
1 Shape preserving properties and convergence ofunivariate multiquadric quasi{interpolationZong{min WuRobert SchabackAbstract: With a suitable modi�cation at the endpoints of the range, quasi{interpolationwith univariate multiquadrics �(x) = pc2 + x2 is shown to preserve convexity and monotonic-ity. If h is the maximum distance of centres, convergence of the quasi{interpolant is of orderO(h2j log hj) if c = O(h). The log term can not be removed by introducing di�erent boundaryconditions or special placements of the centres.Keywords: multiquadric, quasi{interpolation, shape preservation, approximation rate.Classi�cation: 65D05, 65D07, 41A05, 41A631 IntroductionQuasi{interpolation of a function f : [a; b]! IR with multiquadrics on the scattered pointsa = x0 < x1 < . . . < xn = b h := max1�i�n(xi � xi�1) (1:1)has the form (MDf)(x) = nXj=0 f(xj) j(x); (1:2)where  j(x) are linear combinations of the multiquadrics�j(x) =qc2 + (x� xj)2: (1:3)These functions were proposed by Hardy (1971), and they performed well in many calcalcula-tions including the numerical experiments that were reported by Franke (1980). The existenceof the solution of the associated interpolation problem was shown by Micchelli (1986), whileBuhmann (1988) discussed the accuracy of quasi{interpolation for in�nite regular grid data.Error estimates for the interpolation of scattered data in IRk were proven by Madych andNelson (1990) and Wu and Schaback (1990) for a restricted class of interpolated functions f ,1File : usr/nam/rschaba/tex/fertig/wu rs 2.tex, TEXed 17. Mai 1994, Status : Not submitted1



while Beatson and Powell (1990) derived general error bounds of type O(h2 log h) for quasi{interpolation to univariate scattered data from C2 functions.Since pc2 + x2 tends to jxj as c tends to zero, and radial basis interpolation (as well as quasi{interpolation) based on jxj is piecewise linear interpolation, the shape{preserving propertiesof piecewise linear interpolation can be expected to hold for quasi{interpolation with multi-quadrics, too. In the next section we show that the quasi{interpolation operator LC of Beatsonand Powell (1990) is indeed convexity preserving. It requires the derivatives of the function fat the endpoints. In section 3 we give a quasi{interpolation (denoted as LD) based on the dataff(xnj )gnj=0 only, and show that LD preserves convexity, linearity, and monotonicity. Beatsonand Powell (1990) proved that the accuracy of LC is O(h2 log h) if c varies as c = O(h). Insection 4 we shall show a similar error bound for LD, employing a di�erent proof technique.2 The convexity preserving property of LCFor f 2 C1[x0; xn] the quasi{interpolation operator LC of Beatson and Powell (1990) is de�nedas (LCf)(x) = f 000(x) + f0�0(x) + n�1Xj=1 fj j(x) + fn�n(x) + f 0nn(x) (2:1)where �j are de�ned in (1.3) and j(x) = �j+1(x)� �j(x)2(xj+1 � xj) � �j(x)� �j�1(x)2(xj � xj�1) ; 1 � j � n � 1; (2:2)�0(x) = 12 + �1(x)� �0(x)2(x1 � x0) ; �n(x) = 12 + �n�1 � �n(x)2(xn � xn�1) (2:3)0(x) = 12 (x� x0)� 12 �0(x); n(x) = 12 �n(x)� 12 (xn � x) (2:4)fj = f(xj); 0 � j � n; f 0i = f 0(xi); i = 0; n:Theorem 1: If the data ff(xj)gnj=0; f 0(x0); f 0(xn) stem from a convex (concave, linear)function f 2 C1[x0; xn], then LCf(x) is a convex (concave, linear) function.Proof. Using �00j (x) = c2(c2 + (x� xj)2)3=2 � 0 (2:5)and (2.1) to (2.4) we can write (LCf)00(x) as(LCf)00(x) = f 00 000 (x) + f0� 000 (x) + n�1Xj=1 fj 00j (x) + fn� 00n(x) + f 0n 00n(x)= �f 00 �000(x)2 + f0 �001(x)� �000(x)2(x1 � x0) + fn �00n�1(x)� �00n(x)2(xn � xn�1) + f 0n �00n2+12 n�1Xj=1 fj "�00j+1(x)� �00jxj+1 � xj � �00j (x)� �00j�1(x)xj � xj�1 #2



