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Abstract

Recent engineering applications successfully introduced unsymmetric
meshless local Petrov-Galerkin (MLPG) schemes. As a step towards their
mathematical analysis, this paper investigates nonstationary unsymmetric
Petrov-Galerkin-type meshless kernel-based methods for the recovery of
L2 functions from finitely many weak data. The results cover solvability
conditions and error bounds in negative Sobolev norms with optimal rates.
These rates are mainly determined by the approximation properties of
the trial space, while choosing sufficiently many test functions ensures
stability. Numerical examples are provided, supporting the theoretical
results and leading to new questions for future research.

Keywords: Approximation, convolution, least squares, Petrov-Galerkin,
overdetermined systems, error bounds, stability

Classification: 65D10, 65F20, 41A25, 41A30

1 Introduction

In the emerging field of meshless methods for solving partial differential
equations, unsymmetric techniques for solving problems in strong form
have quite some history beginning in 1986 with [10] within practical appli-
cations in engineering and science, and were mathematically underpinned
in a recent paper [15]. They are special cases of kernel-based techniques
which arise in many other areas as well [17]. Similar computational meth-
ods were introduced for problems in weak form [1, 2, 3] but they still
deserve a thorough theoretical analysis.

As a first step, and building on [15], this paper looks at problems in weak
form. However, it still avoids partial differential equations and concen-
trates instead on the direct recovery of L2 functions from weak data.
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2 KERNELS AND CONVOLUTIONS 2

To improve later applicability to the aforementioned techniques, it focuses
on unsymmetric meshless Petrov-Galerkin methods and thus has to sep-
arate test and trial functions. But in order to get useful results, these
functions are restricted to be translations and dilations of fixed kernels.
Here, these kernels are positive definite and compactly supported, leading
to sparse unsymmetric linear systems.

Weak data in the sense of this paper are generated by convolution of the
solution and the data with scaled “test” kernels, independent of the trial
space used. Consequently, the paper starts in Section 2 with an analysis
of scaled kernels and the convolutions they introduce. Then Section 3
applies the results to prove well-posedness of recovery from weak data.
Least-squares approximation is a symmetric special case, identifying test
and trial functions, and Section 4 provides optimal error bounds in nega-
tive Sobolev norms for quite general choices of kernel-based trial and test
functions. These results serve as a reference for what follows.

The paper turns to unsymmetric methods in Section 5, and in Section 6
it provides a stability condition which is necessary for any analysis of un-
symmetric methods. Section 7 then combines the results on stability and
well-posedness of weak recovery to derive error bounds and convergence
rates for unsymmetric Petrov-Galerkin recovery techniques for L2 func-
tions from weak data, using meshless kernel-based trial and test functions.

The paper closes with two numerical experiments indicating typical
features of recovery of functions from weak data:

• the trial spaces care for the approximation quality and deserve future
research for their adaptive enrichment,

• the test spaces care for stability and require future research to guar-
antee a balance between noise reduction and preservation of local
details.

2 Kernels and Convolutions

We consider a translation-invariant and Fourier-transformable kernel K
on IRd with a generalized Fourier transform satisfying

cK(1 + ‖ω‖2
2)

−κ ≤ |K̂(ω)| ≤ CK(1 + ‖ω‖2
2)

−κ for all ω ∈ IRd (1)

with some real number κ > 0 controlling the smoothness of the kernel.
The kernel will be required to have support in the closed Euclidean unit
ball B(0, 1) ⊂ IRd. Such kernels were provided bu Z.M. Wu [22] and H.
Wendland [18], and the books [5, 19] together with the survey [17] contain
a fairly complete account of the background information on kernels.

We scale the kernel by a fixed positive constant k ≤ 1 and define dilations
and translations

uy,k(x) := k−dK
(

x − y

k

)

=: Kk(x − y) for all x, y ∈ IRd. (2)
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The function uy,k now is centered at y with support radius at most k, since
the kernel has compact support in B(0, 1). The multiplier k−d implies
K̂k(ω) = K̂(kω) for all ω ∈ IRd, and in particular the integral over Kk on
IRd is independent of k. Functions of this form will occur later as trial
and test functions, using different kernels. Since many application papers
(e.g. [9, 21]) stress the importance of proper scaling, we want to track the
influence of the dilation k carefully.

Since the kernel K is positive definite, it is the reproducing kernel of
its native Hilbert space [13, 14] defined as the space of all generalized
functions f on IRd with

‖f‖2
K :=

∫

IRd

|f̂(ω)|2

K̂(ω)
< ∞.

Under the above assumptions, this native space is norm-equivalent to a
Sobolev space W κ

2 (IRd).

