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Abstract

This paper first provides a common framework for partial differential equation prob-
lems in both strong and weak form by rewriting them as generalized interpolation prob-
lems. Then it is proven that any well–posed linear problem in strong or weak form can
be solved by certain meshless kernel methods to any prescribed accuracy.
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The fairly general statement made in the abstract needs some specification. We assume
a problem to be posed that is solved by a function u in some Hilbert space U with inner
product (·, ·)U . Note that this is satisfied for all problems that can be formulated in
Sobolev spaces, for instance, but we also allow problems with strong solutions in Hilbert
subspaces of differentiable or Hölder continuous functions. The elements of U are viewed
as multivariate functions, and the elements λ ∈ U∗ are continuous linear functionals that
we use to describe data λ(u) of u, e.g. evaluations u 7→ δx(u) := u(x) or u 7→ (δx◦∆)(u) =
(∆u)(x).

The problems should be formulated by requiring that a (usually uncountable) set Λ of
functionals, when applied to the solution u, attains certain prescribed values. This means
that u solves

λ(u) = ϕ(λ) for all λ ∈ Λ (1)

where ϕ : Λ → IR is a given function. We do not care about assumptions on ϕ, but we
assume that the functionals λ ∈ Λ are continuous on U , i.e. they must be in the dual U∗

of U . We call them test functionals, because they define the test criteria for a function u
to be a solution of our problem. It is shown in the next section that plenty of strongly or
weakly formulated linear problems of Applied Analysis have this form, because the test
functionals λ can, for instance, describe point evaluations of u, its derivatives, or some
differential or integral operator applied to u. We shall call a problem (1) admissible, if it
is posed with Λ ∈ U∗, ϕ : Λ → IR and solvable by some function u ∈ U . An admissible
problem will have a unique solution in U , if we know that the closed linear subspace of
homogeneous solutions consists of the zero function only, but we need not assume unique
solvability at this point.

∗The work described in this paper was partially supported by a grant from CityU (Project No. 7001646)
†Research in HongKong sponsored by DFG and HongKong City University
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1 Strong and Weak Problems

As a model for a classically or strongly formulated problem, consider the Poisson problem

∆u = f on Ω
u = g on ∂Ω,

(2)

asking for a function u on a domain Ω ⊂ IRd which is twice continuously differentiable
on Ω and continuous on Ω. Here, the set Λ of test functionals consists of two parts,
namely the functionals δx ◦ ∆ for all x ∈ Ω and δy for all y ∈ ∂Ω. The values λ(u) are
prescribed via function values of f in Ω and g on the boundary ∂Ω, respectively. Note
that one could take other linear partial differential operators and other types of boundary
conditions, defining quite nonstandard mixed–type problems. Any Hilbert space U with
u ∈ U and Λ ∈ U∗ will do, since we shall always assume that there is a solution u ∈ U
to our problem, so that f := ∆u on Ω and g := u on ∂Ω can be viewed as definitions,
allowing us not to care about properties of f and g. Note that this allows a large variety
of spaces, if the solution u is sufficiently regular.

A simple discretization of (2) proceeds via collocation. If we take a countable set
of dense points {xj}j ⊂ Ω and {yk}k ⊂ ∂Ω and only use a total of n test functionals
λj(u) = δxj∆u and µk(u) = δyk

(u), respectively, to produce a function un such that
λ(un) = λ(u) for this subset of n test functionals, we have a candidate for a sequence
{un}n∈IN ⊂ U that hopefully converges to a solution ũ ∈ U if n tends to infinity. It will be
the purpose of the following sections to show that this works if we use reproducing kernels
of certain Hilbert spaces to generate the collocation functions. Note that collocation just
replaces (1) by a finite problem of the same form.

In the model situation of solving a Poisson problem (2) weakly, we move the boundary
data prescribed by g into a function u0 ∈ W 1

2 (Ω) and consider the variational equation

(u, v)1,Ω :=
∫

Ω
(∇T u)(x)(∇v)(x)dx = (f, v)L2(Ω) for all v ∈ V0 ⊂ W 1

2 (Ω)

u− u0 ∈ V0

(3)

where u should be in Sobolev space W 1
2 (Ω). The space V0 contains test functions and

usually is the subspace of W 1
2 (Ω) consisting of the W 1

2 –closure of C∞ functions with com-
pact support inside the domain Ω. In comparison to the previous case, the crucial point
here is that the space W 1

2 (Ω) does not allow continuous point evaluations for dimensions
d > 1. And, due to low regularity of g and “incoming corners” of the domain, the actual
solution u does in general not lie in a space with functions of higher regularity.

