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Abstract

This paper is an extension of earlier papers [8, 9] on the “native”
Hilbert spaces of functions on some domain Ω ⊂ IRd in which con-
ditionally positive definite kernels are reproducing kernels. Here, the
focus is on subspaces of native spaces which are induced via subsets of
Ω, and we shall derive a recursive subspace structure of these, leading
to recursively defined reproducing kernels. As an application, we get a
recursive Neville–Aitken–type interpolation process and a recursively
defined orthogonal basis for interpolation by translates of kernels.

Keywords: Radial basis functions, interpolation, scattered data, ker-
nels, multiscale methods

AMS Classification: 41A05,41063, 41065, 65D05, 65D15.

1 Positive Definite Kernels

Let Ω be a nonempty set. If we have a Hilbert space H over IR con-
sisting of functions on Ω such that the point evaluation functionals

δx : f 7→ f(x) for all x ∈ Ω, f ∈ H

are continuous, there is a symmetric reproducing kernel

KH(x, y) := (δx, δy)H for all x, y ∈ Ω

with the reproduction equation

f(x) = δx(f) = (f,K(x, ·))H for all x ∈ Ω, f ∈ H. (1)

Such kernels have the additional property to be positive (semi–) defi-
nite on Ω in a certain sense. For each such kernel, one can also con-
struct a “native” Hilbert space in which it is reproducing. Since we
need this Hilbert space and its construction principles, we have to go
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into details now. Since there is some confusion in the literature con-
cerning the definition of positive definiteness, we need some notation
for a proper definition.

If X ⊆ Ω is a finite subset, we denote its cardinality by |X| and
use coefficient vectors a ∈ IR|X| to define finitely supported linear
functionals by

λa,X(f) :=
∑

xj∈X

ajf(xj)

on the space IRΩ of real–valued functions on Ω which allow point eval-
uation. These functionals form a linear space

L0(Ω) :=
{

λa,X : X ⊆ Ω ⊂ IRd, |X| < ∞, a ∈ IR|X|
}

over the real numbers by standard operations.

Definition 1 A symmetric function

K : Ω× Ω → IR

is called a positive definite kernel on L0(Ω), if the form

(λa,X , λb,Y )K := λs
a,X , λt

b,Y K(s, t)
=

∑
xj∈X

∑
yk∈Y

ajbkK(xj , yk)

is a symmetric bilinear and positive definite quadratic form on

L0(Ω) :=
{

λa,X : X ⊆ Ω ⊂ IRd, |X| < ∞, a ∈ IR|X|
}

.

Note that we write λt to indicate that a functional λ acts with respect
to the variable t. Reproducing kernels of Hilbert spaces of functions
with continuous point evaluation are always positive definite in the
above sense. But there is also another notion:

Definition 2 A kernel K is positive (semi–) definite on Ω, if for all
finite sets X the quadratic form

IR|X| 3 a 7→ (λa,X , λa,X)K

= λs
a,X , λt

a,XK(s, t)
=
∑

xj∈X

∑
xk∈X

ajakK(xj , xk)

is positive (semi–) definite.
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These two notions are not the same, because a kernel K can be pos-
itive definite on L0(Ω) while being only positive semi–definite on Ω.
The main point is that there may be a functional of the form λa,X

which is zero as a functional without having zero coefficients. Positive
definiteness on Ω thus is a stronger property, and it is satisfied iff the
point evaluation functionals separate points, i.e. iff point evaluation
functionals at different points are linearly independent. The early ref-
erences [1, 4] make a similar distinction, separating positive definite
kernels from what they call positive definite matrices.

If a kernel K is positive definite on L0(Ω) without being induced by
a Hilbert space H in which it is reproducing, one can construct an
appropriate space from the kernel. In fact, the kernel induces a norm

‖λa,X‖2K := (λa,X , λa,X)K for all λa,X ∈ L0(Ω)

under which L0(Ω) is a pre–Hilbert space which can formally be com-
pleted to form a Hilbert space L0(Ω).