Lemma 1 Let K be a positive definite kernel with K̂ > 0 on IRd. For
each function u in the global native space of Kk we have

k2κ

CK
‖u‖2

W κ
2

(IRd) ≤ ‖u‖2
Kk

≤
1

cK
‖u‖2

W κ
2

(IRd).

Proof: We look at Fourier transforms and get

‖u‖2
Kk

=

∫

IRd

|û(ω)|2

K̂k(ω)
dω

=

∫

IRd

|û(ω)|2

K̂(kω)
dω

≤
1

cK

∫

IRd

|û(ω)|2(1 + k2‖ω‖2
2)

κdω

≤
1

cK
‖u‖2

W κ
2

(IRd),

‖u‖2
Kk

≥
1

CK

∫

IRd

|û(ω)|2(1 + k2‖ω‖2
2)

κdω

=
k2κ

CK

∫

IRd

|û(ω)|2
(

1

k2
+ ‖ω‖2

2

)κ

dω

≥
k2κ

CK
‖u‖2

W κ
2

(IRd). 2

We shall use rather general forms of weak data later, but they will always
be generated by convolution against a kernel. Thus we now take a look
at the global behavior of the convolution map f 7→ f ∗ Kk.

Lemma 2 For each generalized function f ∈ W µ
2 (IRd) with µ ∈ IR we

have f ∗ Kk ∈ W µ+2κ
2 (IRd) and

cK‖f‖W
µ

2
(IRd) ≤ ‖f ∗ Kk‖W

µ+2κ

2
(IRd)

≤ CKk−2κ‖f‖W
µ

2
(IRd). (3)
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Proof: Inspecting Fourier transforms for g := f ∗ Kk yields

‖g‖2

W
µ+2κ

2
(IRd)

=
∫

IRd |ĝ(ω)|2(1 + ‖ω‖2
2)

µ+2κdω

=
∫

IRd f̂2(ω)K̂2
k(ω)(1 + ‖ω‖2

2)
µ+2κdω

=
∫

IRd |f̂(ω)|2K̂2(kω)(1 + ‖ω‖2
2)

µ+2κdω

≤ C2
K

∫

IRd |f̂(ω)|2(1 + k2‖ω‖2
2)

−2κ(1 + ‖ω‖2
2)

µ+2κdω

= C2
K

∫

IRd |f̂(ω)|2(1 + ‖ω‖2
2)

µ
(

1+‖ω‖2
2

1+k2‖ω‖2
2

)2κ

dω

= k−4κC2
K

∫

IRd |f̂(ω)|2(1 + ‖ω‖2
2)

µ
(

1+‖ω‖2
2

1

k2
+‖ω‖2

2

)2κ

dω

≤ k−4κC2
K

∫

IRd |f̂(ω)|2(1 + ‖ω‖2
2)

µdω

= k−4κC2
K‖f‖2

W
µ

2
(IRd)

.

Similarly,

‖g‖2

W
µ+2κ

2
(IRd)

=
∫

IRd |ĝ(ω)|2(1 + ‖ω‖2
2)

µ+2κdω

=
∫

IRd |f̂(ω)|2K̂2
k(ω)(1 + ‖ω‖2

2)
µ+2κdω

=
∫

IRd |f̂(ω)|2K̂2(kω)(1 + ‖ω‖2
2)

µ+2κdω

≥ c2
K

∫

IRd |f̂(ω)|2(1 + k2‖ω‖2
2)

−2κ(1 + ‖ω‖2
2)

µ+2κdω

= c2
K

∫

IRd |f̂(ω)|2(1 + ‖ω‖2
2)

µ
(

1+‖ω‖2
2

1+k2‖ω‖2
2

)2κ

dω

≥ c2
K

∫

IRd |f̂(ω)|2(1 + ‖ω‖2
2)

µ
(

1+k2‖ω‖2
2

1+k2‖ω‖2
2

)2κ

dω

= c2
K‖f‖2

W
µ

2
(IRd)

. 2

The following is a localization of the previous lemma.

Lemma 3 Let f ∈ W µ
2 (Ω) be a generalized function with µ ∈ IR and an

extension ZΩf by zero outside Ω such that ZΩf ∈ W µ
2 (IRd). The positive

definite kernel K should have support in the unit ball and satisfy (1). Then
we have

cK‖f‖W
µ

2
(Ω) ≤ ‖(ZΩf) ∗ Kk‖W

µ+2κ

2
(Ωk)

≤ CKk−2κ‖f‖W
µ

2
(Ω) (4)

where
Ωk := {y ∈ IRd : dist(y,Ω) ≤ k}

is the support of the convolution.

