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Abstract

Under very weak conditions any well–posed linear problem of Applied Analysis can be solved by certain
meshless kernel methods to any prescribed accuracy.

1 Linear Problems

The fairly general statement made in the abstract needs some specification. We assume a problem to be
posed that is solved by a function u in some Hilbert space U with inner product (·, ·)U . Note that this is
satisfied for all problems that can be formulated in Sobolev spaces, for instance, but we also allow problems
with strong solutions in Hilbert subspaces of differentiable or Hölder continuous functions. The elements of
U are viewed as functions, and the elements λ ∈ U∗ are continuous linear functionals that we use to describe
data λ(u) of u, e.g. evaluations u 7→ δx(u) := u(x) or u 7→ (δx ◦∆)(u) = (∆u)(x).

The problems should be formulated by requiring that a (usually uncountable) set Λ of functionals, when
applied to the solution u attains certain prescribed values. This means that u solves

λ(u) = f(λ) for all λ ∈ Λ (1)

where f : Λ → IR is a given function. We do not care about assumptions on f , but we assume that the
functionals λ ∈ Λ are continuous on U , i.e. they must be in the dual U∗ of U . It is shown in the next section
that plenty of strongly or weakly formulated linear problems of Applied Analysis have this form, because the
functionals λ can, for instance, describe point evaluations of u, its derivatives, or some differential or integral
operator applied to u. We shall call a problem (1) admissible, if it is posed with Λ ∈ U∗, f : Λ → IR
and solvable by some function u ∈ U . An admissible problem will have a unique solution in U , if we know
that the closed linear subspace of homogeneous solutions consists of the zero function only, but we shall not
assume unique solvability at this point.

2 Strong and Weak Problems

As a model for a classically or strongly formulated problem, consider the Poisson problem

∆u = g on Ω
u = ϕ on ∂Ω,

(2)

asking for a function u on a domain Ω ⊂ IRd which is twice continuously differentiable on Ω and continuous
on Ω. Here, the set Λ of functionals consists of two parts, namely the functionals δx ◦∆ for all x ∈ Ω and
δy for all y ∈ ∂Ω. The values λ(u) are prescribed via function values of g in Ω and ϕ on the boundary ∂Ω,
respectively. Note that one could take other linear partial differential operators and other types of boundary
conditions, defining quite nonstandard mixed–type problems. An adequate reproducing kernel Hilbert space
would be any such space U with u ∈ U and Λ ∈ U∗. Note that this allows a large variety of spaces, if the
solution u is sufficiently regular.

A simple discretization of (2) proceeds via collocation. If we take a countable set of dense points {xj}j ⊂ Ω
and {yk}k ⊂ ∂Ω and only use a total of n of the functionals λj(u) = δxj ∆u and µk(u) = δyk (u), respectively,
to produce a function un such that λ(un) = λ(u) for this subset of n functionals, we have a candidate for
a sequence {un}n∈IN ⊂ U that hopefully converges to a solution ũ ∈ U if n tends to infinity. It will be the
purpose of the following sections to show that this works if we use reproducing kernels of certain Hilbert
spaces to generate the collocation functions. Note that collcation just replaces (1) by a finite problem of the
same form.

1



In the model situation of solving a Poisson problem (2) weakly, we move the boundary data prescribed by ϕ
into a function u0 ∈ W 1

2 (Ω) and consider the variational equation

(u, v)1,Ω :=

∫
Ω

(∇T u)(x)(∇v)(x)dx = (g, v)L2(Ω) for all v ∈ V0 ⊂ W 1
2 (Ω)

u− u0 ∈ V0

(3)

where u should be in Sobolev space W 1
2 (Ω) and usually V0 is the subspace of W 1

2 (Ω) consisting of the W 1
2 –

closure of C∞ functions with compact support inside the domain Ω. In comparison to the previous case,
the crucial point here is that the space W 1

2 (Ω) does not allow continuous point evaluations for dimensions
d > 1. And, due to low regularity of g and “incoming corners” of the domain, the actual solution u does in
general not lie in a space with functions of higher regularity.