Having the kernel K at our disposal, we can introduce functions on Ω
via

fa,X(·) := λt
a,XK(·, t) =: RK(λa,X) for all λa,X ∈ L0(Ω)

and this introduces a linear and surjective Riesz–type map

RK : L0(Ω) → RK(L0(Ω)) =: F0(Ω).

It satisfies
λb,Y (RK(λa,X)) = (λa,X , λb,Y )K

for all λa,X , λb,Y ∈ L0(Ω) and thus is injective. If we define a bilinear
form on F0(Ω) by

(fa,X , fb,Y )K := (R−1
K fa,X , R−1

K fb,Y )K = (λa,X , λb,Y )K

for all λa,X , λb,Y ∈ L0(Ω), the map RK is the usual Riesz isometry,
and it extends to the completions as

RK : L0(Ω) → RK(L0(Ω)) =: F0(Ω).

Note that the definition of RK is the same for all domains Ω, and
thus we drop Ω in the notation for RK and RK . The kernel K is
reproducing on the Hilbert space F0(Ω) in the generalized sense

λ(f) = (f,RK(λ))K for all λ ∈ L0(Ω), f ∈ F0(Ω) (2)

which specializes to (1) on H := F0(Ω) when setting λ := δx and using
RK(δx)(y) = K(x, y).
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Altogether, we see that there is a one–to–one connection between pos-
itive definite kernels on L0(Ω) and “native” Hilbert spaces of the form
F0(Ω) in which these kernels are reproducing. A typical instance is
given by the radial kernel

Km−d/2(x, y) := ‖x−y‖m−d/2
2 Km−d/2(‖x−y‖2), x, y ∈ IRd, m > d/2.

Starting the above construction from Km−d/2 generates Sobolev space
F0(IRd) = Wm

2 (IRd), which is not evident unless one goes backwards
and uses Fourier transforms to identify the reproducing kernel of Wm

2 (IRd).
Other less standard cases arise, for instance, when using the Gaussian
or inverse multiquadric kernels

K(x, y) := exp(−‖x− y‖22) or K(x, y) := (1 + ‖x− y‖22)−m, m > d/2,

respectively. They generate “native” Hilbert spaces of global analytic
functions on IRd.

2 Duals of Native Spaces

Let H be a Hilbert space of functions on Ω with a reproducing kernel
KH. A functional λ in the dual H∗ has a representer fλ = R(λ) in H
via the Riesz map R : H∗ → H. It allows to define the function

λxKH(x, ·) := R(λ) ∈ H.

This can be understood classically for λ = λa,X , but may be a non-
classical action of λ on KH in general.

If µ is another functional in H∗, we have

µ(λxKH(x, ·)) = µ(R(λ)) = (λ, µ)H∗ =: µyλxKH(x, y).

This means that the action of two functionals in H∗ to the two ar-
guments of the reproducing kernel is always well–defined. In special
cases, e.g. for Sobolev spaces, the above argument implies that the ker-
nel roughly has twice the (generalized) differentiability of the elements
of its native Hilbert space.

But there is another important application. Consider a linear and
continuous mapping L from H to some other Hilbert space V. Then
L∗L maps H back to itself, and for each f ∈ H and x ∈ Ω we have

(L∗Lf)(x) = (L∗Lf, KH(x, ·))H
= (Lf, LyKH(x, y))V .

Consequently, the adjoint L∗ of L can be represented as

(L∗v)(x) = (v, LyKH(x, y))V for all x ∈ Ω, v ∈ V.
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3 Subspaces of Native Spaces

We now look at two kinds of subspaces of native spaces and their
connection. They are introduced by subsets Ω0 ⊆ Ω and defined as

V (Ω0,Ω) := {f ∈ F0(Ω) : f(Ω0) = {0}}
F (Ω0,Ω) := F0(Ω0).

For the second case, we note that F0(Ω0) is the native space for K
being restricted to the subset Ω0, and it isometrically embedded in
F0(Ω) because we have

L0(Ω0) ⊆ L0(Ω)
F0(Ω0) ⊆ F0(Ω)

due to their definition, and these relations extend as isometric embed-
dings to the closures.

We now state a simple but important relation between these spaces.

Lemma 1 Both spaces V (Ω0,Ω) and F (Ω0,Ω) are closed subspaces of
F0(Ω), and they are mutually orthogonal.