Proof: This is the previous lemma applied to ZΩf . 2

Lemma 3 covers two different situations:

• If f is globally smooth and compactly supported in Ω, both lemmas
are the same, and they make sense for positive µ.

• But if f is not globally smooth, it will often have an extension ZΩf ∈
L2(IR

d) such that the above lemma works for µ = 0 independent of
the smoothness of f inside Ω.

We now want to check conditions on µ, k, and κ under which the test
functions uy,k defined via (2) and (1) are in W µ

2 (IRd).
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Lemma 4 If
2µ + d < 4κ (5)

holds, each test function uy,k for y ∈ IRd and k ∈ (0, 1] lies in W µ
2 (IRd).

Its norm is bounded above by

‖uy,k‖
2
W

µ

2
(IRd) ≤ C2

K

∫

IRd

(1 + ‖ω‖2
2)

µdω

if µ < −d/2 and

‖uy,k‖
2
W

µ

2
(IRd) ≤ k−(d+2µ+2ǫ)C2

K

∫

IRd

(1 + ‖ω‖2
2)

−d/2−ǫdω

if µ ≥ −d/2 and if ǫ > 0 is chosen to satisfy

0 < ǫ < 2κ − d/2 − µ (6)

which is possible due to (5).

We can combine these two inequalities in a somewhat sloppy notation by

‖uy,k‖
2
W

µ

2
(IRd) ≤ C(ǫ) · k−(d+2µ+2ǫ)+ .

It may be surprising that the bound does not depend on the smoothness
parameter κ of the kernel once the latter is smooth enough.

Proof: We evaluate Fourier transforms

‖uy,k‖
2
W

µ

2
(IRd) =

∫

IRd

|ŵy,k|
2(ω)(1 + ‖ω‖2

2)
µdω

=

∫

IRd

|K̂k|
2(ω)(1 + ‖ω‖2

2)
µdω

=

∫

IRd

|K̂|2(kω)(1 + ‖ω‖2
2)

µdω

≤ C2
K

∫

IRd

(

1 + k2‖ω‖2
2

)−2κ
(1 + ‖ω‖2

2)
µdω

and the integral is well-defined for all positive k if we assume (5). To
bound these integrals properly for all real µ, all κ > 0 and 0 < k ≤ 1 with
optimal powers of k, we first look at the case µ < −d/2. Then

C2
K

∫

IRd

(

1 + k2‖ω‖2
2

)−2κ
(1 + ‖ω‖2

2)
µdω

≤ C2
K

∫

IRd

(1 + ‖ω‖2
2)

µdω.
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In case µ ≥ −d/2 we have to enforce convergence of the integral by

∫

IRd

(

1 + k2‖ω‖2
2

)−2κ
(1 + ‖ω‖2

2)
µdω

=

∫

IRd

(

1 + k2‖ω‖2
2

)−d/2−µ−ǫ
(1 + ‖ω‖2

2)
µ

(

1 + k2‖ω‖2
2

)−2κ+d/2+µ+ǫ
dω

≤ k−d−2µ−2ǫ

∫

IRd

(

1 + ‖ω‖2
2

)−d/2−µ−ǫ

(1 + ‖ω‖2
2)

µ
(

1 + k2‖ω‖2
2

)−2κ+d/2+µ+ǫ
dω

≤ k−d−2µ−2ǫ

∫

IRd

(

1 + ‖ω‖2
2

)−d/2−ǫ
dω

provided that −2κ + d/2 + µ + ǫ < 0 and ǫ > 0. This works with (5) if we
pick any positive ǫ with (6). 2

3 Nonstationary Testing

We now turn to the recovery of functions from weak data. In principle,
weak data will be generated by convolution of a given generalized function
f against a test kernel, while the approximating trial functions will be
dilated translates of a trial kernel. Since we want to allow different kernels
for the trial and test side later, we shall replace the notation K, κ, k by
S, σ, s on the teSt side and R, ρ, r on the tRial side, applying the results
of the previous section.

We first want to check if the recovery process is well-posed, i.e. that
small weak data of a function imply a small norm of the function itself.
We assume f to be given in a local Sobolev space W µ

2 (Ω) with a well-
behaving bounded domain Ω ⊂ IRd, and we use a test kernel S with
smoothness σ and scale s. The trial side is not relevant in this section.