In principle, it makes abolutely no sense to use numerical solutions of the above prob-
lem that are in the space W 1

2 (Ω) and have no higher regularity. Those functions would
have undefined function values, and one could only evaluate local means, for instance.
The standard technique for solving weak problems, the method of finite elements, usually
works with continuous piecewise linear functions, which also have a higher regularity than
the functions in W 1

2 (Ω). Therefore we feel free to reconstruct functions u of low regularity
solving weak problems by numerical approximations of higher regularity.

To bring (3) in line with (1), we first rewrite (3) in the modified form

(w, v)1,Ω = (f, v)L2(Ω) − (u0, v)1,Ω for all v ∈ V0 ⊂ W 1
2 (Ω)

w ∈ V0
(4)

for w := u − u0 ∈ V0. This is a generalized interpolation problem of the form (1), if we
define a test functional λv(w) := (w, v)1,Ω for each test function v and require w ∈ U := V0
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to have the data

λv(w) = (f, v)L2(Ω) − (u0, v)1,Ω =: ϕ(λv) for all v ∈ V0.

Note that one needs a Poincaré type inequality to conclude that

• (·, ·)1,Ω is an inner product on V0

• the test functionals λv are continuous on V0 under this inner product

as required for (1). Clearly, the notion of test functionals generalizes the notion of test
functions in such a way that the strong and weak problems both reduce to (1).

Problems in weak form can also be posed locally by splitting the integration into
integrals over subdomains containing the supports of the test functions. Furthermore,
the boundary values can be specified in weak form. This all amounts to using linear
functionals in the form of (1) and is contained in the scope of this paper.

The standard technique for solving weak problems proceeds via finite element sub-
spaces SN of V0 spanned by test functions v1, . . . , vN and posing the finite problem

(wN , vj)1,Ω = (f, vj)L2(Ω) − (u0, vj)1,Ω =: ϕ(λvj ), 1 ≤ j ≤ N (5)

for some wN ∈ SN . Note that, quite as the collocation technique for “strong” problems,
the finite element method for weak problems just replaces (1) by a finite problem of
the same form. Consequently, there is no need to distinguish between strong and weak
formulations for the next sections. We shall focus on discretizations of (1) that replace Λ
by a finite subset ΛN := {λ1, . . . , λN} ⊂ Λ ⊂ U∗.

But this does not mean that “strong” and “weak” formulations coincide. To avoid
misunderstandings, the similarities and differences between “strong” and “weak” formu-
lations should be pointed out more clearly:

• They share the problem form (1) in some Hilbert space.

• But usually they pick different Hilbert spaces. Weak formulations use only half of the
smoothness of strong formulations, and thus the Hilbert space of weak formulations
is larger than that of strong formulations.

• They have a different strategy for specifying the set Λ of test functionals. Strong
formulations take point evaluations of the solution and its derivatives. Weak for-
mulations take test functionals defined by inner products. They often require local
integration, which strong formulations can avoid.

2 Kernels

If we want to apply meshless kernel methods to general admissible problems, we need a
suitably general definition of a kernel. The standard way via reproducing kernel Hilbert
spaces or positive definite functions is insufficient here, because we want to allow weak
problems and Sobolev spaces like W 1

2 where point evaluation functionals are not con-
tinuous. We just take the canonical Riesz map R : U∗ → U of the Hilbert space U
with

λ(u) = (u,R(λ))U = (R−1u, λ)U∗ for all u ∈ U, λ ∈ U∗ (6)

and use it as a kernel, because it maps functionals to functions. If Φ(x, y) is a “standard”
kernel in a reproducing kernel Hilbert space [1, 18], the relation of the kernel to the Riesz
map R is R(λ) = λxΦ(x, ·) where λx stands for the evaluation of λ with respect to the
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variable x. In fact, if point evaluations are continuous on a Hilbert space of functions, the
standard kernel definition is

Φ(x, y) := (δx, δy)U∗

and the usual reproduction property is

u(x) = δxu = (u,Φ(x, ·))U for all u ∈ U

with its generalized form

λ(u) = (u, λxΦ(x, ·))U = (u,R(λ))U for all u ∈ U, λ ∈ U∗. (7)

This shows that R(λ) = λxΦ(x, ·) is the connection between R and Φ.
Before we proceed, we need to associate certain subspaces of U and U∗ with a set

Λ ⊆ U∗ of test functionals:

U∗
Λ := clos span Λ ⊆ U∗

UR(Λ) := clos span R(Λ) ⊆ U.

