
Stability of Radial Basis Funtion InterpolantsRobert ShabakAbstrat. The stability of the linear systems arising from sattereddata interpolation problems with radial basis funtions is analysed in fullgenerality. Sine lower bounds for the smallest eigenvalue of the oeÆientmatrix yield upper bounds for the absolute error of the RBF oeÆientsin terms of the absolute errors in the data, we then fous on a new andshort proof of suh bounds.x1. IntrodutionWe shall study the stability of multivariate interpolation by onditionally pos-itive de�nite radial funtions of order m � 0.De�nition 1. A univariate funtion� : IR�0 ! IRis alled onditionally positive de�nite of order m on IRd, if for all possiblehoies of sets X = fx1; : : : ; xNg � IRdof N distint points, the quadrati form indued by the N �N matrixA = (�(kxj � xkk2))1�j;k�N (1)is positive de�nite on the subspaeV := 8<:� 2 IRN : NXj=1 �jp(xj) = 0 for all p 2 IPdm9=;where IPdm stands for the spae of d-variate polynomials of order not exeedingm.Approximation Theory X 1Charles K. Chui, Larry L. Shumaker, and Joahim Stoekler (eds.), pp. 1{8.Copyright o 2001 by Vanderbilt University Press, Nashville, TN.ISBN 0-8265-xxxx-x.All rights of reprodution in any form reserved.



2 R. ShabakNote that m = 0 implies V = IRN beause of IPdm = f0g, and then thematrix A in (1) is positive de�nite.The most prominent examples of onditional positive de�nite radial basisfuntions of order m on IRd are�(r) = (�1)d�=2er� � > 0; � 62 2IN0 m � d�=2e�(r) = (�1)k+1r2k log(r) k 2 IN m � k + 1�(r) = (2 + r2)�=2 � < 0 m � 0�(r) = (�1)d�=2e(2 + r2)�=2 � > 0; � 62 2IN0 m � d�=2e�(r) = e��r2 � > 0 m � 0�(r) = (1� r)4+(1 + 4r) d � 3 m � 0See e.g. [10℄ for a omprehensive derivation of the properties of these funtions.Interpolation of real values f1; : : : ; fN on a set X = fx1; : : : ; xNg of Ndistint sattered points of IRd by a radial basis funtion � is done by solvingthe (N +Q)� (N +Q) systemA� + P� = fPT� + 0 = 0 (2)where Q = dimIPdm and P = (pi(xj))1�j�N;1�i�Qfor a basis p1; : : : ; pQ of IPdm. In fat, if the additional assumptionrank (P ) = Q � N (3)holds, then the system (2) is uniquely solvable. The resulting interpolant hasthe form s(x) = NXj=1 �j�(kxj � xk2) + QXi=1 �ipi(x) (4)with the additional ondition � 2 V .x2. StabilityTo investigate the numerial stability of the system (2), we replae �; �; fby perturbations of the original quantities and get(��)TA(��) + 0 = (��)T�fPT (��) + 0 = 0 (5)Sine A is positive de�nite on the subspae V = kerPT , there are positiveeigenvalues � � � suh that�k�k22 � �TA� � �k�k22 for all � 2 V = kerPT : (6)



Stability of RBF 3We an insert this into (5) to getk��k2 � 1�k�fk2to bound the absolute error �� of � by the absolute error �f in the datavetor f . If the solution � is nonzero, we have that f � P� is nonzero, and asimilar argument ombining (2) and (6) yieldsk��k2k�k2 � �� k�fk2kf � P�k2for the relative error. Thus the standard L2 theory of numerial stabilityapplies to the RBF part of (2). The ondition is given by the ratio �=�, whilestability of the absolute error is dominated by �.The stability of the alulation of � follows the lines of the stability theoryfor disrete L2 polynomial approximation, beause we have� = (PTP )�1PT (f � A�): (7)This means that the polynomial part an be alulated from the residuals ofthe RBF data via the standard operator (PTP )�1PT of disrete L2 polynomialapproximation. The absolute error of the residuals an be bounded byk�f � A��k2 � k�fk2(1 + �� );and we an see how the ondition of the RBF part enters into the stabilitytheory for the polynomial part: the upper bounds have to be multiplied by1 + �� .To derive stability bounds for pratial use, one needs upper bounds for� and lower bounds for �.x3. Upper Bounds for EigenvaluesFor bounded radial basis funtions one an get rude upper bounds for � viaGershgorin's theorem. In fat, if we normalize � to satisfy1 = �(0) � �(r) for all r 2 [0;1);then j1� �j � N � 1;whih is not too bad for standard appliations and ompared to the bad be-havior of � to beome apparent later. In partiular, this bound is independentof the data loations and the smoothness of �, whih have a strong inueneon lower bounds for �.