Classical weak data of f consist of

(f ∗Ω Ss)(y) :=

∫

Ω

f(x)Ss(y − x)dx =: (ZΩf ∗ Ss)(y) for all y ∈ IRd

where ZΩf is the zero extension of f to all of IRd. Since the test kernel S
has support in the unit ball, the data sites y can be confined to the larger
domain

Ωs := {y ∈ IRd : dist(y,Ω) ≤ s}

because the weak data will vanish outside Ωs.

Note that we use a fixed scale s of the test kernel S, but allow all translates
with respect to test centers y ∈ Ωs. This should be called nonstationary
testing. It is fundamentally different from the “stationary” finite-element
situation, where the discretization parameter h affets both the scaling and
the translation simultaneously.
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We assume ZΩf to be in some global Sobolev space W m
2 (IRd) where we

allow negative or zero values of m. Then Lemma 3 yields

cS‖f‖W m
2

(Ω) ≤ ‖ZΩf ∗ Ss‖W m+2σ
2

(Ωs)
≤ CSs−2σ‖f‖W m

2
(Ω),

proving

Theorem 1 Recovery of functions from full nonstationary weak data is
well-posed in the sense of the above inequality, if a function f ∈ Wm

2 (Ω)
is recovered from all values of ZΩf ∗ Ss on Ωs. 2

Of course, the above result is not useful in practice, because it requires
infinitely many weak data. If we discretize on a set Ys consisting of points
in Ωs with fill distance

hs := sup
y∈Ωs

min
y∈Ys

‖x − y‖2

there, and for µ + 2σ being a nonnegative integer satisying

0 ≤ µ + 2σ < µ + 2σ + d/2 < ⌊m + 2σ − 1⌋, (7)

we can apply a very useful result of [20] to get

‖f ∗Ω Ss‖W
µ+2σ

2
(Ωs)

≤ C
(

hm−µ
s ‖f ∗Ω Ss‖W m+2σ

2
(Ωs)

+h−µ−2σ
s ‖f ∗Ω Ss‖∞,Ys

)

.
(8)

By Lemma 2, this implies

‖f‖W
µ

2
(Ω) ≤ C

(

hm−µ
s s−2σ‖f‖W m

2
(Ω)

+h−µ−2σ
s ‖f ∗Ω Ss‖∞,Ys

)

.
(9)

The following sections will apply the above results to error functions f −u
where u is an unspecified trial function of at least the same smoothness
as f . Then (9) implies

‖f − u‖W
µ

2
(Ω) ≤ C

(

hm−µ
s s−2σ‖f − u‖W m

2
(Ω)

+h−µ−2σ
s ‖(f − u) ∗Ω Ss‖∞,Ys

)

≤ C
(

hm−µ
s s−2σ(‖f‖W m

2
(Ω) + ‖u‖W m

2
(Ω))

+h−µ−2σ
s ‖(f − u) ∗Ω Ss‖∞,Ys

)

(10)

and leads to convergence theorems for all recovery processes which keep
‖u‖W m

2
(Ω) under control and recover the discrete data with satisfactory

accuracy. The usual least-squares approximants have these properties.
Other techniques will need additional arguments or some numerical reg-
ularization to keep a high derivative at bay. Note that most spline- and
kernel-based interpolation methods have no problems with such an as-
sumption.

Theorem 2 Recovery of functions from discrete nonstationary weak data
is well-posed in the sense of (10), if a function f ∈ Wm

2 (Ω) is recovered
from all values of ZΩf ∗Ss on a discrete subset Ys of Ωs and if algorithms
are used which keep the norms ‖u‖W m

2
(Ω) of the recovering trial functions

uniformly bounded. 2
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If f is not a globally smooth function with support in Ω, the extension
ZΩf will be only in L2(IR

d), and then we have to take m = 0 and negative
µ with

−2σ ≤ µ < µ + d/2 < ⌊2σ − 1⌋ − 2σ < 0 (11)

to get

‖f‖W
µ

2
(Ω) ≤ C

(

h−µ
s s−2σ‖f‖L2(Ω) + h−µ−2σ

s ‖f ∗Ω Ss‖∞,Ys

)

. (12)

This is not too bad for this low regularity, because one cannot expect to
reconstruct an L2 function from discrete weak data with convergence in
strong norms.

4 Least-squares Approximation

We now consider standard linear approximation in L2(Ω) where test and
trial functions coincide. For later use in a context where testing is done
on a different set using a different kernel, we write everything in terms of
a trial kernel R and associated parameters ρ, r. This approximates f by
functions

uy,r(x) := Rr(x − y)

which are superimposed to yield trial functions

ur(x) :=
∑

y∈Yr

αyuy,r(x),

and which are used for testing also. Again, we use a nonstationary scenario
where the scale r is fixed and convergence hopefully occurs by taking
sufficiently many translates.