= 12 � f1 � f0x1 � x0 � f 00��000(x) + 12 n�1Xj=1 � fj+1 � fjxj+1 � xj � fj � fj�1xj � xj�1��00j (x)+12 �f 0n � fn � fn�1xn � xn�1� �00n(x) (2:6)If the data ff(xj)gnj=0; f(x0); f 0(xn) stem from a convex function f , all the terms in squarebrackets of (2.6) are nonnegative. The other cases are similar. 2The quasi{interpolation operators LA and LB by Beatson and Powell (1990) do not containlinear functions, and therefore they cannot preserve both linearity and convexity.3 The shape preserving properties of LDThe quasi{interpolation operator LC of (2.1) requires derivatives of f at endpoints. It is notvery convenient for practical purposes. Therefore we de�ne a new quasi{interpolation operatorLD as (LDf)(x) = f0�0(x) + f1�1(x) + n�2Xj=2 fj j(x) + fn�1�n�1(x) + fn�n(x) (3:1)where �0(x) = 12 + �1(x)� (x� x0)2(x1 � x0) ; �1(x) = �2(x)� �1(x)2(x2 � x1) � �1(x)� (x� x0)2(x1 � x0)�n�1(x) = (xn � x)� �n�1(x)2(xn � xn�1) � �n�1(x)� �n�2(x)2(xn�1 � xn�2) ; �n(x) = 12 + �n�1(x)� (xn � x)2(xn � xn�1) :(3:2)Then (LDf)00(x) = f0�000(x) + f1�001(x) + n�2Xj�2 fj 00j (x) + fn�1�00n�1(x) + fn�00n(x)= 12 n�1Xj=1 � fj+1 � fjxj+1 � xj � fj � fj�1xj � xj�1� �00j (x) (3:3)provesTheorem 2: If the data ff(xj)gnj=0 stem from a convex (concave, linear) function, then thequasi{interpolant LDf(x) as de�ned by (3.1) and (3.2) is a convex (concave, linear) function.2The �rst order derivative of �(x) is x�(c2+x2)�1=2. It is monotonic because of (2.5) and satis�eslimx!�1 �0(x) = �1: (3:4)Thus, for all x 2 IR, � 1 � �0j(x) � �0j�1(x) � 1: (3:5)3



The derivative of (LDf)(x) can be calculated as(LDf)0(x) = �01(x)� 12(x1 � x0) f0 + ��02(x)� �01(x)2(x2 � x1) � �01(x)� 12(x1 � x0)� f1+n�2Xj=2 ��0j+1(x)� �0j(x)xj+1 � xj � �0j(x)� �0j�1(x)xj � xj�1 � fj+�� 1 + �0n�1(x)2(xn � xn�1) � �0n�1(x)� �0n�2(x)2(xn�1 � xn�2) � fn�1 + � �0n�1(x) + 12(xn � xn�1)� fn= � 1� �01(x)2(x1 � x0)� (f1 � f0) + n�2Xj=1 ��0j(x)� �0j+1(x)2(xj+1 � xj) � (fj+1 � fj)+� 1 + �0n�1(x)2(xn � xn�1)� (fn � fn�1) (3:6)If the data ffjgnj=0 satisfy fj � fj+1 then all the terms are nonnegative. This provesTheorem 3: The quasi{interpolation LD is monotonicity preserving. 2Remark. Comparison of (2.6) and (3.3) shows that LC is just a Hermite{Birkho� variationof LD. 24 The accuracy of the quasi{interpolation LDThe results of Beatson and Powell (1990) suggest a O(h2j log hj) behaviour of the error ofquasi{interpolation by multiquadrics, if c(h) = O(h). Their proof technique, however, cannot be directly generalized to the case considered here, because the basis functions of LD arenot generally positive (consider x0 ! x1 for c > 0 in �1(x) of (3.2)). A rather simple directtechnique will be applied to get, as can be expected,Theorem 4. For f 2 C2[a; b] the quasi{interpolant LDf de�ned by (3.1) on the points (1.1)saties�es an error estimate of typekf � LDfk1 � K1h2 +K2ch+K3c2 log hfor h! 0 with suitable positive constants K1;K2, and K3, independent of h and c.Proof. The quasi{interpolation operator LD can be rearranged as2(LDf)(x) = n�1Xj=1 �j(t)(xj+1 � xj�1)�2(xj�1; xj; xj+1)f + f0 + fn++ (x� x0)�1(x0; x1)f � (xn � x)�1(xn�1; xn)fwith divided di�erences �1 and �2 of �rst and second order, respectively. The di�erence tothe piecewise linear interpolant Lf of f then is2(LDf � Lf)(x) = n�1Xj=1(�j(x)� jx� xjj)(xj+1 � xj�1)�2(xj�1; xj; xj+1)f; (4:1)4