In principle, it makes abolutely no sense to use numerical solutions of the above problem that are in the
space W 1

2 (Ω) and have no higher regularity. Those functions would have undefined function values, and
one could only evaluate local means, for instance. The standard technique for solving weak problems, the
method of finite elements, usually works with continuous piecewise linear functions, which also have a higher
regularity than the functions in W 1

2 (Ω). Therefore we feel free to reconstruct functions u of low regularity
solving weak problems by numerical approximations of higher regularity.

To bring (3) in line with (1), we first rewrite (3) in the modified form

(w, v)1,Ω = (g, v)L2(Ω) − (u0, v)1,Ω for all v ∈ V0 ⊂ W 1
2 (Ω)

w ∈ V0
(4)

for w := u − u0 ∈ V0. This is a generalized interpolation problem of the form (1), if we take functionals
λv(w) := (w, v)1,Ω and require w ∈ U := V0 to have the data

λv(w) = (g, v)L2(Ω) − (u0, v)1,Ω =: f(λv) for all v ∈ V0.

Note that one needs a Poincaré type inequality to conclude that

• (·, ·)1,Ω is an inner product on V0

• the functionals λv are continuous on V0 under this inner product

as required for (1).

The standard technique for solving weak problems proceeds via finite element subspaces SN of V0 spanned
by functions v1, . . . , vN and posing the finite problem

(wN , vj)1,Ω = (g, vj)L2(Ω) − (u0, vj)1,Ω =: f(λvj ), 1 ≤ j ≤ N (5)

for some wN ∈ SN . Note that, quite as the collocation technique for “strong” problems, the finite element
method for weak problems just replaces (1) by a finite problem of the same form. Consequently, there
is no need to distinguish between strong and weak formulations for the next sections. We shall focus on
discretizations of (1) that replace Λ by a finite subset ΛN := {λ1, . . . , λN} ⊂ Λ ⊂ U∗.

But this does not mean that “strong” and “weak” formulations coincide. To avoid misunderstandings, the
similarities and differences between “strong” and “weak” formulations should be pointed out more clearly:

• They share the problem form (1) in some Hilbert space.

• But usually they pick different Hilbert spaces. Weak formulations use only half of the smoothness
of strong formulations, and thus the Hilbert space of weak formulations is larger than that of strong
formulations.

• They have a different strategy for specifying the set Λ of functionals. Strong formulations take point
evaluations of the solution and its derivatives. Weak formulations take functionals defined by inner
products.
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3 Kernels

If we want to apply meshless kernel methods to general admissible problems, we need a suitably general
definition of a kernel. The standard way via reproducing kernel Hilbert spaces or positive definite functions is
insufficient here, because we want to allow weak problems and Sobolev spaces like W 1

2 where point evaluation
functionals are not continuous. We just take the canonical Riesz map R : U∗ → U of the Hilbert space U
with

λ(f) = (f, R(λ))U = (R−1f, λ)U∗ for all f ∈ U, λ ∈ U∗ (6)

and use it as a kernel, because it maps functionals to functions. If Φ(x, y) is a “standard” kernel in a
reproducing kernel Hilbert space [1, 9], the relation to the Riesz map R is via R(λ) = λxΦ(x, ·) where λx

stands for the evaluation of λ with respect to the variable x. In fact, if point evaluations are continuous on
a Hilbert space of functions, the standard kernel definition is

Φ(x, y) := (δx, δy)U∗

and the usual reproduction property is

f(x) = δxf = (f, Φ(x, ·))U for all f ∈ U

with its generalized form

λ(f) = (f, λxΦ(x, ·))U = (f, R(λ))U for all f ∈ U, λ ∈ U∗. (7)

This shows that R(λ) = λxΦ(x, ·) is the connection between R and Φ.