Proof: The first space is closed because point evaluation functionals
are continuous, and the second is closed by definition. If we have some
f ∈ V (Ω0,Ω) and some fa,X ∈ F0(Ω0) with X ⊆ Ω0, the reproduction
equation gives

(f, fa,X)K = λa,X(f)
=

∑
xj∈X⊂Ω0

ajf(xj)

= 0

and this extends to the closure of F0(Ω0). 2

For notational convenience, we introduce the complementary orthogo-
nal projectors

ΠΩ0 : F0(Ω) → F0(Ω), ΠΩ0(F0(Ω)) = F0(Ω0)
(Id−ΠΩ0) : F0(Ω) → F0(Ω), (Id−ΠΩ0)(F0(Ω)) = V (Ω0,Ω).

(3)

Example 1 Assume that a kernel K is positive definite on IRd, like
the radial basis functions

K(x, y) := φ(‖x− y‖2) for all x, y ∈ IRd

with the Gaussian
φ(r) := exp(−r2), r ≥ 0
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or the inverse multiquadric

φ(r) := (1 + r2)−β/2, β > 0, r ≥ 0

or the Sobolev/Matern function

φ(r) := Km−d/2(r)rm−d/2, m > d/2, r ≥ 0

or Wendland’s function

φ(r) := (1− r)4+(1 + 4r), r ≥ 0, d ≥ 3.

Then the local native space F0(Ω) with respect to some general subset
Ω of IRd is the orthogonal complement in F0(IRd) of the functions
vanishing outside Ω.

In the last two cases, the global native spaces on IRd are global Sobolev
spaces of orders m − d/2 and (d + 3)/2, respectively. Then the local
native spaces on subsets are completely characterized by Lemma 1.
But one needs additional hypotheses on the set Ω to conclude that the
local native spaces on subsets are local Sobolev spaces.

Example 2 If Ω0 is a finite set X = {x1, . . . , xN} of points of Ω, the
space F0(X) = F0(X) is the space spanned by the functions K(·, xj), 1 ≤
j ≤ N , and the projector ΠX associates to each function f its inter-
polant ΠX(f) on X. Lemma 1 then restates the standard fact that
interpolants based on the functions K(·, xj), 1 ≤ j ≤ N furnish norm–
minimal interpolants within the native space.

But X need not be finite. For functions f in the native space, one
can pose transfinite interpolation problems on arbitrary sets X, and
their theoretical solution will be provided by the projector ΠX . Note
that these transfinite interpolation processes are uniquely solvable if
the data are exact and come from a function in the native space. For
other data, solvability is not guaranteed.

Example 3 Asssume that Ω carries a topology and K is continuous.
By the standard argument

f(x)− f(y) = (f,K(x, ·)−K(y, ·))K

|f(x)− f(y)|2 ≤ ‖f‖2K‖K(x, ·)−K(y, ·)‖2K
= ‖f‖2K(K(x, x)− 2K(x, y) + K(y, y))

this implies that all functions in F0(Ω) are continuous. In view of the
previous example, we can look at infinite sets X ⊂ Ω, and it is then
clear that V (X, Ω) = V ( clos (X),Ω) holds. Furthermore, Lemma 1
implies that an interpolant to f on X will automatically interpolate
also on clos (X).
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4 Kernels for Subspaces

The previous section gave us some closed subspaces of native spaces.
Since these are again Hilbert spaces of functions with continuous point
evaluation, we know that they have a unique reproducing kernel. Us-
ing the complementary orthogonal projectors of (3), we now want to
construct the reproducing kernels on both subspaces. We do this in
general and under simplified notation.

Theorem 1 Let the Hilbert space H have a reproducing kernel KH
on some set Ω, and consider a subspace V of H with the canonical
orthogonal projector Π. Then the reproducing kernel on V = Π(H) is

KV(x, y) := Πs
yΠt

xKH(t, s), x, y ∈ Ω (4)

and is reproducing V = Π(H) on Ω. Here we used the notation Qt
x if

an operator Q acts with respect to the variable t and then sets t = x in
the result.