The optimal least-squares approximation u∗
r of the above form based on

weak data of f satisfies

0 = (f − u∗
r , uy,r)L2(Ω)

=

∫

Ω

Rr(x − y)(f − u∗
r)(x)dx

= (ZΩ(f − u∗
r) ∗ Rr)(y) for all y ∈ Yr

and trivially ‖u∗
r‖L2(Ω) ≤ ‖f‖L2(Ω) bounds the approximant uniformly.

Thus we can invoke (12) to get

Theorem 3 Least-squares approximation by test and trial functions gen-
erated by a smooth compactly supported kernel R using weak data (ZΩf ∗
Rr)(y) sampled on a discrete set Yr ⊂ Ωr has an error bound

‖f − u∗
r‖W

µ

2
(Ω) ≤ Ch−µ

r r−2ρ‖f‖L2(Ω)

for the range of negative µ given by

−2ρ ≤ µ < µ + d/2 < ⌊2ρ − 1⌋ − 2ρ < 0 (13)

if integration is carried out exactly. For numerical integration, an addi-
tional term has to be expected, consisting of the absolute integration error
multiplied by a term of order h−µ−2ρ

r .
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Note that the nonstationary (i.e. r fixed) case has an optimal convergence
rate −µ for hr → 0 which does not depend on the smoothness or the scale
of the kernel. As in other cases of kernel-based meshless approximations,
the stationary case hr ≃ r cannot work for r → 0. This is not surprising,
because we assumed f ∈ L2(Ω) only.

Of course, numerical integration is impossible for functions f ∈ L2(Ω)
for which we have no other information. But we feel in good company
with the finite element literature here, since the integration of products
of functions f ∈ L2(Ω) with test functions is a standard ingredient which
is only rarely questioned there. Special consideration of errors induced
by numerical integration and spoiling the performance of weak recovery
algorithms is provided by [4, 6, 7, 8], for instance, including finite element
methods.

5 Unsymmetric Meshless Methods

We now generalize our reconstruction technique from the symmetric least-
squares case to an unsymmetric Petrov-Galerkin-type strategy. We start
again by taking trial functions which are linear combinations

ur(x) :=
∑

y∈Yr

αyRr(x − y) (14)

of translations and dilations of a trial kernel R taken at points y of a finite
set Yr ⊂ IRd of trial centers. This generates a trial space Ur we shall use
later, but we shall also restrict the set Yr to a domain Ωr.

Testing is done by a kernel S with parameters σ, s and a set Ys. We
work or way towards unsymmetric methods, because we want to deal
with unsymmetric meshless Petrov-Galerkin techniques like the MLPG
[3] in future papers. This requires a thorough study of L2 recovery by
unsymmetric meshless methods first. We proceed like in the paper [15]
dealing with unsymmetric strong collocation methods.

On both the trial and the test side, we shall stick to the nonstationary
situation, keeping scales fixed and hoping for convergence when the fill
distances hr and hs for the trial and test side tend to zero.

Our numerical procedures will recover the weak data via an approximate
solution of the orthogonality equations

(ZΩ(f − u∗
r,s) ∗ Ss)(y) = 0, y ∈ Ys (15)

if u∗
r,s is of the form (14), but now also depending on the test side. Note

that this is not a standard least-squares problem on Ω for several reasons.
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The system takes the form

(ZΩf ∗ Ss)(y) = ((ZΩu∗
r,s) ∗ Ss)(y)

=

∫

Ω

u∗
r,s(x) · Ss(y − x)dx

=
∑

z∈Yr

αz

∫

Ω

Rr(x − z)Ss(y − x)dx

= ũr,s(y), y ∈ Ys

(16)

of a kernel-based meshless interpolation problem for a trial function

ũr,s(y) := ((ZΩu∗
r) ∗ Ss)(y) =

∑

z∈Yr

αzKr,s,Ω(z, y) (17)

based on the localized convolution kernel

Kr,s,Ω(z, y) :=

∫

Ω

Rr(x − z)Ss(y − x)dx

which is neither symmetric nor positive definite nor explicitly accessible
in general. We have |Yr| degrees of freedom and |Ys| equations. This
models unsymmetric methods of Petrov-Galerkin type. For solving partial
differential equations, these arise, for instance, in the meshless Petrov-
Galerkin method due to Atluri [3] and collaborators. But at this point
we confine ourselves to L2 recovery and omit complications induced by
differential equations.