We used clos to stand for Hilbert space closure. Finally, with a slight abuse of notation,
we define

U⊥
Λ := {v ∈ U : λ(v) = 0 for all λ ∈ Λ} = U⊥

R(Λ) (8)

such that unique solvability of (1) is equivalent to U⊥
Λ = {0}.

3 Symmetric Meshless Kernel Methods

To explain our basic numerical technique, we take a finite set ΛN := {λ1, . . . , λN} ⊂ U∗

of continuous linear functionals and fix a function u ∈ U . Then we define ϕ(λj) :=
λj(u), 1 ≤ j ≤ N in (1) and construct a trial function

ũN =
N∑

k=1

αkR(λk) (9)

in the space UR(ΛN ) by the interpolation or collocation requirement

λj(ũN ) = ϕ(λj) := λj(u), 1 ≤ j ≤ N

leading to the system

N∑

k=1

αk(λj , λk)U∗ = λj(u), 1 ≤ j ≤ N. (10)

Note that we insist on a close link between the test functionals λk and the trial functions vk

via vk := R(λk) using the Riesz map R. The system has a positive semidefinite symmetric
Gramian coefficient matrix. It is nonsingular and positive definite, if the test functionals
are linearly independent. If not, the system is still solvable, because the right–hand side
is in the range of the map

u 7→ (λ1(u), . . . , λN (u)) ∈ IRN for all u ∈ U,

and this range has the same dimension as the space UR(ΛN ), because the Riesz map is an
isometry. Clearly, the resulting function ũN is uniquely defined as the image of u under
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the Hilbert space projection ΠR(ΛN ) of U onto the closed linear subspace UR(ΛN ), even
in case its representation via (9) has nonunique coefficients. Furthermore, it satisfies the
orthogonality relations

(u− ũN , R(λj))U = λj(u− ũN ) = 0, 1 ≤ j ≤ N (11)

implying
u− ũN ∈ U⊥

R(ΛN ), ‖u‖2
U = ‖u− ũN‖2

U + ‖ũN‖2
U . (12)

Let us call ũN the (symmetric) projection approximation of u with respect to the data
λ1(u), . . . , λN (u) or the set ΛN = {λ1, . . . , λN} ⊂ U∗ of test functionals. Note that by
(12) the function ũN solves the minimization problem

min{‖v‖2
U : v ∈ U, λj(v) = λj(u), 1 ≤ j ≤ N}

because of (11).
For strong problems, this is a variation of the symmetric collocation technique of Z.

Wu [26] used for the approximate recovery of u from its data λj(u). This method has a
solid theoretical basis including convergence orders [9, 10].

For weak problems, it may be surprising that the Rayleigh–Ritz technique, and in
particular the finite element method arise just as special cases of symmetric projection
methods. In fact, for (5) we took test functionals with

λvj (w) = (w, vj)1,Ω for all w ∈ V0

associated to test functions vj . But since V0 is a Hilbert space under (·, ·)1,Ω, we have
R(λvj ) = vj and the finite element solution coincides with the projection approximation.
Due to

(λvj , λvk
)U∗ = (vj , vk)U = (vj , vk)1,Ω

the system (10) has the standard stiffness matrix.
Though this paper will focus on symmetric projections, we should point out that

• unsymmetric collocation in the sense of Kansa [15] for strong problems and

• unsymmetric Petrov–Galerkin schemes for weak problems

formally coincide, too. Unlike (9), which closely relates trial functions vk to test function-
als λk via vk := R(λk), these methods define a new space WN of trial functions w1, . . . , wN

to approximate the solution. This space is unrelated to the test functionals, while the
symmetric setup uses them directly to determine the solution space via the Riesz map.
The unsymmetric case constructs

ũN =
N∑

k=1

αkwk (13)

in the space WN by the interpolation or collocation requirement

λj(ũN ) = ϕ(λj) := λj(u), 1 ≤ j ≤ N

leading to the system
N∑

k=1

αkλj(wk) = λj(u), 1 ≤ j ≤ N. (14)

The arising matrix has coefficients

λj(wk) = (R(λj), wk)U = (λj , R
−1(wk))U∗
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and is unsymmetric. In addition, it may be singular, if the test functionals λ1, . . . , λN are
not linearly independent over WN .