Proof: Since projectors are self–adjoint, we have

Πt
xf(t) = (Πt

·f(t),KH(x, ·))H
= (f,Πt

·KH(x, t))H
= (Πs

· f(s) + (Id−Π)s
· f(s),Πt

·KH(x, t))H
= (Πs

· f(s),Πt
·KH(x, t))H.

Since KH is symmetric, we can use Πt
·KH(x, t) = Πt

xKH(t, ·) to get

Πt
xf(t) = (Πs

· f(s),Πt
xKH(t, ·))H

= (f,Πs
·Π

t
xKH(t, s))H

= (Πs
· f(s),Πs

·Π
t
xK(t, s))H H

proving (4) because reproducing kernels are unique [1, 4]. 2

Note that [1, 4] pursue the opposite direction: they show that if two
subspaces are mutually orthogonal, the sum of their respective repro-
ducing kernels is equal to the reproducing kernel for the full space.
In the case above, the two orthogonal subspaces are V = Π(H) and
V⊥ = (IdH − Π)(H). Consequently, the kernel KH on H has the
splitting

KH(x, y) = KV(x, y) + KV⊥(x, y)
= Πs

yΠt
xKH(t, s) + (IdH −Π)s

y(IdH −Π)t
xKH(t, s)

with the somewhat strange consequence

2Πs
yΠt

xKH(t, s) = Πt
xKH(t, y) + Πs

yKH(x, s)

for all x, y ∈ Ω.
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5 Recursive Kernels

We now focus on subspaces induced by subsets. If Ω0 is s subset of
Ω, we denote the projector onto F0(Ω0) by ΠΩ0,K taking the kernel
K into the notation. If we want to interpolate a function f ∈ F0(Ω)
on Ω0, we can take the function ΠΩ0,K(f). We now have the residual
function

f0 := f −ΠΩ0,K(f) ∈ V (Ω0,Ω),

and we can work on the residual f0 in the space V (Ω0,Ω) = F0(Ω0)⊥

from now on. As we know from the previous section, the reproducing
kernel there is

KΩ0,K(x, y) := (Id−ΠΩ0,K)s
y(Id−ΠΩ0,K)t

xK(s, t).

Now assume that we enlarge the set Ω0 to some set Ω1 := Ω0∪X0 ⊆ Ω
by adding a set X0 of points not in Ω0. We interpolate f0 on X0

by translates of KΩ0,K , and this is formally done by the projector
ΠX0,KΩ0,K

. The interpolant to f on Ω1 can then be written as

ΠΩ0,K(f) + ΠX0,KΩ0,K
(f0)

= ΠΩ0,K(f) + ΠX0,KΩ0,K
(f −ΠΩ0,K(f))

= ΠΩ1,K(f).

Thus we can write the new projector onto Ω1 as

ΠΩ1,K = ΠΩ0,K + ΠX0,KΩ0,K
(Id−ΠΩ0,K)

Id−ΠΩ1,K = (Id−ΠX0,KΩ0,K
)(Id−ΠΩ0,K)

and the residual is

f1 := f0 −ΠX0,KΩ0,K
(f0)

= (Id−ΠX0,KΩ0,K
)(f0)

= (Id−ΠX0,KΩ0,K
)(Id−ΠΩ0,K)(f)

= (Id−ΠΩ1,K)(f).

The reproducing kernel on the space V (Ω1,Ω) then is

KΩ1,K(x, y) := (Id−ΠΩ1,K)s
y(Id−ΠΩ1,K)t

xK(s, t)
= (Id−ΠX0,KΩ0,K

)s
y(Id−ΠX0,KΩ0,K

)t
xKΩ0,K(s, t)

= ((Id−ΠX0,KΩ0,K
)(Id−ΠΩ0,K))s

y

((Id−ΠX0,KΩ0,K
)(Id−ΠΩ0,K))t

xK(s, t).

This allows to calculate these kernels recursively.