4 R. ShabakA somewhat more general argument works for ases in whih we have aonvolution representation�(kx� yk2) = ZIRd 	(x� t)	(y � t)dt: (8)This is atually true for all smooth unonditionally positive de�nite andFourier{transformable funtions, beause the Fourier transform of 	(x) anbe obtained via the square root of the (nonnegative) Fourier transform of�(k � k2). If we assume (8), then�TA� = ZIRd0� NXj=1 �j	(xj � t)1A2 dt� 0� NXj=1�2j1AZIRd NXj=1	(xj � t)2dt= N�(0) NXj=1�2j :For general positive de�nite funtions �(x; y) we know that�(x; y) = (�(x; �);�(y; �))Hholds, where H is the native Hilbert spae for � (see e.g. [9℄ for details). Thenthe above argument takes the form�TA� =  NXj=1�j�(xj ; �)2H� 0� NXj=1�2j1A0� NXj=1�(xj ; xj)1A : (9)
The ase of unbounded radial basis funtions is somewhat more ompliated.It omprises the radial basis funtions with positive minimal order of ondi-tional positive de�niteness, for instane the multiquadris �(r) = pr2 + 2or thin{plate splines �(r) = r2 log r. In ontrast to the above upper bound,whih did not use the additional ondition � 2 V = kerPT , we now have torely on the latter. If we insert (7) into the �rst equation in (2), we get(A� P (PTP )�1PTA)� = f � P (PTP )�1PT f:Due to P (PTP )�1PT� = 0, this system an be written asRART� = Rf;



Stability of RBF 5where R := I � P (PTP )�1PT = RT is the operator that maps disrete datainto their residuals after least{squares approximation by polynomials fromIPdm. The matrix B := RART will now have a signi�antly better behaviorthan A, as far as upper bounds are onerned, beause it an be interpretedas an interpolation matrix of an unonditionally positive de�nite non{radialfuntion (see x6 of [9℄). In partiular, we an apply (9) to this new funtion,and we get a numerially omputable upper bound on the largest eigenvalue.Further details are suppressed here. We summarize:Theorem 2. For any positive de�nite radial basis funtion �, the largesteigenvalue � of the matrix A as de�ned in (1) is bounded above by N�(0).For non{radial positive de�nite basis funtions the bound takes the formNXj=1�(xj ; xj);and the ase of positive order of onditional positive de�niteness an be re-dued to the positive de�nite non{radial ase by matrix transformations.x4. Lower Bounds for EigenvaluesThe work of Ball [1℄[2℄, Narowih, Sivakumar, and Ward [5℄[6℄ already on-tains lower bounds for the smallest eigenvalue � of A, and these bounds arenear{optimal due to [7℄. However, the proofs are ompliated, and we wantto provide a muh shorter though less general argument, whih an be trans-ferred to expansion kernels [4℄. It relies on the existene of positive de�nitefuntions with ompat support, whih were not available before 1995 due toWu [13℄ and Wendland [12℄.The idea is to perturb the matrix A on the diagonal by subtrating froma onditionally positive de�nite radial funtion � of order m some positivede�nite radial funtion  with small support, suh that � �  still is ondi-tionally positive (semi)de�nite of order m. If we write A� when A in (1) isbased on �, we then get�TA�� = �TA�� �+ �TA � � �TA � =  (0)k�k22 for all � 2 Vif the support of � is smaller than the minimal distaneq := min1�i<j�N kxi � xjk2 (10)between two di�erent data points, and then A =  (0)I.Theorem 3. Let � be a onditionally positive de�nite funtion of order m.If  is a positive de�nite radial basis funtion with support in [0; q℄ with qfrom (10) suh that � �  is onditionally positive de�nite of order at leastm, then  (0) is a lower bound for the smallest eigenvalue of A� as de�ned in(1).