Before we proceed, we need to associate certain subspaces of U and U∗ with a set Λ ⊆ U∗ of functionals:

U∗Λ := clos span Λ ⊆ U∗

UR(Λ) := clos span R(Λ) ⊆ U

and we use shorthand notation for

U⊥Λ := {v ∈ U : λ(v) = 0 for all λ ∈ Λ} = U⊥R(Λ) (8)

such that unique solvability of (1) is equivalent to U⊥Λ = {0}.

4 Symmetric Meshless Kernel Methods

To explain our basic numerical technique, we take a finite set ΛN := {λ1, . . . , λN} ⊂ U∗ of continuous linear
functionals and fix a function u ∈ U . Then we define f(λj) := λj(u), 1 ≤ j ≤ N in (1) and construct a
function

ũN =

N∑
k=1

αkR(λk) (9)

in the space UR(ΛN ) by the interpolation or collocation requirement

λj(ũN ) = f(λj) := λj(u), 1 ≤ j ≤ N

leading to the system
N∑

k=1

αk(λj , λk)U∗ = λj(u), 1 ≤ j ≤ N. (10)

This is a variation of the symmetric collocation technique of Z. Wu [14] used for the approximate recovery
of u from its data λj(u). The system has a positive semidefinite symmetric Gramian coefficient matrix. It
is nonsingular and positive definite, if the functionals are linearly independent. If not, the system is still
solvable, because the right–hand side is in the range of the map

u 7→ (λ1(u), . . . , λN (u)) ∈ IRN for all u ∈ U,

and this range has the same dimension as the space UR(ΛN ), because the Riesz map is a isometry. Clearly,
the resulting function ũN is uniquely defined as the image of u under the Hilbert space projection ΠR(ΛN ) of
U onto the closed linear subspace UR(ΛN ), even in case its representation via (9) has nonunique coefficients.
Furthermore, it satisfies the orthogonality relations

(u− ũN , R(λj))U = λj(u− ũN ) = 0, 1 ≤ j ≤ N (11)
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implying
u− ũN ∈ U⊥R(ΛN ), ‖u‖2U = ‖u− ũN‖2U + ‖ũN‖2U . (12)

Let us call ũN the (symmetric) projection approximation of u with respect to the data λ1(u), . . . , λN (u) or
the set ΛN = {λ1, . . . , λN} ⊂ U∗ of functionals. Note that by (12) the function ũN solves the minimization
problem

min{‖v‖2U : v ∈ U, λj(v) = λj(u), 1 ≤ j ≤ N}
because of (11).

It may be surprising that the Rayleigh–Ritz technique, and in particular the finite element method arise
just as special cases of symmetric projection methods. In fact, for (5) we took functionals with

λvj (w) = (w, vj)1,Ω for all w ∈ V0.

But since V0 is a Hilbert space under (·, ·)1,Ω, we have R(λvj ) = vj and the finite element solution coincides
with the projection approximation. Due to

(λvj , λvk )U∗ = (vj , vk)U = (vj , vk)1,Ω

the system (10) has the standard stiffness matrix.

Though this paper will focus on symmetric projections, we should point out that

• unsymmetric collocation in the sense of Kansa [7] for strong problems and

• unsymmetric Petrov–Galerkin schemes for weak problems

formally coincide, too. Unlike (9), they define a new space WN of trial functions w1, . . . , wN to approximate
the solution. This space is unrelated to the data functionals, while the symmetric setup uses them directly
to determine the solution space via the Riesz map. The unsymmetric case constructs

ũN =

N∑
k=1

αkwk (13)

in the space WN by the interpolation or collocation requirement

λj(ũN ) = f(λj) := λj(u), 1 ≤ j ≤ N

leading to the system
N∑

k=1

αkλj(wk) = λj(u), 1 ≤ j ≤ N. (14)

The arising matrix has coefficients

λj(wk) = (R(λj), wk)U = (λj , R
−1(wk))U∗

and is unsymmetric. In addition, it may be singular, if the functionals λ1, . . . , λN are not linearly independent
over WN .

