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Abstract

The paper provides the fractional integrals and derivatives of the Riemann-Liouville and Caputo type
for the five kinds of radial basis functions, including the Powers, Gaussian, Multiquadric, Matérn and
Thin-plate splines, in one dimension. It allows to use high order numerical methods for solving fractional
differential equations. The results are tested by solving two test problems. The first test case focuses
on the discretization of the fractional differential operator while the second considers the solution of a
fractional order differential equation.
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1. Introduction

The basic idea behind fractional calculus has a history similar to that of more classical calculus and the
topic has attracted the interests of mathematicians who contributed fundamentally to the development
of classical calculus [7]. However, the development and analysis of fractional calculus and fractional
differential equations is less mature than that associated with classical calculus. In spite of this, during
the last decade fractional calculus emerges increasingly as a tool for the description of a broad range of non-
classical phenomena in the applied sciences and engineering [10, 22]. A striking example of this is a model
for anomalous transport processes and diffusion, leading to fractional partial differential equations [29, 30],
but other examples are readily available for the modeling of frequency dependent damping behavior of
many viscoelastic materials [1, 2], continuum and statistical mechanics [28], solid mechanics [40], and
economics [3]. Models involving fractional derivatives can be divided into two major types: time fractional
differential equations, typically associated with phenomena with memory or non-Markovian processes
and spatial fractional partial differential equations (FPDEs), often used to model anomalous diffusion
or dispersion with enhanced diffusion speed [32]. With an expanding range of applications and models
based on fractional calculus comes a need for the development of robust and accurate computational
methods for solving these equations. For the time fractional problems, there is a substantial number of
publications on a variety of numerical schemes [9, 24, 25, 50, 51, 52]. For the spatial FPDEs, publications
on the numerical schemes are relatively sparse, and the majority of the publications are based on finite
difference methods of order one or at most two [8, 27, 31, 32, 44, 45, 46, 47, 48]. Some other numerical
schemes using low-order finite elements [11, 15, 39], modified homotopy analysis method [41], and spectral
method [20] have also been proposed. One of the ongoing issues with fractional models is the design of
efficient high-order numerical discretizations. One approach is to discretize these non-local differential
operators with non-local numerical methods. Following that approach, Hanert has proposed a pseudo-
spectral method based on Chebyshev basis functions in space and Mittag-Leffler basis functions in time
to discretize the space-time fractional diffusion equation [18]. A similar approach has been followed by
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Li and Xu to discretize the time-fractional diffusion equation with a Jacobi pseudo-spectral method [26].
Recently, Xu and Hesthaven proposed stable multi-domain spectral penalty methods for solving fractional
partial differential equations [49].

Unlike traditional numerical methods for solving differential equations, meshless methods need no
mesh generation, which is the major problem in finite difference, finite element and spectral methods
[33, 35, 38, 43]. Radial basis function (RBF) methods are truly meshless and simple enough to allow
modelling of rather high dimensional problems [16, 17, 19, 21, 33]. These methods can be very efficient
numerical schemes to discretize non-local operators like fractional differential operators. Piret and Hanert
[36] recently proposed a Guassian RBF discretization for the one-dimensional space-fractional diffusion
equations. In this paper, we provide the required formulas for the fractional integrals and derivatives of
the Riemann-Liouville and Caputo types for RBFs in one dimension. It allows to use high order numerical
methods for solving fractional differential equations.

The rest of the paper is organized as follows. In section 2 we give some important definitions and
theorems which are needed throughout the remaining sections of the paper. In section 3 we get a
recursive relation for fractional integrals and derivatives of 2¥(k € Ny). The corresponding formulas of
the fractional integrals and derivatives of Riemann-Liouville and Caputo type for the five kinds of RBF's
are given in section 4. The results are applied to solve two test problems in section 5. The last section
is devoted to a brief conclusion.

2. Preliminaries

2.1. Radial Basis Functions

In this subsection, we give an account of the RBFs that are in our focus [42].

Definition 2.1. Let Q C R? be an arbitrary nonempty set. A function K : Q x Q — R is called (real)
kernel on .

Definition 2.2. A kernel K is symmetric, if K(x,y) = K(y,x) holds for all z,y € Q.

For scattered nodes z1,...,x, € RY, the translates K;(x) = K(x;,x) are the trial functions one can
start with. If the kernel is translation-invariant on R¢, it is of the form

K(z,y) =¢(x —y), Vz,ye RrRe.

An important class of kernels are radial kernels, with significant properties [6]. Radial kernels can be
defined as
K(x;y) = ¢(T), r= H’JJ - yHﬂ T,y € Rda

for a scalar function
¢:[0,00) = R,

the function ¢ is called a radial basis function. Kernels on R? can be scaled by a positive factor ¢ which is
called shape parameter and can be found numerically for getting accurate numerical solutions and good
conditioning of the collocation matrix [5, 14]. The new scaled kernel is given by:

K. (z,y) =K (%, %) Vz,y € RY.

Therefore, the scaled radial kernels on R? can be defined as:

;
Ke(w,y)=¢ (L), r=lz—yl, o,y € R

The most commonly used global RBFs ¢(r) are listed in Table 1, where n, § and v are RBF parameters.



Table 1: Global RBFs.

Name b(r) [ condition

2
Gaussian exp(—%-)
Multiquadric (14722 | BeRyp\ 2N
Matérn/Sobolev rY K, (r) v>0
Powers rP 0< B &2N
Thin-plate splines | 72" In(r) n €N

Remark 2.1. One of the most important examples of scaled radial kernels are the Whittle-Matérn kernels

v d
(C) KZ,<C), v=m-——, r=|x—yl, z,y € RY,
c c 2

reproducing in the Sobolev space W3 (R?) for m > d/2, where K, is the modified Bessel function of the
second kind defined as follows [4]:

where

1)2 "
ryres (%)
u(@) = (5) Z:O nD(v+n+1)
Remark 2.2. Throughout this paper, we work with the scaled RBFs in 1 dimension, that is,

r

qs(g)a 7":|1'—y|, JC,yER

2.2. Fractional Calculus

Here we give some basic definitions and properties of the fractional calculus theory which are used
further in this paper [12, 23]. In all cases, a and b are arbitrary real numbers and « is a non-integer
positive number.