6 R. ShabakThus we get  (0) as a lower bound for �, whenever we an �nd a  withsupport in [0; q℄ suh that  and �� are positive de�nite. Of ourse, we wouldlike to take the maximal  (0) under these onditions, but the orrespondingoptimization problem still is an open hallenge.To be more spei�, we on�ne ourselves to onditionally positive de�niteradial basis funtions with a radial generalized Fourier transform b� satisfyingb�(r) � 1r�d�� for all r > 1: (11)Note that this plaes an upper bound on the smoothness of �, and thus itrules out in�nitely di�erentiable ases like the Gaussian and the multiquadris.Furthermore, it implies by arguments from [11℄ that the standard L1(
) errorbounds for interpolation of funtions in the native spae H annot be betterthan of order O(h�=2), where h is the data densityh := supy2
 min1�j�N kxj � yk2:By the Unertainty Priniple in [8℄, the optimal lower bounds of eigenvalues� have the form O(q�) for small q, and this is what we want to reover by ournew tehnique.Theorem 4. Let � be a onditionally positive de�nite radial basis funtionwhose Fourier transform has at most the deay (11). Then the smallest eigen-values of the matries A in (1) have a lower bound of the form� � q�for all data sets with q � 1.Proof: For onveniene of notation, we add0 < 0 � b�(r) for all r � 1to (11). From Wendland's supply of arbitrarily smooth ompatly supportedpositive de�nite radial basis funtions we an �nd some � with support on[0; 1℄ satisfying �(0) = 1 and having a positive radial Fourier transform b�with b�(r) � C1r�d�� r > 0b�(r) � C0 r � 1:We now take  (�) = ��(�=q) to squeeze the support of  into [0; q℄, and wemaximize � under the onstraintb�(r) � b (r) = �qdb�(rq) for all r � 0 (12)whih still makes �� onditionally positive semide�nite of at least the sameorder as �, beause this order is related to the order of the singularity of b� atzero.



Stability of RBF 7We �rst treat the ase r > 1, in whih it suÆes to guarantee (12) byb (r) = �qdb�(rq) � �qdC1(rq)�d�� = �q��C1r�d�� � 1r�d�� � b�(r)by piking � � 1C1 q� :The ase r � 1 has rq � 1 and we an satisfyb (r) = �qdb�(rq) � �qdC0 � �C0 � 0 � b�(r)by taking � � 0C0 :Note that we ould inorporate in�nitely di�erentiable ases like theGaussian and the multiquadris, if we had a suÆient supply of in�nitelydi�erentiable radial basis funtions with small ompat supports. The aseof expansion kernels su�ered also from lak of positive de�nite funtions witharbitrarily small support, but this was overome in [4℄. An appliation tonon{radial basis funtions with varying sales and shapes is in [3℄.Aknowledgments. Speial thanks go to Holger Wendland for proofreading.Referenes1. Ball, K, Eigenvalues of Eulidean distane matries, J. Approx. Theory 68(1992) 74{822. Ball, K., N. Sivakumar, and J.D. Ward, On the sensitivity of radial basisinterpolation to minimal data separation distane. Constr. Approx. 8(1992) 401{4263. Bozzini, M., L. Lenarduzzi, M. Rossini, and R. Shabak, Interpolationby basis funtions of di�erent sales and shapes, preprint 20014. Narowih, F. J., R. Shabak, and J. D. Ward, Stability Estimates forInterpolation by Positive De�nite Kernels, preprint, 2001.5. Narowih, F. J., N. Sivakumar, and J. D. Ward, On ondition numbersassoiated with radial{funtion interpolation, J. Math. Anal. Appl. 186(1994) 457{4856. Narowih, F. J., and J. D. Ward, Norm estimates for the inverses of ageneral lass of sattered{data radial{funtion interpolation matries, J.Approx. Theory 69 (1992) 84{1097. Shabak, R., Lower bounds for norms of inverses of interpolation matri-es for radial basis funtions, J. Approx. Theory 79 (1994) 287{306



8 R. Shabak8. Shabak, R., Error estimates and ondition numbers for radial basisfuntion interpolation, Advanes in Comp. Math. 3 (1995) 251{2649. Shabak, R., Native Hilbert spaes for radial basis funtions, in: NewDevelopments in Approximation Theory, Buhmann, M.D., Mahe, D. H.,Felten, M., and M�uller, M. W.(eds.), Birkh�auser Verlag, InternationalSeries of Numerial Mathematis 132 (1999) 255{28210. Shabak, R. and H. Wendland, Charaterization and onstrution ofradial basis funtions, in Multivariate Approximation and Appliations,Dyn, N., D. Leviatan, D. Levin, and A. Pinkus (eds.), Cambridge Uni-versity Press 200011. Shabak, R. and H.Wendland, Inverse and saturation theorems for radialbasis funtion interpolation, to appear in Math. Comp.12. Wendland, H., Pieewise polynomial, positive de�nite and ompatly sup-ported radial funtions of minimal degree, Advanes in Comp. Math. 4(1995) 389{39613. Wu, Z., Multivariate ompatly supported positive de�nite radial fun-tions, Advanes in Comp. Math. 4 (1995) 283{292Prof. Dr. R. ShabakInstitut f�ur Numerishe und Angewandte MathematikZentrum f�ur InformatikLotzestra�e 16{18D-37083 G�ottingenshabak�math.uni-goettingen.de