Kansa’s collocation method for strong problems takes wj := R(δxj ) = Φ(xj , ·) for a set of points x1, . . . , xN

in the context of continuous kernels. In the Petrov–Galerkin technique for weak problems, the functionals
λj have the form λj = R−1(vj), where the vj are called test functions, and the system then has the familiar
coefficients (vj , wk)U .

Analysis of unsymmetric problems is hard, because even the solvability [6] of the finite subproblems is not
evident.

Furthermore, we leave local methods open. Candidates for further analysis are weak meshless local Petrov–
Galerkin [3, 2, 4] techniques for weak problems and partition–of–unity [8, 5, 13] collocation methods for
strong problems.

4



5 Infinite Problems

The previous section defined our standard numerical method for the recovery of a function u from finitely
many data λ1(u), . . . , λN (u) via the image ũN = ΠR(ΛN )(u) of the projection onto the subspace UR(ΛN ).
Since problems in Applied Analysis in the form (1) will usually have an uncountable number of prescribed
data, and since sequences of finite problems deal with countably many data, we have to go over to the case
of countable and uncountable data.

Assume first that ΛIN := {λj}j∈IN is a countable set of functionals. We can then form the sequence {ũN}N∈IN

and use (11) to get

ũM − ũN ∈ U⊥R(ΛN ), ‖ũM‖2U = ‖ũM − ũN‖2U + ‖ũN‖2U ≤ ‖u‖2U (15)

for all M ≥ N . Thus the sequence {‖ũN‖2U}N is weakly monotonic and convergent. Furthermore, the
above display implies that {ũN}N∈IN is a Cauchy sequence in U , and therefore convergent to some function
ũIN ∈ UR(ΛIN ). But then we have

λj(ũIN ) = λj( lim
N→∞

ũN ) = lim
N→∞

λj(ũN ) = λj(u)

for all j ∈ IN , proving

Theorem 1 For any admissible problem (1) with countably many data functionals, a solution ũIN can be
constructed via a sequence of finite projection approximations. It solves the minimization problem

min{‖v‖2U : λj(v) = λj(u), 1 ≤ j < ∞}.

We now add a non–constructive result concerning general sets of functionals.

Theorem 2 Let an arbitrary nonempty set Λ ⊆ U∗ of linear functionals from the dual U∗ of a Hilbert space
U be given, and fix an element u ∈ U . Then there is a unique element ũ ∈ U with the properties

ũ ∈ UR(Λ)

λ(ũ) = λ(u) for all λ ∈ Λ
u− ũ ⊥ UR(Λ)

‖ũ‖U = min{‖v‖U : v ∈ U, λ(v) = λ(u) for all λ ∈ Λ}.

(16)

Proof: The space UR(Λ) is a closed subspace of U , and its orthogonal complement is U⊥Λ from (8). Thus u
has a unique decomposition u = ũ + ũ⊥ with ũ ∈ UR(Λ) and ũ⊥ ∈ U⊥Λ = U⊥R(Λ). This implies the first three
properties of (16). If v ∈ U is admissible for the infimum in the third property, we can write v = v − ũ + ũ
and use that v − ũ ∈ U⊥Λ is orthogonal to ũ. Then ‖v‖2U = ‖v − ũ‖2U + ‖ũ‖2U proves the assertion. The
uniqueness of ũ with respect to the properties in (16) follows from the fact that the difference of two such
functions must be in both UR(Λ) and U⊥Λ . 2

Corollary 1 In the sense of the above theorem, all admissible linear problems posed by some Λ ⊆ U∗ and
having a solution u ∈ U have a unique projection approximation solution ũ. The functions u and ũ coincide,
if there is no nontrivial homogeneous solution, i.e. U⊥Λ from (8) is the null space.