Definition 2.3. The left and the right-sided Riemann-Liouville fractional integrals of order a of a func-
tion f are defined in the following forms:

(I f) (x /f Y-t dt,  (z>a),
and
(I f /f Yt —a)* tdt,  (z<b).

Definition 2.4. The left and the right-sided Riemann-Liouville fractional derivatives of order o of a
function f are defined in the following forms:

Dpn@ = (1) N @ - roms (£) [ foe-0— e @),

and

0 N = (-4 ) G = s (- )/f —ay T (w<b),



Definition 2.5. The left and the right-sided Caputo fractional derivatives of order o of a function f are
defined in the following forms:

(“Dgi f) (x) = (170D f) 0" dt, (n=la]+1, @ >a),
and
_1\" b 1
(CD§-f) (@) == (=1)" (;7D"f) () = Fénl_)a) / FO @ 0" (n=a]+ 1, 2 <b),

here D = —.
where .

The following results are easy to prove [12, 23].
Theorem 2.1. Let 8 > —1, then

e _ ﬁ B+1 _ \Bta
<Ia+ t CL ) ﬂ—i—a—i—l) (CC a) * ) (‘T>a)7
1)
<D3+ t_a ? fz+1)(x_a)5—ll’ (x>a),

( ,@) rg+1)
r'+a+1)
( g) [3 +1)
—a+ )
Specifically, if o — p € {1,2,...,[a] + 1} then we have

(b—x)’“a, (x <b),

(b—x)P, (x < b).

(D+t—a ) ) =0, (x > a),

(D,‘){ (b t)ﬂ) ()=0, (x<b).

0O
Theorem 2.2. Let n = [a]+1 and § > n — 1 then the following relations hold
r 1
(D3 (- 0) 0) = e la =P @),
r 1
(D5 6-1) @0 = pp s -2 @ <h).
Specifically, if k € {0,1,...n — 1} then we have
(°ps t-a)f) @ =0, (@>a),
(CDg: (b— t)k> () =0, (z<b).
O
Theorem 2.3. Assume that [ is such that CDO‘+f, CDa_ f, D&y f and Dp- f exist. Then
C 1o o - f(k) k—«
(Da+f)() Da+f Z 7054’].) x_a) ) (n:[a]+1vx>a)7
nol k) (b W
CDE1) @) = (DN )= 3 ity 6= ™" (= ol +1, 0 <b).
k=0
O



3. Fractional derivatives of z*

In this section we get a recursive relation for fractional integrals and derivatives of ¥, k € Ny, which
are needed in the sequel. In all cases, a and b are arbitrary real numbers and « is a non-integer positive
number.

Theorem 3.1. For all k € Ny, we have

(1% %) (2) = kl(z —a)*T(-a+1) i 2" (—a)’

F'k+a+1) — il T(—a—i+1)
Proof. By Definition 2.3 we have
(2@ = o [ a0
I(a) Ja

Since

130 (0) = oy [ o= 07Nt = s e o)

the theorem is correct in the case k = 0. Now let k > 0, by change of variable t = y(x — a) + a, we have

z—a)® [1 1
() @) = S [ ra -0 00"y
- (xl“_(aa)) Z (D mk_iai/o Y-y T dy

(2 —a)* <= (k\ ,_; Dk —i+DD(a+1)
Z()”“"k T Thtat)

k

- k! (CC — a,)a F(—a + 1) ki (_a)i
= Mk+a+1) Zi!F(*a*iJrl)'

=0

Theorem 3.2. Let n = [a] + 1. Then for all k € Ny,

0, k <mn,
(DY t) (z) = K(z—a)" T(a—n+1) ’“z‘: gh=n=i (—q)! .
I'k—a+1) iZOi!F(a—n—i—i—l)’ -
Proof. By Definition 2.5 we have
(CD2t*) (x) = o /I ()" (z — )"V,
@ '(n-—a) /,
If k < n it is clear that (D% t*) (2)=0. Since
C o 4n n! N n—a—1
D%t = — -1 dt
CD2) @) = e [ @
n! n—ao
- F(nfaJrl)(x_a) ’



the theorem is also correct for the case k = n. Now let k > n, by change of variable t = y(z — a) + a we
have
(“Dg.t*) (z)
k(k—1)...(k—n+1)(z —a)" > [!
k

F(n - a) (yx + a(l — y))kﬂl (1 B y)n7a71 dy

L kk-1) . (k—n+1)(z—a)" = (k—n a— D hmeigy o n—a—lti
_ =) Z( . ) /Oy (1-y) dy

7

[}

i=0
Ck(k—1)...(k—n+1)(z—a)"® "f k=n\ goni Tk —n—it+ D0(n—a +1)
B I'(n—a) — i Nk—a+1)
_Kl(z—a)" "T(a—n+1) lgl ghn=i (—q)’
B L(k—a+1) I T(a—n—i+1)
O
Lemma 3.1. Leta > 1, a ¢ N, and n = [a] + 1. Then for all k € N,
(“D2t%) (v) = k (ODOT ) ().
Proof. If k < n it is clear from Definition 2.5 that
(YD t") () = (°DOT M) (z) = 0.
Now let £ > n then we have
(“D2t*) (v) = 1 /x ()" (= )"t
@ I'n—a) /,
k * k—1 (n—1) n—a—1
= —— t —1 dt
I'(n—a) /a ( ) (z—1)
= k(DY) (2).
O
Lemma 3.2. Let a > 1, « ¢ N, and n =[] + 1. Then for all k € N,
k —«
Do, ¢k — L (Do 14kt a” (z —a)
( a+t ) (‘T) k( at ) (1") + 1—\(1 _ Oé)
Proof. By Theorem 2.3 and Lemma 3.1 we have
k c k « (mk)(i) la
(D3t") (@) = (“Dgt") (2) + g FicasD @9
n—1  p—1)(i—1) k —a
— K (@Dt @) ey gyiay @m0
- k( Da+t )(x)+kZ F(z—a—i—l) (l’ a) + F(l—a)
n—2 k—l)(i) | , F(z—a)®
— g {(@porie ) o irma) e
k(( ool )(x)+;r(i_a+2)($ a) TR )
k a
_ a—1,k—1 a” (x —a)
= k(DoY) (2) + T —a)
O