6 Stability

Any argument for proving convergence of unsymmetric methods cannot
bypass a property of the form

‖(ZΩur) ∗ Ss‖W
µ+2σ

2
(Ωs)

≤ c(r, s, µ)‖(ZΩur) ∗ Ss‖∞,Ys for all ur ∈ Ur.

(18)
If such an inequality does not hold, there are nonzero trial functions solv-
ing the discrete homogeneous problem, spoiling any error bound. More
precisely, this inequality bounds a “continuous” norm in terms of a dis-
crete one on a finite-dimensional space, and it is a way of expressing
stability of discretizations on both the test and trial side. The test side
should contain enough test data to generate a “test norm” on the trial
space, and then the above inequality follows from equivalence of norms
on finite-dimensional spaces. Then the system (16) will have full rank
|Yr| ≤ |Ys|, preventing numerical failure.

Theorem 4 If kernels R and S with parameters ρ, r and σ, s are used
for the trial and test side, respectively, the stability property (18) takes the
form

‖(ZΩur) ∗ Ss‖W
µ+2σ

2
(Ωs)

≤ Ch−µ−2σ
s ‖(ZΩur) ∗ Ss‖∞,Ys (19)

for all ur ∈ Ur and it holds under the assumptions (7),

2m + d < 4ρ (20)
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and

Chm−µ
s s−2σγ(Yr, m,µ) <

1

2
, (21)

where γ(Yr, m, µ) is the constant in an inverse inequality

‖ur‖W m
2

(Ω) ≤ γ(Yr, m, µ)‖ur‖W
µ

2
(Ω) for all ur ∈ Ur. (22)

Proof: We start again with a bound like (8) from [20] to get

‖(ZΩur) ∗ Ss‖W
µ+2σ

2
(Ωs)

≤ C
(

hm−µ
s ‖(ZΩur) ∗ Ss‖W m+2σ

2
(Ωs)

+h−µ−2σ
s ‖(ZΩur) ∗ Ss‖∞,Ys

)

≤ C
(

hm−µ
s s−2σ‖ur‖W m

2
(Ω)

+h−µ−2σ
s ‖(ZΩur) ∗ Ss‖∞,Ys

)

(23)
for all trial functions ur ∈ Ur. The range (7) of (8) applies again, but
Lemma 4 allows all m with (20) to guarantee Ur ⊂ W m

2 (Ω). By norm
equivalence on finite-dimensional spaces, the first term on the right-hand
side will satisfy some inverse inequality of the form (22) which we cannot
quantify more precisely, leaving evaluation of good constants γ(Yr, m,µ)
to future research.

We now continue from (22) by Lemma 2 to arrive at

‖ur‖W m
2

(Ω) ≤ Cγ(Yr, m, µ)‖(ZΩur) ∗ Ss‖W
µ+2σ

2
(Ωs)

and require an additional assumption of the form (21) to turn (23) into
(18) with c(r, s, µ) ≤ Ch−µ−2σ

s . 2

As standard results [11, 16, 19] on kernels suggest, the expectable optimal
form of γ(Yr, m, µ) is

γ(Yr, m, µ) ≃ qµ−m
r

where qr is the separation distance

qr :=
1

2
min

y 6=z, y,z∈Yr

‖y − z‖2

of Yr, which is proportional to the fill distance hr if the trial centers are not
too wildly scattered. In such a case, the inequality (21) will be satisfied
if the ratio hs/hr of fill distances stays bounded above by a sufficiently
small constant determined by the other ingredients like smoothness and
scaling of the kernels.

However, the upshot here is that the constant γ(Yr, m, µ) does not depend
on the test side. Of course, it will depend on the domain, the trial kernel
parameters, and the distribution of the trial centers in Yr.

The condition (21) can always be satisfied if the test discretization is “fine
enough”. It quantifies the statement at the beginning of this section, i.e.
that the test side should contain enough test data to generate a “test
norm” on the trial space.

Finally, note that the technical parameter m is transient in the sense that
it does not directly appear in the final assertion (19).
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7 Error Analysis

To analyze our class of unsymmetric meshless methods, we first fix the
trial parameters and get a trial approximation u∗

r satisfying Theorem 3,
serving as a reference. It is independent of the test side, because it is
the (numerically unknown) least-squares approximation to the data by
functions from the trial space.