Proof: The assertion is an immediate consequence of the previous theorem. 2

6 Density

In order to bridge the gap between Theorems 1 and 2, we now consider conditions under which we can
replace an uncountable set Λ of data functionals by a countable set Λ̃ of “dense” functionals that can be
handled via a sequence of finite problems. By the standard definition, a subset Λ̃ ⊆ Λ ⊆ U∗ is dense in Λ,
if all elements of Λ can be written as limits in U∗ of elements of Λ̃. Then there are some easy observations
to be made:

Theorem 3 The following statements are equivalent:

1. Λ̃ ⊆ Λ ⊆ U∗ is dense in Λ

2. U∗
Λ̃

is dense in U∗Λ

3. R(Λ̃) ⊆ R(Λ) ⊆ U is dense in R(Λ)

4. UR(Λ̃) is dense in UR(Λ)

5. For all u ∈ U
λ(u) = 0 for all λ ∈ Λ̃ implies λ(u) = 0 for all λ ∈ Λ
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6. U⊥
Λ̃

= U⊥Λ

Theorem 4 An admissible linear problem posed by some Λ ⊆ U∗ can be solved by a convergent sequence of
projection approximations, if Λ contains a dense countable subset.

Theorem 5 An admissible linear problem posed by some Λ ⊆ U∗ has a unique solution, if Λ is dense in
U∗.

Proving density will turn out to be dependent of the type of functionals. We thus have to be able to split
sets of functionals.

Theorem 6 Let Λ = ∪i∈IΛ
i be a superposition of not necessarily disjoint sets Λi. If all Λi have a dense

subset, so has Λ.

7 Continuity

We now focus on functionals arising in strong problems, in particular point evaluations of functions or
derivatives thereof. In such cases density of sets of functionals can be obtained from density of the related
evaluation points together with continuity of the evaluated functions or derivatives. The simplest case is
evaluation of plain function values.

Theorem 7 Let Λ consist of all point evaluations on some set Ω, i.e. Λ = {δx : x ∈ Ω}, and let U consist
of continuous functions. Then a subset of functionals Λ̃ = {δx : x ∈ Ω̃} ⊆ Λ corresponding to a subset
Ω̃ ⊆ Ω is dense in Λ if Ω̃ is dense in Ω.

Since in this section we confine ourselves to strongly formulated problems, we assume U to be a reproducing
kernel Hilbert space of functions on some set Ω ⊆ IRd with a kernel function Φ and continuous point
evaluations. Then the standard reproduction property (7) implies that continuity of all functions in U
follows from continuity of the kernel:

Theorem 8 If the kernel Φ of some reproducing kernel Hilbert space U is continuous, then U consists of
continuous functions.

Proof: Let x, y ∈ Ω and u ∈ U be given, and use (7) and (6) for

(u(x)− u(y))2 = (u, Φ(x, ·)− Φ(y, ·))2U
≤ ‖u‖2U‖Φ(x, ·)− Φ(y, ·)‖2U
≤ ‖u‖2U (Φ(x, x)− Φ(x, y)− Φ(y, x) + Φ(y, y))) .

2

The next step concerns strongly formulated problems where data partially depend on a differential operator,
e.g. a Poisson problem (2). If we take a countable set of dense points {xj}j ⊂ Ω on Ω and {yk}k ⊂ ∂Ω
and use functionals λj(u) = δxj ∆u and µk(u) = δyk (u), respectively, we want to infer that a function u ∈ U
with zero data must be identically zero. If the problem has enough regularity such that the solution lies
in some reproducing kernel Hilbert space consisting of functions that are continuous on Ω, then Theorem 7
immediately yields u = 0 on ∂Ω, but we still need something for the functionals of the form λj(u) = δxj ∆u
for xj ∈ Ω.

Theorem 9 Let U be a reproducing kernel Hilbert space with kernel Φ defined on some set Ω, and let
L : U → S be a linear operator from U onto a space S = L(U) of functions on Ω. It should have the
properties

Ls
xΦ(s, ·) ∈ U for all x ∈ Ω
(Lu)(x) = (u, Ls

xΦ(s, ·))U for all u ∈ U, x ∈ Ω
Ls

xLt
yΦ(s, t) =: ΦL(x, y) is continuous in x, y ∈ Ω

(17)

where Lt
x(u(t)) = (Lu)(x) means evaluation of L with respect to the variable t at the point x. Then S consists

of continuous functions. In particular, for all dense countable sets {xj}j in Ω and for all functions u ∈ U
with (Lu)(xj) = 0 for all j one has Lu = 0 on Ω.