Theorem 3.3. Let n = [a] + 1. Then for all k € Ny,

. K T(a+D)(@—a) " i (—a)’
(Dat) (@) = T(k—a+1) gz‘!r(a—iH)'

Proof. By Definition 2.4 we have

(D3.1) (@) = F(n_a ( ) e

- F(n—a+1 (i) (z—a)"™
2—a)°
Tl—a)

naldt

Therefore the theorem is correct in the case £k = 0. For k € N, the proof is based on induction over n.
Beginning the induction at n =1 (0 < a < 1), we use the Theorems 2.3 and 3.2 as follows:

(DS‘J’“) ()
= (D2 tY) (z) + F(].ai*a)

_Kl(z—a)' " D(a) 2 gkl () a”
Th—at1) = AT(a—i) TO—a)

-1 k=i (—a)i k—1 ph—1—i (_a)iJrl ak B
S ) ¢ ey e

(x—a)™"

(x—a)™®

I'k—a+1) — il Ta—1) — il INa—1) 1—a)

_ K@= M) (Rt g~ ot (a) a* o
T(k—a+1) <§z' T(a— 1) +; (i—1)! F(a—i+1)> traoa @

_kK@—a) T [ 2" (-a) (—a)* a* “a
Th—at1) (az AT@—i+D) (kl)!F(ak+1)> i a @

CK(z—a) "T() [ = aFi(—a) a(—a)f E (-1)"T(k—a+1D)(a—k+1)
T(k—a+1) az Da—i+1) K ID(a—k+1) o’ a () T(1—a)

CK(z—a) T [ & 2 (—a) a(—a) ko ooa—k

T T Tk-a+tl) <azz'1"( Tit ) WM T(a—k+ 1) <a+ a ))

CK(z—a)  Ta+1) o~ 257 (—a)’

N I'(k—a+1) Zz'F(a—z—l—l)'

Now assume that the theorem is correct for n —1 < a < n where n > 1 (induction hypothesis). We
must then prove that the theorem also holds for n < a < n+ 1. To do this, we use Lemma 3.2 and the



induction hypothesis, as follows:

(D3 ") (@)

ak (x—a)™®
=k (DY) (2) + F((l — Cz) |
_ k!l (z — a)l_a I'a) Rl k-1 (—a)" d*(x—a)™®
Pk—a+1) & ilT(a—1i) I'(l-—a)
_K(@—a) T() (b (—a) | e () a* C
T T Tk—atl) (;i!F(ai)+; T ) T Ta-ay@ 9
_kl(z—a) " T(w) Rl gk (—a)’ K i (—a)’ ak o
T(k—a+1) (ZOZ' T(a — 1) *; (i—1)! F(a—i+1)> traa @9
_K@—a) ") [ = 2" (-a) (o) a* o
T T Tk—a+tl) <O‘§z! Tla—it1) (k—l)!F(a—k+1)> Fra—a @9
CK(z—a) T [ & i (—a) a(—a) I (=)*T(k—a+D(a—k+1)
Th—at1) agi!r(mwl) MT(a—k+1) \a o T(@) T(1—a)
_kl(z—a) " T(w)  zFi(—a) a(—a)f ko a—k
T Tk—a+1) <a§i!F(a—i+l)+k!F(a—k+1) <a+ o ))
CK(z—a)  T(a+1) o~ 257 (=a)’
N I'(k—a+1) ;i!l"(a—i—kl)'

O

At the end of this section we use Theorems 3.1-3.3 to get a recursive relation between fractional
integrals and derivatives of t* and ¢t**!.

Theorem 3.4. For all k € Ny, we have

a ak+1

a 4k+1 _ (k+l)l’

(Ig+ 1) () -

Proof. By theorem 3.1 we have

(k+ 1) (z —a)*D(—a+1) &2 ghitl (—g)’

(™) (@) =

T(k+a+2) £l T(—a—i+1)
kD) (@ —a) " T(—a+1) e aF it (—a)’
N L(k+a+2) ;i!l“(—a—i—i—l)

()" T(—a+ 1) (z—a)
T(k+a+ 20 (—a— k)
k

_ (kD= <k! (x—a)*T(—a+1) Z a+i (—a)’ >

+

k+a+1 Fk+a+1) I (—a—i+1)
(—a)" ' I(—a+ 1)D(a + 1)

=0

S Sy E— (Ig+1) (z)
_ k+ Dz, adtt
= e U @+ o Ua D @)



Theorem 3.5. Let n = [a] + 1. Then for all k € N which k > n,

x n—a) afFntl
(CD2, 1) (z) = lili-l-alJ)r d (CD2AR) (z) + (k j; 1) ( . 7)06 — (CD% ") ().

Proof. By theorem 3.2 we have

(k+ 1) (z—a)" “T(a—n+1)"d" ghn-itl (_g)
I'k—a+2) Z i'TNa—n—i+1)

=0

(CDg+tk+1) (l‘) —

(k+1)! (z—a)" "T(a—n+1) v zhn=itl (—q)
I'k—a+2) iz:;ill“(afnfzﬂrl)

(=) " k+ DI Ta—n+1)(z—a)"°
(k—n+1)!T(k—a+2)T(a—k)

k4 Dz (K (r—a)" " T(a—n+1) ’g gh—n=i (—q)'
 k—a+1 I'k—a+1) il l(a-—n—i+1)
(=) "M k+ D) Da—n+ DI (n—a+1) ¢

(
A n i DIT(k a2l L Pat") (@)

(k+1)z o0 k+1\(n—a)a" " o
= m(cDﬁtk) (x)+( )M(cDﬁt ) ().