This approximation generates weak test data satisfying

‖ZΩ(f − u∗
r) ∗ Ss‖W

µ+2σ

2
(Ωs)

≤ CSs−2σ‖f − u∗
r‖W

µ

2
(Ω)

≤ Cs−2σh−µ
r r−2ρ‖f‖L2(Ω)

(24)

by Lemma 3 for µ and ρ restricted by (13). This implies that one can solve
the system (15) by some trial function u∗

r,s of the form (14) approximately
to some accuracy

‖ZΩ(f − u∗
r,s) ∗ Ss‖∞,Ys ≤ δ(r, s) (25)

with, for example,

δ(r, s) = 2 · Cs−2σh−µ
r r−2ρ‖f‖L2(Ω)

taking the constant of (24). We now use (18) to proceed with the general
error analysis as follows:

‖f − u∗
r,s‖W

µ

2
(Ω) ≤ C‖(ZΩ(f − u∗

r,s)) ∗ Ss‖W
µ+2σ

2
(Ωs)

≤ C‖(ZΩ(f − u∗
r)) ∗ Ss‖W

µ+2σ

2
(Ωs)

+C‖(ZΩ(u∗
r − u∗

r,s)) ∗ Ss‖W
µ+2σ

2
(Ωs)

≤ Cs−2σh−µ
r r−2ρ‖f‖L2(Ω)

+Cc(r, s, µ)‖(ZΩ(u∗
r − u∗

r,s)) ∗ Ss‖∞,Ys

≤ Cs−2σh−µ
r r−2ρ‖f‖L2(Ω)

+Cc(r, s, µ)‖(ZΩ(u∗
r − f)) ∗ Ss‖∞,Ys

+Cc(r, s, µ)‖(ZΩ(f − u∗
r,s)) ∗ Ss‖∞,Ys

≤ Cs−2σh−µ
r r−2ρ‖f‖L2(Ω)

+Cc(r, s, µ)s−2σh−µ
r r−2ρ‖f‖L2(Ω)

≤ Cc(r, s, µ)s−2σh−µ
r r−2ρ‖f‖L2(Ω)

≤ Cr−2ρs−2σh−µ−2σ
s h−µ

r ‖f‖L2(Ω)

if we assume c(r, s, µ) = Ch−µ−2σ
s ≥ 1 without loss of generality, keeping

in mind that µ + 2σ must be a nonnegative integer due to (7).

But we now have to make sure that the above bound implies convergence
for a certain range of parameters. This will be done in a few successive
steps, and from the user’s point of view.

First, we fix the order ρ of the trial kernel R, and we want to make it large
enough so that (20) provides some leeway for the transient parameter m,
while (13) should provide leeway for µ to be picked later. Second, we fix
m to satisfy (20). These two choices also define our leeway in (7), so that
ρ and m should be not too small. Third, we fix the order σ of the test
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kernel. By (7) and (13) this gives a certain range of admissible values for
µ. In particular, we are always allowed to choose µ = −2σ in case ρ ≥ σ.
We can take any µ in the admissible range now, but we should keep it
negative and with a large absolute value.

So far, we have not chosen dilations r, s and discretizations Yr and Ys.
The former do not seem to cause serious problems if chosen not too small,
but note that large r, s require large point sets Yr, Ys discretizing large
domains Ωr, Ωs, respectively.

If r and s are fixed, the user should first choose a fine and quasi-uniform
set Yr of trial centers, because its fill distance hr in Ωr will in the end
drive the convergence rate. The final choice of test centers Ys must then
be made to satisfy (21) for a suitable fill distance hs of Ys in Ωs. But in
view of the term h−µ−2σ

s in the final estimate, the choice of hs should be
not too small unless we pick µ = −2σ and ρ ≥ σ.

For the latter case, the final error bound takes the form

‖f − u∗
r,s‖W−2σ

2
(Ω)

≤ Cr−2ρs−2σh2σ
r ‖f‖L2(Ω) (26)

which is of optimal order concerning hr → 0.

For more general µ one has to wait for good quantitative results on the
inverse inequality (22). If we work with the expectable condition hs ≃ Chr

with a sufficiently small constant to make (21) valid for fixed choices of
the other parameters, the final error bound turns out to be

‖f − u∗
r,s‖W

µ

2
(Ω) ≤ Ch−µ−2σ

r h−µ
r ‖f‖L2(Ω).

If we temporarily fix µ, the optimal rate h−µ
r is always counteracted by

h−µ−2σ
r due to µ+2σ having to be a nonnegative integer. The best choice

of σ for µ fixed will then be 2σ = −µ getting us back to the previous
situation.

Altogether, the interpretation of our results leads to the suggestion to pick
µ = −2σ and ρ ≥ σ in all cases. We summarize this special case now.