Proof: We repeat the proof of Theorem 8 with a slight variation:

((Lu)(x)− (Lu)(y))2 = (u, Ls
xΦ(s, ·)− Ls

yΦ(s, ·))2U
≤ ‖u‖2U‖Ls

xΦ(s, ·)− Ls
yΦ(s, ·)‖2U

≤ ‖u‖2U
(
Ls

xLt
xΦ(s, t)− Ls

xLt
yΦ(s, t)− Ls

yLt
xΦ(s, t) + Ls

yLt
yΦ(s, t)

)
≤ ‖u‖2U (ΦL(x, x)− ΦL(x, y)− ΦL(y, x) + ΦL(y, y))

where we used that (17) implies

(Ls
xΦ(s, ·), Ls

yΦ(s, ·))U = Ls
xLt

yΦ(s, t) = ΦL(x, y) for all x, y ∈ Ω.

2
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8 Strong Problems

Assume now that we have a general strongly formulated problem with countably many linear operators Li

on domains Ωi ⊆ Ω such that we have to recover a function u ∈ U from its values Li(u) on each Ωi. Note
how the Poisson problem fits into this. If we take countable dense subsets of the Ωi and use functionals
of the form δxj (Liu) there, we see that under the hypotheses of Theorem 9 we can always find a solution
to the generalized interpolation problem that is based on a countable subset of the data functionals and
obtainable as the limit of a convergent sequence of approximants. In addition, we can reconstruct the true
solution u from countably many data uniquely if there is no nonzero function v ∈ U that simultaneously
satisfies all homogeneous equations Liv = 0 on Ωi for all i. This reduces the problem uf unique numerical
reconstruction of u to the uniqueness of the analytical problem itself. In the special case of the Poisson
problem, the uniqueness of the analytical problem follows from the maximum principle.

In general, we can summarize our results so far roughly by saying that unique reconstruction of a solution
of a strongly formulated generalized interpolation problem is possible, if

1. the kernel Φ and the linear operators Li satisfy (17) on domains Ωi ⊆ Ω,

2. there is a function u ∈ U that solves the problem defined by data Li(u),

3. the discretizations of the Ωi are dense,

4. there is no nonzero solution of the homogeneous problem in U .

We now show how to check the conditions (17) for linear operators L in the standard case of Hilbert spaces
on IRd with smooth symmetric translation–invariant and Fourier–transformable kernels. Then differential
operators L are definable via Fourier transforms as

(Lu)(x) = (2π)−d/2

∫
IRd

û(ω)L̂(ω)eixT ωdω for all x ∈ IRd.

Standard reproducing kernel Hilbert spaces U on all of IRd with kernels Φ(x− y) (instead of Φ(x, y), due to
translation invariance) consist of the functions u with

(u, u)U := (2π)−d/2

∫
IRd

|û(ω)|2

Φ̂(ω)
dω < ∞

where the Fourier transform of Φ is positive. Now the first property of (17) means∫
IRd

Φ̂(ω)2|L̂(ω)|2

Φ̂(ω)
dω =

∫
IRd

Φ̂(ω)|L̂(ω)|2dω < ∞.

If Φ̂(ω) decays at infinity at least like ‖ω‖−β
2 and if L is a differential operator of order at most m, the above

integral is bounded if
β > 2m + d. (18)

The second property then follows from

Ls
yΦ(s, t) = (2π)−d/2

∫
IRd

Φ(· − t)∧(ω)L̂(ω)eiyT ωdω

= (2π)−d/2

∫
IRd

Φ̂(ω)L̂(ω)ei(y−t)T ωdω

(Ls
yΦ(s− ·))∧(ω) = Φ̂(−ω)L̂(−ω)e−iyT ω

(u, Ls
yΦ(s− ·))U = (2π)−d/2

∫
IRd

û(ω)(Ls
yΦ(s− ·))∧(ω)

Φ̂(ω)
dω

= (2π)−d/2

∫
IRd

û(ω)L̂(ω)Φ̂(ω)eiyT ω

Φ̂(ω)
dω

= (Lu)(y).