_|_

+

n

Theorem 3.6. For all k € Ny, we have

a ak—l—l

(E+ D2 pa ey () - g Pal) @),

a 1k+1 _

Proof. By Theorem 3.3 we have

(k+ 1) T(a+1)(z—a) ® T2 gh=itl (—q)

(D5 t) () =

T(k—oa+2) i T(a—i+1)
k- DIT(a+1) (@ —a) " K b (—a)
N I'k—a+2) ZZ'P( —i+41)

(—a)*"'T(a+1)(z—a)®
Lk —a+2)I'(a—k)
 (k+ Dz (KT(a+1)(z—a) az’“: 2k =i (—q)’
 k—a+1 I'(k—a+1) il D(a—i+1)
(=)™ T(a+ 1T(1 - )
T(k—a+2)(a—k)
(k+1)

T aa
= Y (D> ¢tk R
k—a+1( at )(ac) k—a+1

(Dg+1) ()

k+1

(Dg+1) ().



4. RBFs to discretize fractional operators

Given a set of centers Z;, j = 1,...,n, the RBF interpolant in one dimension takes the form

() = éw (=2,

where ¢ can be one of the RBFs listed in Table 1 and ¢ € R is the shape parameter. The coefficients
A; are chosen by enforcing the interpolation condition

s(x;) = flxy), i=1,...,n
at a set of collocation points x;, ¢ = 1,...,n. This leads to a n X n linear system

AN=F,

()
¢ lgi,jgn’

A=, j=1,...,n)7,
FZ(f(tl)a izlv"'vn)T'

where

We wish to find a matrix D that discretizes the fractional differential operator D* with an RBF expansion,
where D% can be one of the fractional operators defined in subsection 2.2. Applying the fractional
differential operator D to the RBF gives

S () TSR
j=1

where g; is the value of the underlying function’s fractional operator at each z;. It leads to the matrix
equation

BX =G,

B= <<D”‘¢ <|m_cf]|>> (xi))@',ﬁn,

G:(gi, iZl,...,n)T.

where

The collocation matrix A being unconditionally nonsingular [13], and we can eliminate the expansion
coefficient vector A and obtain G = BA™'F. The matrix D = BA~! thus gives an RBF discretization

of D%. In order to find
(2o (122 0

¢y : R =R,
by () ::¢<|x_y|>7

C

we define the function

for arbitrary y € R. Therefore, evaluating
(D¢y) (2),

results in evaluating (1). The following theorems show that finding the fractional integrals and derivatives
of the single real variable RBF ¢ can lead to fractional integrals and derivatives of ¢,,.

10



Theorem 4.1. If ¢ is an even function then for all x > a we have

(13 ) (@) =< (e 0 ) (552).

Proof. Since ¢ is an even function, by Definition 2.3 we have
a L (lt—yl a—1
o) = s [ o) @m0t

_ F(la)/am¢<t;y> (z— 1) dt

t_
where u = =¥. Then

« (e « r—Yy
(122 o) @) = (1 0 ) (22).
Remark 4.1. Similarly, one can show that if ¢ is an even function then for all x < b we have

a5 o)) = (170 ) (224).

Theorem 4.2. If ¢ is an odd function then for all x > a we have

(o) e
(I ¢y)(x) =4 <—I€‘acy)+ ¢ +2I5 ¢ ) (%) , a<y<uw,
el e
Proof. In case y < a by Definition 2.3 we have

1z )@ = w7 " (’f‘y') (- 0" dt

where u© = t:y Then

11



In case a < y < z, by Definition 2.3 we have

(Ig+ ¢y) (x) = F<1a)/j¢<|t;y|)(xt)aldt

where © = % Then

(13- o) @) = (<feay 0 +205 0 ) (F52)).

In case y > x, by Definition 2.3 we have

o) = s [ o) -0t

where u = ©=%. Then

C

(12 ) @) == (17 0 ) (25).

Remark 4.2. Similarly, one can show that if ¢ is an odd function then for all x < b we have

o (Tmy 0 ) (552 ys
5 o) @ = e (- 0 ~215 0 ) (522). w<y <,
(1 o) (52, y=r

Theorem 4.3. If ¢ is an even function then for all x > a we have

a —a a r—y
Dz ) @)= (Dt 0 ) (22).
Proof. Let n = [a] + 1, by Definition 2.4 and Theorem 4.1 we have

(DS 0) () = (12796,)™ ()
- () (52)
(29 ()
_ o (D?acy)m)(ﬂ”;y).

12




Remark 4.3. Similarly, one can show that if ¢ is an even function then for all x < b we have

D5 o) @) = (Dpy- 0 ) (F2).

Theorem 4.4. If ¢ is an odd function then for all x > a we have
C_a (D((M)+ ¢> (I;y>7 ySaa

(D3 ) (@)= § e (=Dt 6 42D 6 ) (52). a<y<a

c

o (D((IM)Jr ¢ ) (1), y= .
Proof. Let n = [a] + 1, by Definition 2.4 and Theorem 4.2 we have

(Do) (@) = (177%™ (@)

(n)
= c® (—IEL;O;)Jr ¢ + 20" (b) (=%), a<y<um,

c

(n)

c

— c ¢ <—DE‘H)+ ¢ +2Dg, ¢) (sz), a<y<ux,

c

e (Phap o) vze

Remark 4.4. Similarly, one can show that if ¢ is an odd function then for all x < b we have

o (Dz‘by) ¢ ) (224), y<z,

(D= ¢y) (x) =4 @ (D((Xb—cy) ¢ —2Dg- ¢> (x;y)7 r<y<b,

c

Theorem 4.5. If ¢ is an even function then for all x > a we have

(9D ¢,) ()= ( Dy ¢>> (”_y)

c

13



Proof. Let n = [a] + 1, by Definition 2.5 we have

(D% &) (x) = ﬂ/ ( (ltyl
*/

where © = % Then

« —« « r—1Yy
(CDa+ (by) (1‘)20 (CD(a—y)+ ¢) ( )
c C
Remark 4.5. Similarly, one can show that if ¢ is an even function then for all x < b we have

(°03 o) @ == (opy o ) (22).