If we proceed stepwise, adding a single point at each step, we can define
Ω0 := {z} for some z ∈ Ω. Then we have

(ΠΩ0,K(f)) (x) =
K(x, z)
K(z, z)

f(z)
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due to the interpolation property at z, and the new kernel is

K{z},K(x, y) := (Id−ΠΩ0,K)s
y(Id−ΠΩ0,K)t

xK(s, t)
= K(x, y)− (ΠΩ0,K)s

yK(x, s)− (ΠΩ0,K)t
xK(y, t)

+(ΠΩ0,K)s
y(ΠΩ0,K)t

xK(s, t)

= K(x, y)− K(y, z)
K(z, z)

K(x, z)− K(x, z)
K(z, z)

K(z, y)

+
K(y, z)
K(z, z)

K(z, z)
K(x, z)
K(z, z)

= K(x, y)− K(y, z)K(x, z)
K(z, z)

.

If we recursively use points z1, . . . , zn, . . . we can define

K0(x, y) := K(x, y)

Kj(x, y) := Kj−1(x, y)− Kj−1(y, zj)Kj−1(x, zj)
Kj−1(zj , zj)

to define kernels Kj that vanish if one of the arguments is in {z1, . . . , zj}
and which are the kernels we would have called KΩj ,K with Ωj =
{z1, . . . , zj} above.

6 Recursive Interpolation

We can now use the above arguments to define a recursive Neville–
Aitken type of interpolation without solving linear systems [7]. Assume
we are given a domain Ω, a kernel K on Ω, a function f on Ω and
points z1, . . . , zj , ... ∈ Ω to interpolate f in. The algorithm below can
be carried out either for a fixed x ∈ Ω or in a space of functions on Ω
when treating x as a variable.

Start: Define

s0(x) := 0,
r0(x) := f(x)− s0(x) = f(x)

K0(x, y) := K(x, y).

Iteration: For j = 1, 2, . . . ...

sj(x) := sj−1(x) + rj−1(zj)
Kj−1(x, zj)
Kj−1(zj , zj)

rj(x) := f(x)− sj(x)

= f(x)− sj−1(x)− rj−1(zj)
Kj−1(x, zj)
Kj−1(zj , zj)

= rj−1(x)− rj−1(zj)
Kj−1(x, zj)
Kj−1(zj , zj)

Kj(x, y) := Kj−1(x, y)− Kj−1(y, zj)Kj−1(x, zj)
Kj−1(zj , zj)

.
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In the course of this algorithm, the functions f and rj are evaluated
only at the data locations. The function sj will be the interpolant to f
on z1, . . . , zj . In matrix–vector form, and with evaluation to be done
for points x1, . . . , xm ∈ Ω, the algorithm should work with

Sj := (sj(x1), . . . , sj(xm))T ∈ IRm

Rj := (rj(z1), . . . , rj(zn))T ∈ IRn

= (0, . . . , 0, rj(zj+1), . . . , rj(zn))T

Cj := (Kj(zi, zk))1≤i,k≤n ∈ IRn,n

Bj := (Kj(xi, zk))1≤i≤m, 1≤j≤n ∈ IRm,n

(5)

and proceed in MATLAB–type notation via the in–place iteration

Sj = Sj−1 + Bj−1(:, j) ∗Rj−1(j)/Cj−1(j, j)
Rj = Rj−1 − Cj−1(:, j) ∗Rj−1(j)/Cj−1(j, j)
Bj = Bj−1 −Bj−1(:, j) ∗ Cj−1(j, :)/Cj−1(j, j)
Cj = Cj−1 − Cj−1(:, j) ∗ Cj−1(j, :)/Cj−1(j, j)

(6)

starting from

S0 := 0 ∈ IRm

R0 := (f(z1), . . . , f(zn))T ∈ IRn

C0 := (K(zi, zk))1≤i,k≤n ∈ IRn,n

B0 := (K(xi, zk))1≤i≤m, 1≤k≤n ∈ IRm,n.

The kernels Kj were called power kernels in [5] because they are
related to the power function PΩj ,K(x) allowing to bound the point-
wise interpolation error by

|f(x)− sj(x)| ≤ PΩj ,K(x)‖f‖H for all x ∈ Ω, f ∈ H.

The connection [7, 5] is

P 2
Ωj ,K(x) := Kj(x, x) for all x ∈ Ω.