Kansa’s collocation method [15] for strong problems takes wj := R(δxj ) = Φ(xj , ·) for
a set of points x1, . . . , xN in the context of continuous kernels. In the Petrov–Galerkin
technique for weak problems, the test functionals λj have the form λj = R−1(vj), where
the vj are called test functions, and the system then has the familiar coefficients (vj , wk)U .

Analysis of unsymmetric problems is hard, because even the solvability [12] of the
finite subproblems is not evident.

Furthermore, local methods can also be incorporated, in particular those who localize
a weak setting. But we cannot go into details here. Candidates for further analysis are
the weak meshless local Petrov–Galerkin method (MLPG, [3, 2, 4]) or the generalized
finite element method [7] based on techniques using partitions of unity [17, 6]. Chances
are good that such methods also work nicely for meshless kernel techniques, since they
surely work for interpolation [25] and certain simple problems in weak form [24]. A new
and promising development that incorporates multilevel techniques into meshless kernel
methods introduces multiscale kernels [20].

Recent developments of meshless computational methods for solving real physical prob-
lems include the use of the fundamental solution as basis function (strong form) for solving
inverse boundary determination and inverse heat conduction problems [14, 13]. A good
review on the method of fundamental solutions (MFS) can be found from [11]. The ad-
vantages of meshless computational methods, in particular the weak form, have further
been verified by the works on solving large deformation problems due to nonlinear struc-
ture [8, 30] and deformation behavior of smart material such as shape memory alloys [16].
Please refer to the survey paper [5] on the comparison between meshless method and
traditional finite element and boundary element methods. To tackle the ill-conditioning
of full coefficient matrix that may arise from these methods several techniques, such as
domain decomposition, adaptive greedy, and preconditioning have been proposed. More
effort in this direction is needed to enhance the performance and range of applicability of
meshless methods.

4 Infinite Problems

The previous section defined our standard numerical method for the recovery of a func-
tion u from finitely many data λ1(u), . . . , λN (u) via the image ũN = ΠR(ΛN )(u) of the
projection onto the subspace UR(ΛN ). Since problems in Applied Analysis in the form (1)
will usually have an uncountable number of prescribed data, and since sequences of finite
problems deal with countably many data, we have to go over to the case of countable and
uncountable data.

Assume first that ΛIN := {λj}j∈IN is a countable set of test functionals. We can then
form the sequence {ũN}N∈IN and use (11) to get

ũM − ũN ∈ U⊥
R(ΛN ), ‖ũM‖2

U = ‖ũM − ũN‖2
U + ‖ũN‖2

U ≤ ‖u‖2
U (15)

for all M ≥ N . Thus the sequence {‖ũN‖2
U}N is weakly monotonic and convergent.

Furthermore, the above display implies that {ũN}N∈IN is a Cauchy sequence in U , and
therefore convergent to some function ũIN ∈ UR(ΛIN ). But then we have

λj(ũIN ) = λj( lim
N→∞

ũN ) = lim
N→∞

λj(ũN ) = λj(u)

for all j ∈ IN , proving
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Theorem 1. For any admissible problem (1) with countably many data functionals, a
solution ũIN can be constructed via a sequence of finite projection approximations. It
solves the minimization problem

min{‖v‖2
U : λj(v) = λj(u), 1 ≤ j < ∞}.

2

We now add a non–constructive result concerning general sets of test functionals.

Theorem 2. Let an arbitrary nonempty set Λ ⊆ U∗ of linear test functionals from the
dual U∗ of a Hilbert space U be given, and fix an element u ∈ U . Then there is a unique
element ũ ∈ U with the properties

ũ ∈ UR(Λ)

λ(ũ) = λ(u) for all λ ∈ Λ
u− ũ ⊥ UR(Λ)

‖ũ‖U = min{‖v‖U : v ∈ U, λ(v) = λ(u) for all λ ∈ Λ}.
(16)

Proof: The space UR(Λ) is a closed subspace of U , and its orthogonal complement
is U⊥

Λ from (8). Thus u has a unique decomposition u = ũ + ũ⊥ with ũ ∈ UR(Λ) and
ũ⊥ ∈ U⊥