Theorem 4.6. If ¢ is an odd function then for all x > a we have

c ¢ ( CD((IL?)Jr ¢> (I;y
( “po, dy) (@) =3 @ ( CDE‘u)+ ¢ +2°Dy, ¢ ) (=Y), a<y<ua,

pRYeY CDa z—y
(P @)
Proof. In case y < a by Definition 2.5 we have
1 t—
(s = g | (o(
1 * t—y
e ] (0()

c
N (“) _ pyront
N C"F(n—a)/a ¢ c (=) dt

) y <a,

), Yy > x.

) (z— )" dt

) (n)
2

(z—t)""* dt

Il
=
3(’:‘
Il e
L
—
|
[ o
S
g
=
S~—
7 N
8
o |
NS
|
<
S~
3
|
o)
|
-
IoH
£

where u© = t_T” Then

(9D3, 6,) (@) = ( Dfye ¢) (I;y) |
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In case a < y < z, by Definition 2.5 we have

( CD3+ ¢y) (z)

_ 1 ’ |t _ y| () n—a—1
“ o | (o )2) (oo .
-1 Y B " n—a— 1 * B " n—oa—
:F(n—a)/ <¢<tcy ) (@=1) 1dH_F( —a)/ (¢ tcy ) (@ =1) at
a Y
-1 Y _ T _
- C”F(n*a)/ & <t Cy) (oot c"I(n — a) / a (t cy> (-
a y
= —1 ’ (n) t—y n—a-1 2 ¢ (n) -y n—a—1
= oTm—a) /a 10) - (x —1) dt + oT(n—a) /y 1) . (z—1) dt
— =y n—a—1 _ z—y n—a—1
— —c ¢ (n) I]L’*yi 2c¢ ¢ (n) I*yi
e fo O (T ) g [T 0w ()
where © = =¥, Then
(°D% 0) @) = (= D0 +2°05 6 ) (2)).
In case y > x, by Definition 2.5 we have
C Nna _ 1 * |t B y| () n—a—1
( ‘l)a+ ¢y) ({L’) - F(n . Oé) /(; ((b ( ¢ ) ( t) dt
_ —1 * t— Y () n—a—1
= tta ) (0(FY) woe
_ -1 ! (n) t—y n—a—1
a c(n — a)/a ¢ ( c ) (@—1) dt
—a z—y n—a—1
— —¢ © (n) r—Yy _
- T'(n—a) /“f’ o () ( c u) du,
where u = t_Ty Then
C na _ —a C Mo r—Yy
(D3 0,) )=~ (D0 ) (22).

Remark 4.6. Similarly, one can show that if ¢ is an odd function then for all x < b we have

(P 0 ) (2,
(D ) @)= o (Dt 6 —2D5 o)
e (P 0 ) (529

In the sequel, we see that all five kinds of RBFs listed in subsection 2.1 are even functions, odd
functions or linear combinations of them. Therefore, we can use results of above theorems and only
find the analytic expression of fractional integrals and derivatives of a single real variable RBF ¢(r) for
evaluating (1). For simplicity in notation, we work with the function ¢(x) instead of ¢(r). In order to
find an analytic expression for the fractional integral or derivative D*¢(x), we represent each ¢(x) as
Taylor series expansions and then apply the fractional operator term by term. This can lead to fractional
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integrals or derivatives of ¥, k € N, which can be calculated by the following recursive relations derived
from Theorems 3.4-3.6.

T a akt?

(12,741 (z) = % (12, t%) () + ——" (I21) (2), @)
(I01) (z) = ﬁ(x —a)*.
x n—a) ab—ntt
Copt @ = N Eonm @ (T cony @,
(°Dt") (z) = F(n%:lﬂ)(x —a)" e

x a akt!

(D) @) = 0 (D0 () - 10 (D) ), ()
(D%1) (z) = ﬁ(l‘ —a)”«

e Powers: ¢(z) =2", neN.
It is clear that if n is an even number then the Power function ¢(z) = 2™ is even, otherwise, it is
odd. Also I z", CD3+ x"™ and D%, 2™ can be easily evaluated by (2)-(4), recursively.

e Gaussian: ¢(z) = exp(f%g).
It is clear that the Gaussian function is even. Furthermore, we represent ¢(z) as a MacLaurin series
expansion and then apply the fractional operators term by term as follows:

2 = ()"
I;‘+e’72 = Z (=1) Ig+x2",

=0
22 = (_1)" n a 2 - (_l)n o .2n
e 2 = Z T 2 — D% e 7 = Z . D¢z,

n=0 n=0

o’ — (=1)" ¢ 2
CD3+e_T = Z Doy z=".