Theorem 5 If the kernel parameters are chosen to satisfy

2ρ ≥ 2σ ≥ 2 +
d

2
, (27)

there is an error bound of the form (26) if the test discretization is fine
enough to satisfy (21). 2

Proof: Under the above assumption, we have to show that all required
inequalities can be satisfied for proper choices of µ = −2σ and m. The
inequality (27) implies 4σ > 3 + d and thus

2σ − d
2
− 1 > d

2
+ 2 − 2σ.
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Then we can pick m ∈ IR to satisfy

2σ −
d

2
> m >

d

2
+ 2 − 2σ.

The left-hand side now proves (20) via

2m + d < 4σ ≤ 4ρ.

For µ = −2σ the right-hand side leads to

1 + ⌊m − µ⌋ ≥ m − µ = m + 2σ > d
2

+ 2

and implies (7) via

d

2
< ⌊m − µ⌋ − 1 = ⌊m + 2σ − 1⌋.

Furthermore, (27) gives

−2σ +
d

2
≤ −2 < ⌊2σ − 1⌋ − 2σ

and proves (11) and (13). 2

The restriction ρ ≥ σ should be replaced in the future by something
allowing discontinuous positive definite kernels. But there are hardly any
examples and no theory for such, except for multiscale wavelet-related
kernels by R. Opfer [12].

8 Numerical Examples

We now have to discuss techniques to solve the overdetermined and un-
symmetric linear system (15) approximately. We know from (24) that
there is a good approximate solution, but we have to make sure not to
discard it. Thus any reasonable optimization routine will do the job, e.g.
minimizing the residuals in the ℓ∞ norm via linear optimization using
a dual revised simplex method, but in practice a standard least-squares
solver suffices.

Providing numerical examples supporting asymptotic results like (26) in a
quantitative sense is a nontrivial task due to the negative norms involved.
Furthermore, convergence in negative norms can take place in spite of
visible Gibbs phenomena in the reproduction of discontinuous functions,
because negative norms will iron out small local oscillations.

We provide two univariate examples on Ω = [−1, 1] with data in Table
1. In both cases, we tested with Wendland’s C2 radial basis function
φ(r) = (1 − r)4+(1 + 4r) [18], but for trial functions we took also the
Gaussian φ(r) = exp(−2r2). The latter has no compact support, but we
used the standard scaling. The given function is f(x) = x2 modified to
be zero in [−0.5, 0] in order to provide a discontinuity of f at -0.5 and of
f ′′ at zero. At the boundary x = 1 we used extension by zero, while at
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x = −1 we extended f itself, in order to study the chopping effect at the
boundary. The reason is that in all possible cases one should try to extend
the data beyond the domain instead of using a continuation by zero. The
linear overdetermined systems were solved by standard least-squares. 1

Wendland Gauss

r 0.20 0.10
s 0.01 0.05
hr 0.05 0.10
hs 0.01 0.05
|Ys| 203 43
|Yr| 49 23

Table 1: Example data

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Given function

We see the expected Gibbs phenomena at the discontinuities in -0.5 and
1. These spread out if we solve the system by ℓ∞ minimization of the
residuals. This reveals that our error analysis via bounding ‖(ZΩf) ∗
Ss‖∞,Ys should be replaced by ‖(ZΩf) ∗ Ss‖ℓ2,Ys .

An advantage of unsymmetric methods is that they can add trial functions
ad libitum without changing the test scenario. If step functions at 1 and -
0.5 are added to the above example, the Gibbs phenomena disappear, and
the approximations reproduce the given function with graphic accuracy,
so that additional figures are not necessary.

The outcome of various other numerical experiments leads to the following
conclusions:

1MATLAB c© routines are available on http://www.num.math.uni-
goettingen.de/schaback/research/group.html
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Figure 2: Reconstructions by different trial functions: Wendland (left) Gaussian
(right)
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Figure 3: Errors: Wendland (left) Gaussian (right)

• Weak testing means that convolved data are reproduced by con-
volved trial functions. The smoothing effect of the convolution in
weak nonstationary testing must be chosen very carefully, keeping
a balance between smoothing the noise away and smoothing impor-
tant details away. Key features which are smoothed away by testing
with excessively smooth and wide kernels will not be recovered well
by any trial space.

• If testing is done sensibly along the above lines, the reproduction
quality depends mainly on the trial side, not on the test side. This
practical observation is in accordance with our theory. Features of
the data which cannot be modelled by the trial space will always
be missed by the reproduction, no matter how testing is done. This
means that peculiarities like known singularities should always be
incorporated into the trial space.

Future research on unsymmetric meshless methods should exploit the free-
dom provided by separating the test from the trial side. In view of the
two observations above, it has to provide good algorithms and theoretical
foundations for

• enriching the trial space adaptively



REFERENCES 17

• balancing testing adaptively between noise reduction and feature
preservation.
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