The continuity of Ls
xLt

yΦ(s, t) =: ΦL(x− y) will usually follow from a direct calculation of this new positive
semidefinite kernel, if the original kernel Φ is smooth enough. But since the Fourier transform of ΦL is
Φ̂|L̂|2, the continuity of ΦL follows already from (18) by Sobolev space embedding arguments.
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9 Weak Problems

To reduce uncountable sets of functionals for weak problems to countable subsets, we first observe that
the functionals for weak problems have the form λv = R−1(v) where the functions v vary in the subspace
V = R(Λ) of U that arises in the variational equation to be solved. By property 4 of Theorem 3, the full set
Λ of such functionals contains a countable dense subset, iff V contains a dense subspace with a countable
basis. This is the standard background for proving convergence of the Rayleigh–Ritz and in particular the
finite element method.

But the framework we developed here allows other subspaces of V = R(Λ). In particular, we can use meshless
kernel methods to generate an extremely large variety of dense subspaces with countably many generators.
The first technique is to use positive definite functions with compact and arbitrarily small support that
are contained in U . Such functions are provided by Wu [15] and Wendland [12]. Placing such functions
at rational centers and using rational support radii will yield dense subspaces of U with countable bases.
Another technique may take shifts of the (possibly singular) kernel of U and convolve these functions with
smooth locally supported functions to improve smoothness and remove singularities. A third variation can
apply scaled partitions of unity with rather arbitrary local spaces of functions, e.g. those generated by
moving least squares techniques. All of these variations will generate subspaces with countable bases.

The analysis of such spaces is still to be done. In particular, one can follow the proof technique for finite
element methods up to and including Cea’s lemma, and then one has to prove approximation orders for such
subspaces of Sobolev spaces.

10 Overcoming Low Regularity

The previous sections ignored the difficulty arising when the solution u ∈ U of the given analytic problem (1)
posed in a normed linear space U does not have enough regularity to be in a suitable Hilbert space U with a
useful positive definite reproducing kernel Φ. Plenty of authors report good convergence of meshless methods
in such cases, and the standard examples are numerical techniques using multiquadrics, where U consists of
analytic functions. This is a serious problem for proving convergence, error bounds, and convergence orders,
and it systematically arises when the user wants to work with some “nice” kernel Φ, but ignores that the
solution of the given strongly or weakly formulated problem does not have sufficient regularity to lie in the
“native” Hilbert space U for the chosen kernel.

However, since native spaces of positive definite kernels usually are dense in various other, much larger spaces,
functions u from those spaces can be approximated by functions from native spaces to arbitrary accuracy.
Thus there can be approximants by meshless kernel methods that actually converge towards u, but not
in the topology of the native space U , but only in the topology of the larger space U . It is a problem of
Numerical Analysis to show that certain algorithms actually produce such approximants. Standard examples
for recovery from interpolation data are in [11] and by Narcowich, Ward, and Wendland in [10]. Here, we
are satisfied with pointing out that such approximants exist under very weak conditions.

Theorem 10 Assume that the generalized interpolation problem (1) posed in some normed linear space U
of functions on a domain Ω ⊆ IRd has a solution u ∈ U . Assume further that there is a countable subset of
functionals λj ∈ Λ, j ∈ IN such that there is no nontrivial function v ∈ U with λj(v) = 0 for all j ∈ IN , i.e.
the problem is well–posed in U even for a dense countable subset of functionals. Let a sequence of functions
uk ∈ U , k ∈ IN be constructed to satisfy

λj(u) = λj(uk), 1 ≤ j ≤ k

by any method whatsoever. Then the functions uk converge towards u in a norm on U that is bounded above
by ‖.‖U .