Since the radius of convergence of above series is 0o, we can truncate the infinite sum once the
terms are smaller in magnitude than machine precision. Also Igﬁrx%, CD3+562” and D¢, 22" can
be easily evaluated by (2)-(4), recursively.

e Multiquadric: ¢(z) = (1+ x2)5/2, B € Ryo \ 2N.
It is evident that the Multiquadric function is even. Here we represent the Multiquadric function
as a MacLaurin series expansion and then apply the fractional operators term by term as follows:

Ig (L+2%)7 =) 2 I a™,
n=0 '
(1 Jer)g = ZO (272! = ¢ D% (1 +x2)g =y (2T)L! D2z,
n= n=0
C po (1 + x2) 2 Z 2n' Da+$2n’
n=0 :

where
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Since the radius of convergence of above series is 1, we can truncate the infinite sum once the terms

are smaller in magnitude than machine precision for all z € (—1,1). Also I, 2,

CDa 2n and

D, 22" can be easily evaluated by (2)-(4), recursively. Note that according to the results of section

4, in practice, we evaluate fractional integrals and derivatives at

proper shape parameters c such that =% € (-1,1).

Matérn: ¢(z) = 2"K,(z),v=m — 1, meN.
We know that

T 2n

T x
2sin(my

1
) <2” = Ar nl (=

2K, (x) =

Y

¥ and so we have to choose

2n+2u
v+n+1) 2”Z4nn'F(u+n+l)> (5)

If 2v is an even number then the Matérn function is even otherwise it is sum of the two odd and
even functions. Moreover, according to (5), the fractional integral and derivatives of the Matérn

function are given as follows:

T 1 o0 T +{L'2n 1 e Ia+x2n+2u
I(l VKV e — —_— a - ¢ )
e Ko@) = i <2V ;zw W T(—v+n+1) 2 ;4” n! (v +n+1)
. 1 ) DaerQn [e%e] Da 2n+2v
D¥ 2K, =" | = <
ar 7 H (@) 2sin(mv) <2V ; 4l T(—v+n+1) 27 Z Al T(v+n+1)
2n oo CDa 2n+2v
DY aVK =
RS 2sm 2- "24”71'1" (—v+n+1) 2yz4nn'F(V+n+l)

Since the radius of convergence of above series is oo, we can truncate the infinite sum once the
terms are smaller in magnitude than machine precision. Also fractional integrals and derivatives of
22" and 22"T2¥ can be easily evaluated by (2)-(4), recursively.
Thin-plate spline: ¢(z) = 2°" In(z), n € N.

1 1
We know that 22" In(z) = —2?"In(z?). It is clear that ¢(z) = ixzn In(z?

Now, we represent ¢(x) as a Taylor series expansion about the point @ = 1 as follows:

) is an even function.

[\)

1 > (C1)E(p2 _ 1)k+L 1 o0 1 k k+1 k 1) ktl—i
2227 In(2?) 25902"2( ) (If - ) ZQxQnZ a Z Tk (1 ) 2i
k=0 * okt k1)
k+1 141
:}i k(-1 2i+2n
2t k1)

So the fractionl integrals and derivatives of the Thin-plate spline function are given as follows:

1 oo k+1 1 1413
2 2i42n
2 ket ZZ' e,
oo k+1 1 141
2 «@ 21+2n
D2,z In(x ZZZ' s Da+x :
k=0 t=0
1 oo k+1 1 1414 .
C 2 a ,.2i4+2n
Dg, 5™ In(a Zzz'k—i-l—z D, a2,

Since the radius of convergence of above series is \/Q, we can truncate the infinite sum once the
terms are smaller in magnitude than machine precision for all =z € (—ﬂ, \/5) . Also I, g2t
C D%, 222" and D, z%+2" can be easily evaluated by (2)-(4), recursively. Note that according to
the results of section 4, in practice, we evaluate fractional integrals and derivatives at L;y, and so
we have to choose proper shape parameters c such that =¥ ¢ (—\/5, \/5)
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Remark 4.7. With the same way we can get Iy, D and CD?, for all five kinds of RBFs listed above.

As an example, the algorithm of calculating (D%, ¢,) (z) in case ¢(r) = r" where n is an odd number is
given as follows:

Algorithm
1: set a; = a—y’ by = —Y and 1 = m—y.
c c c
2: Obtain (Dgﬁr (;5) (z1) by recursive relation 4.
3: if a; > 0 then
£ (Do) (0) = (D2 0) (@),
5: else if z1 < 0 then
6 (D3oy) (@) =~ (D%0) (a1).
7. else
8:  Obtain (Dg; ¢) (x1) by recursive relation 4.
9 (Dgi¢y) (z) =c® <— (DZ}¢> (z1) +2 (Dg ¢) (ffl))-
10: end if

5. Numerical results

In this section we apply the results of the previous sections to solve two test problems. The first test
case focuses only on the discretization of the fractional differential operator while the second considers
the solution of a fractional differential equation.

5.1. Test problem 1

Consider the function f(z) = e** with 2 € [0,1], for some k& > 0. The exact left-sided Riemann-
Liouville fractional derivative of f is given by [4]:

eka

DY%e" = —  _(z—a)"* 1Fi(1,1—ak(z—a)),
e = gy () A (r )
where a is an arbitrary real number, « is a non-integer positive number, and 1 F; denotes Kummer’s
confluent hypergeometric function. In our computational work in this case, we choose n equispaced
center points

in [0,1] and put @ = 0, & = 1.5, and o = 0.8. Then according to Definitions 2.3-2.5, we have to choose n
collocation points z; in (0, 1]. We work with
1 i

T 1)

The RBF approximations to D¢, e” are evaluated by five kinds of RBFs listed in subsection 2.1 with
n = 50 and the L., error norms are reported in Table 2. It must be noted that we use Not-a-Knot
technique to improve the accuracy near the ends [34].