If the user does not want the value sj(x) but rather some derivative of
sj at x or the value of some general linear functional λ on sj , one can
extend the iteration on the sj(x) by

Start: λ0 := λ(s0) = 0

Iteration:

λj := λ(sj) = λj−1 + rj−1(zj)
λxKj−1(x, zj)
Kj−1(zj , zj)

.

This allows any derivative of the interpolant to be recursively calcu-
lated “entirely in terms of nodes”, as postulated for meshless meth-
ods [2], but without solving a linear system and without excessive
storage.
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However, we do not claim that the above algorithm is computationally
more efficient or more stable than the standard approaches. It can be
viewed as a disguised form of Cholesky decomposition, if we introduce
the matrices (5) and see that they have the in–place Cholesky–type
recursion given by the last line of (6). This reduces the original kernel
matrix C0 stepwise to matrices Cj which have the first j rows and
columns set to zero, the remaining square part still being positive def-
inite. It is remarkable that orthogonality arguments in Hilbert space
naturally lead to such an algorithm.

There is another observation to be made. The above procedure gener-
ates a new basis

K0(·, z1), . . . ,Kn−1(·, zn)

of the space
span {K(·, zj) : 1 ≤ j ≤ n}.

and this new basis is orthogonal in the native Hilbert space. Indeed,
for 1 ≤ j < k ≤ n we have

(Kj−1(·, zj),Kk−1(·, zk))H =

(
j∑

i=1

αiK(·, zi),Kk−1(·, zk)

)
H

=
j∑

i=1

αi (K(·, zi),Kk−1(·, zk))H

=
j∑

i=1

αiKk−1(zi, zk)

= 0,

but we already know this from our construction principle based on
orthogonality. An investigation of bases with similar orthogonality
properties is on its way [6].

At this point, we suppress numerical examples, because it turned out
that implementation of the recursive method does not lead to unex-
pected results. If not too many evaluation points xi are required (i.e.
m ≤ O(n)), the algorithm is roughly comparable to the standard ap-
proach in both efficiency and stability, provided that it is written in
matrix form like (6) and with certain simple enhancements to avoid
repeated calculations of already known values or calculation of zeros
known beforehand. A MATLAB program can be obtained from the
second author on request.

7 Generalized Interpolation

We can extend the above algorithm to general data. Instead of given
points z1, . . . , zj , . . . we assume data in the form of linear functionals
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λ1, . . . , λj , . . . from the dual of the native Hilbert space H of the kernel
K on Ω. The range of admissible functionals is discussed in section 2.

Generalized interpolation of a function f ∈ H using these data then
means to find a function sj ∈ H such that

λk(sj) = λk(f), 1 ≤ k ≤ j,

and the previous situation is the special case λj = δzj . Instead of
calculating a single function value sj(x), we can calculate a general
data value µ(sj) for some functional µ ∈ H∗. The algorithm then is

Start: Define
s0 := 0,

µ0 := µ(s0) := 0,
r0(z1) := f(z1)

K0(x, y) := K(x, y).
µxK0(x, y) := µxK(x, y).

Iteration: For j = 1, 2, . . . ... and j < i, k ≤ n

µj := µ(sj) := µj−1 + λt
jrj−1(t)

µxλt
jKj−1(x, t)

λs
jλ

t
jKj−1(s, t)

λx
i rj(x) = λx

i rj−1(x)− λt
jrj−1(t)

λx
i λt

jKj−1(x, t)
λs

jλ
t
jKj−1(s, t)

λx
i λy

kKj(x, y) := λx
i λy

kKj−1(x, y)−
λt

jλ
y
kKj−1(y, t)λx

i λs
jKj−1(s, x)

λs
jλ

t
jKj−1(s, t)

.