Λ = U⊥
R(Λ). This implies the first three properties of (16). If v ∈ U is admissible

for the infimum in the third property, we can write v = v− ũ+ ũ and use that v− ũ ∈ U⊥
Λ

is orthogonal to ũ. Then ‖v‖2
U = ‖v − ũ‖2

U + ‖ũ‖2
U proves the assertion. The uniqueness

of ũ with respect to the properties in (16) follows from the fact that the difference of two
such functions must be in both UR(Λ) and U⊥

Λ . 2

Corollary 1. In the sense of the above theorem, all admissible linear problems posed
by some Λ ⊆ U∗ and having a solution u ∈ U have a unique projection approximation
solution ũ. The functions u and ũ coincide, if there is no nontrivial homogeneous solution,
i.e. U⊥

Λ from (8) is the null space.

Proof: The assertion is an immediate consequence of the previous theorem. 2

5 Density

In order to bridge the gap between Theorems 1 and 2, we now consider conditions under
which we can replace an uncountable set Λ of data test functionals by a countable set
Λ̃ of “dense” test functionals that can be handled via a sequence of finite problems. By
the standard definition, a subset Λ̃ ⊆ Λ ⊆ U∗ is dense in Λ, if all elements of Λ can be
written as limits in U∗ of elements of Λ̃. Then there are some easy observations to be
made:

Theorem 3. The following statements are equivalent:

1. Λ̃ ⊆ Λ ⊆ U∗ is dense in Λ

2. U∗
Λ̃

is dense in U∗
Λ

3. R(Λ̃) ⊆ R(Λ) ⊆ U is dense in R(Λ)

4. UR(Λ̃) is dense in UR(Λ)

5. For all u ∈ U

λ(u) = 0 for all λ ∈ Λ̃ implies λ(u) = 0 for all λ ∈ Λ
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6. U⊥
Λ̃

= U⊥
Λ

2

Theorem 4. An admissible linear problem posed by some Λ ⊆ U∗ can be solved by a
convergent sequence of projection approximations, if Λ contains a dense countable subset.
2

Theorem 5. An admissible linear problem posed by some Λ ⊆ U∗ has a unique solution,
if Λ is dense in U∗. 2

Proving density will turn out to be dependent of the type of functionals. We thus have
to be able to split sets of test functionals.

Theorem 6. Let Λ = ∪i∈IΛi be a superposition of not necessarily disjoint sets Λi. If all
Λi have a dense subset, so has Λ. 2

6 Continuity

We now focus on test functionals arising in strong problems, in particular point evaluations
of functions or derivatives thereof. In such cases density of sets of functionals can be
obtained from density of the related evaluation points together with continuity of the
evaluated functions or derivatives. The simplest case is evaluation of plain function values.

Theorem 7. Let Λ consist of all point evaluations on some set Ω, i.e. Λ = {δx : x ∈ Ω},
and let U consist of continuous functions. Then a subset of test functionals Λ̃ = {δx :
x ∈ Ω̃} ⊆ Λ corresponding to a subset Ω̃ ⊆ Ω is dense in Λ if Ω̃ is dense in Ω. 2

Since in this section we confine ourselves to strongly formulated problems, we assume
U to be a reproducing kernel Hilbert space of functions on some set Ω ⊆ IRd with a kernel
function Φ and continuous point evaluations. Then the standard reproduction property
(7) implies that continuity of all functions in U follows from continuity of the kernel:

Theorem 8. If the kernel Φ of some reproducing kernel Hilbert space U is continuous,
then U consists of continuous functions.

Proof: Let x, y ∈ Ω and u ∈ U be given, and use (7) and (6) for

(u(x)− u(y))2 = (u, Φ(x, ·)− Φ(y, ·))2U
≤ ‖u‖2

U‖Φ(x, ·)− Φ(y, ·)‖2
U

≤ ‖u‖2
U (Φ(x, x)− Φ(x, y)− Φ(y, x) + Φ(y, y))) .