Proof: Take any sequence of positive real numbers ρj such that
∑

j
ρj‖λj‖2U∗ converges. Then

(u, v)ρ :=

∞∑
j=1

ρjλj(u)λj(v), u, v ∈ U

is an inner product on U , and the corresponding norm has the bound

‖u‖2ρ =

∞∑
j=1

ρjλ
2
j (u) ≤ ‖u‖2U

∞∑
j=1

ρj‖λj‖2U∗ .
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Define ck := ‖u− uk‖U and observe that the calculation stops after a finite number of steps if one of the ck

vanishes. Assume now that all ck are positive. We recursively define a sequence of positive numbers εk such
that 2c2

kεk+1 ≤ c2
k+1εk holds for all k and the εk converge to zero. Then we pick the numbers ρk such that

2c2
kρk+1‖λk+1‖2U∗ ≤ εk holds for all k and the aforementioned sum converges.

Now by construction

‖u− uk‖2ρ =

∞∑
j=k+1

ρjλ
2
j (u− uk)

≤ ‖u− uk‖2U
∞∑

j=k+1

ρj‖λj‖2U∗

≤ c2
k

∞∑
j=k+1

1

2

εj−1

c2
j−1

≤ 1

2
c2

k
εk

c2
k

(1 +
1

2
+

1

4
+ . . .)

= εk.

2

Here is a non–constructive related result:

Theorem 11 Assume that the generalized interpolation problem (1) posed in some normed linear space U
of functions on a domain Ω ⊆ IRd has a solution u ∈ U . Assume further that Φ is a reproducing symmetric
positive definite kernel on IRd for a Hilbert space U that is continuously embedded in U . Finally, there should
be a countable subset of functionals λj ∈ Λ, j ∈ IN such that there is no nontrivial function v ∈ U with
λj(v) = 0 for all j ∈ IN . Then there is s sequence {vk}k of functions in U that converges to u in U . This
sequence consists of solutions of finite subproblems with data close to the data of u.

Proof: Note first that functionals in U∗ are in U∗. We thus can formulate the problem in U , but it has
no solution there. Furthermore, we can extract finite subsets of functionals and work in finite–dimensional
subspaces of U ⊂ U to generate candidates for convergence towards u.

Now assume that all functionals are normalized to have norm 1 in U . The solution u ∈ U to (1) can be
approximated by functions uk ∈ U ⊂ U to any prescribed accuracy, and we assume that the sequence
‖u − uk‖U tends to zero for k → ∞. Due to unique solvability of the countable subproblem in U we can
pick for each k an index nk ∈ IN such that the solution vk ∈ U of the problem

λj(uk) = λj(vk), 1 ≤ j ≤ nk

satisfies ‖uk − vk‖U ≤ ‖u− uk‖U , because for large nk the left–hand side can be made arbitrarily small. We
then have

‖u− vk‖U ≤ ‖u− uk‖U + ‖uk − vk‖U
≤ ‖u− uk‖U + C‖uk − vk‖U

≤ ‖u− uk‖U + C‖u− uk‖U

≤ (1 + C)‖u− uk‖U

and get convergence vk → u in U . The data of the functions vk are close to those of u due to

|λj(vk)− λj(u)| = |λj(uk)− λj(u)|
≤ 1 · ‖uk − u‖U .

2
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[9] H. Meschkowski. Hilbertsche Räume mit Kernfunktion. Springer, Berlin, 1962.

[10] F. J. Narcowich, J.D. Ward, and H. Wendland. ???? manuscript, 2003.

[11] R. Schaback. Approximation by radial basis functions with finitely many centers. Constructive Approx-
imation, 12:331–340, 1996.

[12] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of
minimal degree. Advances in Computational Mathematics, 4:389–396, 1995.

[13] H. Wendland. Fast evaluation of radial basis functions: Methods based on partition of unity. In C. K.
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