5.2. Test problem 2

Consider the following fractional differential equation [37]:

Dy Pu(t) +ult) = f(t), te(0,T],
u(0) = u/(0) = 0.
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We choose n equispaced center points

t; =

in [0,7]. Then according to Definitions 2.3-2.5, we have to choose n collocation points ¢; in (0,7]. We
work with

to=———, ¢ —1 =1 3
= ; = i, i=1,...,n—3.
"7 2mn—-3) " n-3" Y

Then the approximate solution can be written as

0-Ee(158)

The unknown parameters A; are to be determined by the collocation method. Therefore, we get the
following equations:

ZA Do (M) + Zw(t ) = st 0

for i =0,...n — 3, and the following equations for the initial conditions

Then (6)-(8) lead to the following system of equations:
Do+ ¢ F
o] A=10
' 0

The necessary matrices and vectors are

o=(o("2)) ’
c 0<i<n—3,0<j<n—1
D2 — < 3/2¢(\ |)>
0 0<i<n—3,0<j<n—1
O _f.
o= (o ”)) ,
¢ 0<j<n—1
- (o2
' ¢ 0<j<n-1

A=\, j=0,...,n—1)7T,
F=(f(t),i=0,....n—3)".

Now, we take 1001 points in the interval 0 < ¢ < 50 and work with three kinds of RBFs, Powers (5 = 5),
Gaussian and Matérn (v = %), with the shape parameter ¢ = 10. As previously mentioned, the radius of

)

Y
¢

convergence for series D%, (1 + xg)g and D7, %xQ" In(x?) is 1 and v/2 respectively, on the other hand in
this example the length of interval is 50 thus if we work with Multiquadric or Thin-plate spline RBF we
must get ¢ > 50 that is a cause of decrease in accuracy. The numerical solutions with different right-hand
side functions f(t) = te™* and f(¢) = e *sin(0.2t) are plotted in Figures 1, 2, and 3. The results are in
agreement with the results of [37]. It must be noted that in this example, Not-a-Knot technique has also
been used.
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6. Conclusion

The fractional integrals and derivatives of Riemann-Liouville and Caputo type for five kinds of RBF's
including the Powers, Gaussian, Multiquadric, Matérn and Thin-plate splines, in one dimension, are
obtained. This allows to use high order numerical methods for solving fractional differential equations.
Two test problems are given in order to validate formulas. The first test problem focuses only on the
discretization of the fractional differential operator while the second one is a fractional differential equation
which is solved by the RBF collocation method.

20



References

[1]

2]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

R.L. Bagley and P.J. Torvik. A theoretical basis for the application of fractional calculus to vis-
coelasticity. J. Rheology., 27:201-210, 1983.

R.L. Bagley and P.J. Torvik. Fractional calculus in the transient analysis of viscoelastically damped
structures. ATAAJ., 23:918-925, 1985.

R.T. Baillie. Long memory processes and fractional integration in econometrics. J.Econometrics.,
73:5-59, 1996.

H. Bateman and A. Erdélyi. Higher Transcendental Functions, bateman manuscript project ed. vol.
1. McGraw-Hill, New York, 1955.

M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpolation by basis functions of different
scales and shape. Calcolo., 41:77-87, 2004.

M. Buhmann. Radial Basis Functions, Theory and Implementations. Cambridge University Press,
2003.

B. Butzer and U. Westphal. An Introduction to Fractional Calculus. World Scientific, Singapore,
2000.

C. Celik and M. Duman. Crank-Nicolson method for the fractional diffusion equation with the Riesz
fractional derivative. J. Comput. Phys., 231:1743-1750, 2012.

C.M. Chen, F. Liu, V. Anh, and I. Turner. Numerical schemes with high spatial accuracy for a
variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput., 32:1740-1760, 2010.

S. Das. Functional Fractional Calculus for System Identification and Controls. Springer, New York,
2008.

W.H. Deng. Finite element method for the space and time fractional Fokker-Planck equation. STAM
J. Numer. Anal., 47:204-226, 2008.

K. Diethelm. The analysis of fractional differential equations: An application-oriented exposition
using differential operators of Caputo type. Springer, 2010.

G. Fasshauer. Meshfree approximation methods with MATLAB. World Scientific, 2007.

G. Fasshauer and J. Zhang. On choosing optimal shape parameters for RBF approximation. Numer.
Algorithms., 45:345-368, 2007.

G.J. Fix and J.P. Roop. Least square finite-element solution of a fractional order two-point boundary
value problem. Comput. Math. Appl., 48:1017-1033, 2004.

C. Franke and R. Schaback. Convergence order estimates of meshless collocation methods using
radial basis functions. Adv. in Comp. Math., 8:381-399, 1998.

C. Franke and R. Schaback. Solving partial differential equations by collocation using radial basis
functions. Appl. Math. Comp., 93:73-82, 1998.

E. Hanert. On the numerical solution of space-time fractional diffusion models. Comput. & Fluids.,
46:33-39, 2011.

Y.C. Hon, R. Schaback, and X. Zhou. An adaptive greedy algorithm for solving large radial basis
function collocation problem. Numer. Algorithms., 32:13-25, 2003.

M. Jani, E. Babolian, and S. Javadi. Bernstein modal basis: Application to the spectral Petrov-
Galerkin method for fractional partial differential equations. Math. Methods. Appl. Sci., 40:7663—
7672, 2017.

21



[21]

[22]

E.J. Kansa. scattered data approximation scheme with applications to computational fluid-dynamics,
I: Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl.,
19:147-161, 1990.

S.M. Kenneth and R. Bertram. An Introduction to the Fractional Calculus and Fractional Differential
Equations. Wiley-Interscience, NewYork, 1993.

A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Differential
Equations. North Holland Mathematics Studies, Elsevier Science B. V, Amsterdam, 2006.

T.A.M. Langlands and B.I. Henry. The accuracy and stability of an implicit solution method for the
fractional diffusion equation. J. Comput. Phys., 205:719-736, 2005.

X.J. Li and C.J. Xu. A space-time spectral method for the time fractional diffusion equation. STAM
J. Numer. Anal., 47:2108-2131, 2009.

X.J. Li and C.J. Xu. A space-time spectral method for the time fractional differential equation.
SIAM J. Numer. Anal., 47:2108-2131, 2009.

F. Liu, V. Ahn, and I. Turner. Numerical solution of the fractional advection-dispersion equation.
J. Comput. Appl. Math., 166:209-219, 2004.