2

The next step concerns strongly formulated problems where data partially depend on
a differential operator, e.g. a Poisson problem (2). If we take a countable set of dense
points {xj}j ⊂ Ω on Ω and {yk}k ⊂ ∂Ω and use test functionals λj(u) = δxj∆u and
µk(u) = δyk

(u), respectively, we want to infer that a function u ∈ U with zero data must
be identically zero. If the problem has enough regularity such that the solution lies in
some reproducing kernel Hilbert space consisting of functions that are continuous on Ω,
then Theorem 7 immediately yields u = 0 on ∂Ω, but we still need something for the test
functionals of the form λj(u) = δxj∆u for xj ∈ Ω.
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Theorem 9. Let U be a reproducing kernel Hilbert space with kernel Φ defined on some
set Ω, and let L : U → S be a linear operator from U onto a space S = L(U) of functions
on Ω. It should have the properties

Ls
xΦ(s, ·) ∈ U for all x ∈ Ω
(Lu)(x) = (u, Ls

xΦ(s, ·))U for all u ∈ U, x ∈ Ω
Ls

xLt
yΦ(s, t) =: ΦL(x, y) is continuous in x, y ∈ Ω

(17)

where Lt
x(u(t)) = (Lu)(x) means evaluation of L with respect to the variable t at the point

x. Then S consists of continuous functions. In particular, for all dense countable sets
{xj}j in Ω and for all functions u ∈ U with (Lu)(xj) = 0 for all j one has Lu = 0 on Ω.

Proof: We repeat the proof of Theorem 8 with a slight variation:

((Lu)(x)− (Lu)(y))2 = (u, Ls
xΦ(s, ·)− Ls

yΦ(s, ·))2U
≤ ‖u‖2

U‖Ls
xΦ(s, ·)− Ls

yΦ(s, ·)‖2
U

≤ ‖u‖2
U

(
Ls

xLt
xΦ(s, t)− Ls

xLt
yΦ(s, t)− Ls

yL
t
xΦ(s, t) + Ls

yL
t
yΦ(s, t)

)
≤ ‖u‖2

U (ΦL(x, x)− ΦL(x, y)− ΦL(y, x) + ΦL(y, y))

where we used that (17) implies

(Ls
xΦ(s, ·), Ls

yΦ(s, ·))U = Ls
xLt

yΦ(s, t) = ΦL(x, y) for all x, y ∈ Ω.

2

7 Strong Problems

Assume now that we have a general strongly formulated problem with countably many
linear operators Li on domains Ωi ⊆ Ω such that we have to recover a function u ∈ U
from its values Li(u) on each Ωi. Note how the Poisson problem fits into this. If we take
countable dense subsets of the Ωi and use test functionals of the form δxj (Liu) there, we see
that under the hypotheses of Theorem 9 we can always find a solution to the generalized
interpolation problem that is based on a countable subset of the data functionals and
obtainable as the limit of a convergent sequence of approximants. In addition, we can
reconstruct the true solution u from countably many data uniquely if there is no nonzero
function v ∈ U that simultaneously satisfies all homogeneous equations Liv = 0 on Ωi for
all i. This reduces the problem of unique numerical reconstruction of u to the uniqueness
of the analytical problem itself. In the special case of the Poisson problem, the uniqueness
of the analytical problem follows from the maximum principle.

In general, we can summarize our results so far roughly by saying that unique re-
construction of a solution of a strongly formulated generalized interpolation problem is
possible, if

1. the kernel Φ and the linear operators Li satisfy (17) on domains Ωi ⊆ Ω,

2. there is a function u ∈ U that solves the problem defined by data Li(u),

3. the discretizations of the Ωi are dense,

4. there is no nonzero solution of the homogeneous problem in U .

We now show how to check the conditions (17) for linear operators L in the standard
case of Hilbert spaces on IRd with smooth symmetric translation–invariant and Fourier–
transformable kernels. Then differential operators L are definable via Fourier transforms
as

(Lu)(x) = (2π)−d/2

∫

IRd

û(ω)L̂(ω)eixT ωdω for all x ∈ IRd.
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Standard reproducing kernel Hilbert spaces U on all of IRd with kernels Φ(x−y) (instead
of Φ(x, y), due to translation invariance) consist of the functions u with

(u, u)U := (2π)−d/2

∫

IRd

|û(ω)|2
Φ̂(ω)

dω < ∞

where the Fourier transform of Φ is positive. Now the first property of (17) means

∫

IRd

Φ̂(ω)2|L̂(ω)|2
Φ̂(ω)

dω =
∫

IRd

Φ̂(ω)|L̂(ω)|2dω < ∞.

