreases the error gradually.
Each entry can be calculated by a O(N) computational complexity, the factor
increasing with bandwidth B.



N/é 0.0625  0.125 0.25 0.5 1 2 4 8
9 12.9202 12.9202 12.9202 12.0378 5.4724 5.5349 5.8105 5.9030

25 12.8825 12.4130 10.0098 1.1960 0.8177 0.6902 0.6996 0.7186
81 12.8825 11.3262 1.1004 0.4664 0.3616 0.3692 0.3713 0.3718
289 11.4934 0.8139 0.4300 0.1180 0.0433 0.0273 0.0244 0.0255
1089 0.7813 0.4474 0.1175 0.0277 0.0090 0.0070 0.0065 0.0041
4225 0.4562 0.1182 0.0273 - - - - -
16641 0.1228 - - - - - - -

Table 2. Nonstationary case, maximum error on domain.

The columns of the second table contain the fully nonstationary case
6 = const. where the interpolation matrix usually is non-sparse for large
6 and cannot be treated with O(N) computational complexity. The error
behavior for N — oo is good, but bad condition does not allow large values

of N for large 6.

N/B 9 13 21 25 29 37 45
9 5.48067 5.33852 5.35213 5.38056 5.40887 5.48450 5.54424

25 0.93277 0.78306 0.70164 0.69314 0.68419 0.68081 0.68469
81 0.42254 0.38226 0.35683 0.35762 0.36036 0.36862 0.37383
289 0.06797 0.05173 0.03522 0.03304 0.03148 0.03041 0.02889
1089 0.08255 0.02560 0.01866 0.01195 0.01106 0.01054 0.00926
4225 0.03001 0.00974 0.00682 0.00411 0.00375 0.00356 0.00298
16641 0.01142 0.00346 0.00236 0.00136 0.00123 0.00117 0.00094
66049 0.00516 0.00130 0.00083 0.00043 0.00038 0.00036 0.00027

Table 3. Multilevel case, maximum error on domain

The third table uses a stationary scheme again, but proceeds vertically
through the columns by interpolating residuals of the previous step at the finer
data set. This is the multilevel technique that also has been used by Floater
and Iske [9,10], and it shows linear convergence at a O(N) computational
complexity. A proof for this behavior still is missing. First results for a
similar technique are in [17].
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