F. Mainard. Fractional calculus: Some basic problems in continuum and statistical mechanics,
in: A. Carpinteri, F.Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics.
Springer-Verlag, NewYork., 1997, pp. 291-348.

R. Metzler and J. Klafter. Ther andom walks guide to anomalous diffusion: A fractional dynamics
approach. Phys. Rep., 339:1-77, 2000.

R. Metzler and J. Klafter. The restaurant at the end of the random walk: Recent developments in
the description of anomalous transport by fractional dynamics. J. Phys. A., A37:161-208, 2004.

M.M. Meerschaert and C. Tadjeran. Finite difference approximations for fractional advection-
diffusion equations. J. Comput. Appl. Math., 172:65-77, 2004.

M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran. Finite difference methods for two-dimensional
fractional dispersion equation. J. Comput. Phys., 211:249-261, 2006.

M. Mohammadi, R. Mokhtari, and R. Schaback. A Meshless Method for Solving the 2D Brusselator
Reaction-Diffusion System. CMES: Comput. Model. Eng. Sci., 101:113-138, 2014.

M. Mohammadi, F.S. Zafarghandi, E. Babolian and S. Jvadi. A local reproducing kernel method
accompanied by some different edge improvement techniques: application to the Burgers equation.
Iran. J. Sci. Technol. Trans. A Sci., 1-15, 2016.

R. Mokhtari and M. Mohammadi. Numerical solution of GRLW equation using Sinc-collocation
method. Comput. Phys. Comm., 181:1266-1274, 2010.

C. Piret and E. Hanert. A radial basis functions method for fractional diffusion equations. J. Comput.
Phys., 238:71-81, 2013.

I. Podlubny. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional
Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic
Press, 1999.

H. Rafieayan Zadeh, M. Mohammadi, and E. Babolian. Solving a Class of PDEs by a Local Repro-
ducing Kernel Method with An Adaptive Residual Subsampling Technique. CMES: Comput. Model.
Eng. Sci., 108:375-396, 2015.

J.P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equa-
tions on bounded domains in R2. J. Comput. Appl. Math., 193:243-268, 2006.

22



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Y.A. Rossikhin and M.V. Shitikova. Applications of fractional calculus to dynamic problems of linear
and nonlinear hereditary mechanics of solids. Appl. Mech. Rev., 50:15-67, 1997.

S. Saha Ray and S. Sahoo. Analytical approximate solutions of Riesz fractional diffusion equation
and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives.
Math. Methods. Appl. Sci., 38:2840-2849, 2015.

R. Schaback (2011). Kernel-Based Meshless Methods. Lecture Note, Gottingen,
http://num.math.uni-goettingen.de/schaback/teaching/AV2, 2011.

R. Schaback and H. Wendland. Kernel techniques: From machine learning to meshless methods.
Acta Numerica., 15:543-639, 2006.

S. Shen, F. Liu, V. Anh, and I.Turner. The fundamental solution and numerical solution of the Riesz
fractional advection-dispersion equation. IMA J. Appl. Math., 73:850-872, 2008.

E. Sousa. Numerical approximations for fractional diffusion equations via splines. Comput. Math.
Appl., 62:938-944, 2011.

C. Tadjeran, M.M. Meerschaert, and H.P. Scheffler. A second-order accurate numerical approxima-
tion for the fractional diffusion equation. J. Comput. Phys., 213:205-213, 2006.

C. Tadjeran and M.M. Meerschaert. A second-order accurate numerical method for the two-
dimensional fractional diffusion equation. J. Comput. Phys., 220:813-823, 2007.

H. Wang and K. Wang. An O(N log® N ) alternating-direction finite difference method for two-
dimensional fractional diffusion equations. J. Comput. Phys., 230:7830-7839, 2011.

Q. Xu and J. Hesthaven. Stable multi-domain spectral penalty methods for fractional partial differ-
ential equations. J. Comput. Phys., 257:241-258, 2014.

S.B. Yuste and L. Acedo. An explicit finite difference method and a new Von-Neumann Type stability
analysis for fractional diffusion equations. SIAM J. Numer. Anal., 42:1862-1874, 2005.

Y. Zhang, Z.Z. Sun, and H.W. Wu. Error estimates of Crank-Nicolson type difference schemes for
the sub-diffusion equation. SIAM J. Numer. Anal., 49:2302-2322, 2011.

X. Zhao and Z.Z. Sun. A box-type scheme for fractional sub-diffusion equation with Neumann
boundary conditions. J. Comput. Phys., 230:6061-6074, 2011.

23



Table 2: Lo error norms for D2‘+ e® by five kinds of RBFs. (Test Problem 1)

RBF o(r) shape parameter Lo (@ =0.8) Lo (a=1.5)
Power r° 1 2.25E — 09 1.35E — 07
Gaussian exp(—22) 1 6.53E — 10 1.12E — 08
Multiquadric (1+4r2)t/2 10 1.88E — 07 1.04E — 05
Matérn 32Ky, (1) 1 9.70E — 14 2.96E — 11
Thin-plate spline r8in (1) 14 2.50F — 03 5.51F — 03
0451 0.08
0.07
0.06
0.05
0.04
> > 0.03
0.02
0.01
0
-0.01
‘ ‘ ‘ ‘ 002 ‘ ‘ ‘ ‘ ‘
20 30 40 50 0 10 20 30 40 50

Figure 1: Numerical results of u with Powers RBF (8 = 5), for f(t) = te~! (left), and f(¢t) = e~ !sin(0.2¢) (right). (Test
problem 2)
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Figure 2: Numerical results of u with Matérn RBF (v = %), for f(t) = te™t (left), and f(t) = e~ tsin(0.2t) (right). (Test
problem 2)
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Figure 3: Numerical results of u with Gaussian RBF for f(t) = te~* (left), and f(t) = e~ !sin(0.2t) (right). (Test problem
2)
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