If Φ̂(ω) decays at infinity at least like ‖ω‖−β
2 and if L is a differential operator of order at

most m, the above integral is bounded if

β > 2m + d. (18)

The second property then follows from

Ls
yΦ(s, t) = (2π)−d/2

∫

IRd

Φ(· − t)∧(ω)L̂(ω)eiyT ωdω

= (2π)−d/2

∫

IRd

Φ̂(ω)L̂(ω)ei(y−t)T ωdω

(Ls
yΦ(s− ·))∧(ω) = Φ̂(−ω)L̂(−ω)e−iyT ω

(u, Ls
yΦ(s− ·))U = (2π)−d/2

∫

IRd

û(ω)(Ls
yΦ(s− ·))∧(ω)

Φ̂(ω)
dω

= (2π)−d/2

∫

IRd

û(ω)L̂(ω)Φ̂(ω)eiyT ω

Φ̂(ω)
dω

= (Lu)(y).

The continuity of Ls
xLt

yΦ(s, t) =: ΦL(x − y) will usually follow from a direct calculation
of this new positive semidefinite kernel, if the original kernel Φ is smooth enough. But
since the Fourier transform of ΦL is Φ̂|L̂|2, the continuity of ΦL follows already from (18)
by Sobolev space embedding arguments. Altogether, (18) implies (17), and is satisfied if
the kernel Φ is sufficiently smooth for the problem to be solved.

8 Weak Problems

To reduce uncountable sets of test functionals for weak problems to countable subsets, we
first observe that the test functionals for weak problems have the form λv = R−1(v) where
the functions v vary in the subspace V = R(Λ) of U that arises in the variational equation
to be solved. By property 4 of Theorem 3, the full set Λ of such test functionals contains
a countable dense subset, iff V contains a dense subspace with a countable basis. This is
the standard background for proving convergence of the Rayleigh–Ritz and in particular
the finite element method.

But the framework we developed here allows other subspaces of V = R(Λ). In par-
ticular, we can use meshless kernel methods to generate an extremely large variety of
dense subspaces with countably many generators. The first technique is to use positive
definite functions with compact and arbitrarily small support that are contained in U .
Such functions are provided by Wu [27] and Wendland [23]. Placing such functions at
rational centers and using rational support radii will yield dense subspaces of U with
countable bases. Another technique may take shifts of the (possibly singular) kernel of U
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and convolve these functions with smooth locally supported functions to improve smooth-
ness and remove singularities. A third variation can apply scaled partitions of unity with
rather arbitrary local spaces of functions, e.g. those generated by moving least squares
techniques. All of these variations will generate subspaces with countable bases, and they
will yield convergent algorithms by the theory developed here.

A detailed analysis of spaces for meshless kernel methods solving weak problems is still
to be done. In particular, one can follow the proof technique for finite element methods
up to and including Cea’s lemma, and then one has to prove approximation orders for
kernel–based subspaces of Sobolev spaces.

9 Overcoming Low Regularity

The previous sections ignored the difficulty arising when the solution u ∈ U of the given
analytic problem (1) posed in a normed linear space U does not have enough regularity
to be in a suitable Hilbert space U with a useful positive definite reproducing kernel
Φ. Plenty of authors report good convergence of meshless methods in such cases, and
the standard examples are numerical techniques using multiquadrics, where U consists of
analytic functions. This is a serious problem for proving convergence, error bounds, and
convergence orders, and it systematically arises when the user wants to work with some
“nice” kernel Φ, but ignores that the solution of the given strongly or weakly formulated
problem does not have sufficient regularity to lie in the “native” Hilbert space U for the
chosen kernel.

However, since native spaces of positive definite kernels usually are dense in various
other, much larger spaces, functions u from those spaces can be approximated by functions
from native spaces to arbitrary accuracy. Thus there can be approximants by meshless
kernel methods that actually converge towards u, but not in the topology of the native
space U , but only in the topology of the larger space U . It is a problem of Numerical
Analysis to show that certain algorithms actually produce such approximants. Standard
examples are in [21, 19, 28, 29]. Here, we are satisfied with pointing out that such
approximants exist under very weak conditions.

Theorem 10. Assume that the generalized interpolation problem (1) posed in some normed
linear space U of functions on a domain Ω ⊆ IRd has a solution u ∈ U . Assume further
that there is a countable subset of test functionals λj ∈ Λ, j ∈ IN such that there is
no nontrivial function v ∈ U with λj(v) = 0 for all j ∈ IN , i.e. the problem is well–
posed in U even for a dense countable subset of functionals. Let a sequence of functions
uk ∈ U , k ∈ IN be constructed to satisfy

λj(u) = λj(uk), 1 ≤ j ≤ k

by any method whatsoever. Then the functions uk converge towards u in a norm on U
that is bounded above by ‖.‖U .