λx
i µyKj(x, y) := λx

i µyKj−1(x, y)−
λt

jµ
yKj−1(y, t)λx

i λs
jKj−1(s, x)

λs
jλ

t
jKj−1(s, t)

where we suppressed the recursions

sj(x) := sj−1(x) + λt
jrj−1(t)

λt
jKj−1(x, t)

λs
jλ

t
jKj−1(s, t)

rj(x) := f(x)− sj(x)

= f(x)− sj−1(x)− λt
jrj−1(t)

λt
jKj−1(x, t)

λs
jλ

t
jKj−1(s, t)

= rj−1(x)− λt
jrj−1(t)

λt
jKj−1(x, t)

λs
jλ

t
jKj−1(s, t)

Kj(x, y) := Kj−1(x, y)−
λt

jKj−1(y, t)λs
jKj−1(s, x)

λs
jλ

t
jKj−1(s, t)

needed to understand how the algorithm works. Note that the func-
tions f, sj and rj need not be calculated at any point. We just need the
data λk(f), 1 ≤ k ≤ n and calculate the data λi(rj), 1 ≤ j < i ≤ n.
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Formally, the function sj will be the interpolant to f using the gen-
eralized data. When redefining the matrices suitably, the iteration of
this algorithm in vector–matrix form coincides with (6), but we leave
details to the reader.

8 Polynomials

In order to deal with conditionally positive definite kernels in the next
section, we need some basic facts on polynomials, functions, and func-
tionals. We fix a set Ω ⊆ IRd and denote the space of d–variate poly-
nomials of order at most m ≥ 0 on IRd by IP d

m. For the rest of the
paper, the integers d ≥ 1 and m ≥ 0 are fixed, and we suppress them
in the notation from now on, using IP := IP d

m.

A subset X of IRd is called IP–unisolvent, if

p(X) = {0} implies p = 0,

and we use the shorthand notation X ∈ U for this. If X is finite, we
denote its cardinality by |X| and use coefficient vectors a ∈ IRd to
define finitely supported linear functionals by

λa,X(f) :=
∑

xj∈X

ajf(xj)

on the space IRΩ of real–valued functions on Ω which allow point eval-
uation. Then we define

L(Ω) :=
{

λa,X :
X ⊆ Ω ⊂ IRd, |X| < ∞, X ∈ U
a ∈ IR|X|, λa,X(IP ) = {0}

}
as a space of finitely supported functionals on IRΩ. Note that this is a
vector space over IR with the usual operations, and it is a subspace of
the algebraic dual (IRΩ)′ of IRΩ.

For later use, we need a special tool we introduce now. If X is IP–
unisolvent, we can reproduce any polynomial p ∈ IP uniquely from its
values on X by a formula like

p(x) =
∑

xj∈X0

pX
j (x)p(xj) for all x ∈ IRd, p ∈ IP (7)

using a Lagrange–type basis consisting of polynomials pX
j ∈ IP for

points xj from some finite IP–unisolvent subset X0 of X.

13



9 Conditionally Positive Definite Kernels

Definition 3 A function

K : Ω× Ω → IR

is called a conditionally positive definite kernel of order m on Ω, if the
form

(λa,X , λb,Y )K := λs
a,X , λt

b,Y K(s, t)
=

∑
xj∈X

∑
yk∈Y

ajbkK(xj , yk)

is a symmetric bilinear and definite quadratic form on L(Ω).

Note that we write λt to indicate that a functional λ acts with respect
to the variable t.

If a kernel K satisfies the above definition, it induces a norm

‖λa,X‖2K := (λa,X , λa,X)K for all λa,X ∈ L(Ω)

under which L(Ω) is a pre–Hilbert space which can formally be com-
pleted to form a Hilbert space L(Ω).

To extend the recursive construction of kernels and interpolants to the
conditionally positive definite case, we fix a minimal IP–unisolvent set
Ξ ⊆ Ω and define the projector

ΠΞ(f) :=
∑
ξj∈Ξ

pΞ
j (·)f(ξj)

using the terminology of (7).

Theorem 2 [3, 8] Under the above assumptions, the kernel

KΞ(x, y) := (Id−ΠΞ)s
x(Id−ΠΞ)t

yK(s, t)

is positive definite on Ω \ Ξ. 2

This makes it easy to deal with conditionally positive definite ker-
nels. Given a large set X of data points, we first select a minimal
IP–unisolvent subset Ξ and perform the step above. Then we continue
to work on Ω \ Ξ using the data points from X \ Ξ and the kernel
KΞ. This can be done along the lines of section 6. In other words,
conditional positive definiteness just calls for an initial step towards
positive definiteness.
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