and we want to bound the function0 � '(x) := n�1Xj=1(�j(x)� jx� xjj)(xj+1 � xj�1)= n�1Xj=1(qc2 + jx� xjj2 � jx� xjj)(xj+1 � xj�1):Splitting the sum in one part with jx� xjj � h and the rest, the two estimatespc2 + y2 � jyj � c; c � 0; y � 0pc2 + y2 � jyj � c22jyj; c � 0; y > 0are applied to get'(x) � c n�1Xj=1jx�xj j�h(xj+1 � xj�1) + c22 n�1Xj=1jx�xj j>h xj+1 � xj�1jx� xjj� 8ch+ c2�Zjx�tj�h 1jx� tj dt+O(h)� ;because at most four of the xi remain in the �rst sum and the second sum is a O(h) approxi-mation to the integral. Consequently,'(x) � 8ch+O(c2 log h) +O(c2h);and this proves the assertion. 2Corollary. The quasi{interpolant LDf can have an O(h2) error only if at least c2j log cj =O(h2).Proof. Due to (4.1) and the O(h2) convergence of Lf , it su�ces to bound '(x) from belowfor small c tending to zero for h! 0. For this we usep1 + y � 1 � y2 � y24 for jyj � y0 > 0and keep only the terms of '(x) with jx� xjj � cy�10 . Then'(x) � 12 n�1Xj=1jx�xj j�cy�10 (xj+1 � xj�1)� c2jx� xjj � 12 c4jx� xjj3�and this sum has the behaviour c2 Zjx�tj�cy�10 1jx� tj dt� c42 Zjx�tj�cy�10 1jx� tj3 dt! (1 +O(h))5



which is dominated by c2j log cj as a function of c. If c � c0 > 0, the function ' will asymptot-ically have the lower bound2Z ba (qc20 + (x� t)2 � jx� tj)dt > 0: 2Remark. The technique of this paper clearly shows that no improvement towards O(h2)convergence is possible just by changes of end conditions or knot placements, provided that the j(x) are used in the interior of the domain.5 ReferencesR.K. Beatson and M.J.D. Powell (1990). Univariate multiquadric approximation: quasi{interpolation to scattered data. DAMTP 1990 / NA7, University of CambridgeM.D. Buhmann (1988). Multivariate interpolation with radial basis functions. Report DAMTP1988/NA8. University of CambridgeR. Franke (1982). Scattered data interpolation: tests of some methods. Math. Comp., Vol.38, pp. 181{200R.L. Hardy (1971). Multiquadric equations of topography and other irregular surfaces. J.Geophysical Res., Vol. 76, pp. 1905{1915Madych, W.R.; and Nelson, S.A., Error Bounds for Multiquadric Interpolation, in: C.K. Chui,L.L. Schumaker, and J.D. Ward (eds.), Approximation Theory VI, Vol. 2, 413{416C.A. Micchelli (1986). Interpolation of scattered data: distance matrices and conditionallypositive de�nite functions. Constr. App., Vol. 2, pp 11{22Z. Wu and R. Schaback: Local Errror Estimates for Radial Basis Function Interpolation ofScattered Data, PreprintAuthor's addresses:Zong{min Wu, Dept. of MathematicsFudan University, Shanghai, ChinaRobert Schaback, Institut f�ur Numerischeund Angewandte MathematikUniversit�at G�ottingenLotzestr. 16{18D { 3400 G�ottingen
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