Proof: Take any sequence of positive real numbers ρj such that
∑

j ρj‖λj‖2
U∗ con-

verges. Then

(u, v)ρ :=
∞∑

j=1

ρjλj(u)λj(v), u, v ∈ U (19)

is an inner product on U , and the corresponding norm has the bound

‖u‖2
ρ =

∞∑

j=1

ρjλ
2
j (u) ≤ ‖u‖2

U
∞∑

j=1

ρj‖λj‖2
U∗ .

11



We remark that (19) is a variation of a technique for generating special–purpose kernels,
as used in [22, 20]. Define ck := ‖u − uk‖U and observe that the calculation stops after
a finite number of steps if one of the ck vanishes. Assume now that all ck are positive.
We recursively define a sequence of positive numbers εk such that 2c2

kεk+1 ≤ c2
k+1εk

holds for all k and the εk converge to zero. Then we pick the numbers ρk such that
2c2

kρk+1‖λk+1‖2
U∗ ≤ εk holds for all k and the aforementioned sum converges.

Now by construction

‖u− uk‖2
ρ =

∞∑

j=k+1

ρjλ
2
j (u− uk)

≤ ‖u− uk‖2
U

∞∑

j=k+1

ρj‖λj‖2
U∗

≤ c2
k

∞∑

j=k+1

1
2

εj−1

c2
j−1

≤ 1
2
c2
k

εk

c2
k

(1 +
1
2

+
1
4

+ . . .)

= εk.

2

Here is a non–constructive related result:

Theorem 11. Assume that the generalized interpolation problem (1) posed in some normed
linear space U of functions on a domain Ω ⊆ IRd has a solution u ∈ U . Assume further
that Φ is a reproducing symmetric positive definite kernel on IRd for a Hilbert space
U that is continuously embedded in U . Finally, there should be a countable subset of
test functionals λj ∈ Λ, j ∈ IN such that there is no nontrivial function v ∈ U with
λj(v) = 0 for all j ∈ IN . Then there is s sequence {vk}k of functions in U that converges
to u in U . This sequence consists of solutions of finite subproblems with data close to the
data of u.

Proof: Note first that functionals in U∗ are in U∗. We thus can formulate the problem
in U , but it has no solution there. Furthermore, we can extract finite subsets of test
functionals and work in finite–dimensional subspaces of U ⊂ U to generate candidates for
convergence towards u.

Now assume that all test functionals are normalized to have norm 1 in U . The solution
u ∈ U to (1) can be approximated by functions uk ∈ U ⊂ U to any prescribed accuracy,
and we assume that the sequence ‖u − uk‖U tends to zero for k → ∞. Due to unique
solvability of the countable subproblem in U we can pick for each k an index nk ∈ IN
such that the solution vk ∈ U of the problem

λj(uk) = λj(vk), 1 ≤ j ≤ nk

satisfies ‖uk − vk‖U ≤ ‖u − uk‖U , because for large nk the left–hand side can be made
arbitrarily small. We then have

‖u− vk‖U ≤ ‖u− uk‖U + ‖uk − vk‖U
≤ ‖u− uk‖U + C‖uk − vk‖U

≤ ‖u− uk‖U + C‖u− uk‖U

≤ (1 + C)‖u− uk‖U

and get convergence vk → u in U . The data of the functions vk are close to those of u due
to

|λj(vk)− λj(u)| = |λj(uk)− λj(u)|
≤ 1 · ‖uk − u‖U .
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2

10 Final Remarks

We fulfill the purpose if this paper was

1. to provide a unified view of strongly or weakly formulated problems in Applied
Analysis,

2. to define a general meshless kernel technique for their solution and

3. to prove that this technique is successful under weak assumptions on the problem
background.

Among many other open problems, we suggest to devote future research to

1. replace the density arguments of this paper by error bounds and convergence rates,

2. find efficient variations of the algorithm described here,

3. extend the framework to nonsymmetric techniques like Kansa’s collocation method
[15] or the Meshless Local Petrov–Galerkin technique of Atluri et.al. [3, 2, 4].
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[6] I. Babuška and J.M. Melenk. The partition of unity method. Int. J. Numer. Meths.
Eng., 40:727–758, 1997.
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