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Abstract

We present a meshless technique which can be seen as an alter-
native to the Method of Fundamental Solutions (MFS). It calculates
homogeneous solutions of the Laplacian (i.e. harmonic functions) for
given boundary data by a direct collocation technique on the bound-
ary using kernels which are harmonic in two variables. In contrast to
the MFS, there is no artifical boundary needed, and there is a fairly
general and complete error analysis using standard techniques from
meshless methods for the recovery of functions. We present two ex-
plicit examples of harmonic kernels, a mathematical analysis providing
error bounds and convergence rates, and some illustrating numerical
examples.

1 Introduction

The Method of Fundamental Solutions (MFS) solves a homogeneous
boundary value problem, for example a Dirichlet problem

—Au = 0 inQ
u = f in0Q

for the Laplace equation via approximation of the boundary data by
traces of fundamental solutions centered at source points outside the
domain in question. The method has been used extensively in recent
years, and there are excellent surveys [2, 3, 1]. However, the method
has two drawbacks:

1. it lacks a general error analysis, since the existing mathematical
results are confined to concentric circles as true and “fictitious”
boundaries,

2. it needs source points outside the domain which are not easy to
place properly.



This contribution proceeds differently by recurring to standard kernel—
based reconstruction of functions from scattered data.

We consider a domain €2 given in boundary—parametrized polar
form

o0 = {recIR*: z=R(1), tc|0,2r]}
R : [0,27] — IR, 2mn—periodic curve,
R(t) = p(t)(cos(t),sin(t)), t € [0, 27]

and we assume that the domain is bounded by
0< p(t) <R < oo forall t €0, 27].

Furthermore, symmetric and positive definite harmonic kernels are
constructed on IR? x IR?. If K is such a kernel, there are harmonic
trial functions given by

N
s(z) = ZajK(x,o:j),x €N (1)

for any set X := {x1,...,2n} of N pairwise distinct points
zj = R(t;) = p(t;)(cos(t;), sin(t;)), t; € [0,27], 1 <j <N,

on the boundary 90 of Q and arbitrary vectors a = (a1,...,ay)? €
IRV,

If the kernel is positive definite (see e.g. [8] for details on kernels and
their applications), one can collocate a given function f : 9Q — IR
on the boundary points by solving the system

N
S 4K (ay,x;) = far), 1 <k < N.
j=1

Then one evaluates the boundary error and uses the maximum princi-
ple to have an error bound

If = slloom < If = slloc.00-

Thus the main problem is to guarantee a small boundary error via the
collocation. The error can be rewritten as a periodic function via

N
FRO)=s(RO) = [RO) =3 a; KR, R(L,)
N =

fy =3t = Jt) = aK(tt;)

j=1

where we used the tilde to denote the periodicized functions.



From this point on, one can forget the original setting and consider
the problem of recovering the periodic function f from data using the
periodic kernel K. For this, a well-established theory is available (see
e.g. [10]), but we shall have to establish the necessary conditions for
its applicability. It results in error bounds which are tightly connected
to the smoothness of f and K.

2 General Harmonic Kernels

The most convenient source for harmonic functions in 2D are the real
or imaginary parts of complex analytic functions. We shall exploit this
by writing a complex variable

z =1z 4+ iy =r(cos(p) + isin(p))
in polar coordinates (r, ). The easiest case arises from
2" = r"(cos(ny) + isin(ny))
and yields harmonic polynomials
r" cos(ny) and " sin(np), n > 0.

For use in exterior domains one can also allow negative n above. In
general, we advise the reader to prefer harmonic polynomials in polar
coordinates over those in Cartesian coordinates, though there is some
bias towards the special role of the origin.

The next step considers real parts of power series

Pp(z) := i An 2"
n=0

which are convergent in a disc of radius p > 0 around zero and which
have real coefficients. They lead to harmonic functions

Fr(r, @) = Z Anr™ cos(nep)
n=0

for all points (r, ¢) with r < p.
To get a kernel which is harmonic in two 2D variables (r, ) and
(s,v) in polar coordinates, we can superimpose harmonic polynomials

r" cos(ny), " sin(ng), s™ cos(my), s sin(ma)

in an arbitrary way. Motivated by Mercer kernels from machine learn-
ing and by the above observation, we consider a special superposition

Kae((r,9)i (5,9))) = Y Mac®r"s" cos(n(io — )
0

= Fa(c*rs,p—v)
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to get a symmetric harmonic kernel under the summability condition
o0
Z A2 s < 00

with otherwise arbitrary positive weights A\, and a scaling factor ¢ >
0. Taking our domain into account, we shall strengthen the above
condition to

oo
Z AR < 00
n=0
in order to be able to evaluate safely on the boundary.

Theorem 1 Harmonic kernels of the above form are positive definite,
and this also holds for their periodicized form.

Proof: We look at the usual quadratic form for points (r;,¢;), 1 <
7 < N and get the nonnegative result

N 0o
Z a;ag Z )\nCQ"r?rZ cos(n(p; — ¢r))
]k 1 n= 0
= Z/\nczn Z ajaryry cos(n(e; — ¢r))
7,k=1
2 2
N

[e.9]
_ 2n n i n .
= E AnC E a;ry cos(ny;) E a;ry sin(nep;)
n=0

If the form vanishes, we necessarily have

N

Z a;jry exp(ing;) = 0
j=1

for all n > 0, which means that a is in the kernel of the infinite Van-
dermonde matrix with entries 27" = r7 exp(ing; ), but this matrix must
have rank N because polynomials of unlimited degree always separate
points. This implies @ = 0 and positive definiteness. Clearly, the result
extends to parametrized subsets of the domain. O

3 Special Harmonic Kernels

This section will borrow from the univariate periodic kernels provided
by Anette Meyenburg [4] in the early years of kernel techniques.
We start our construction of harmonic kernels with a very fast

convergent case, setting A, n, and using the entire exponential



function P(z) = exp(z). The result is the analytic 2r—periodic kernel

Rlexp(z) = R

n!
n=0

= reos(ng)
= X

nﬂ%(gxp(r cos(p) + irsin(y)))

¥
exp(r cos(p)) - R(exp(irsin(y)))
= exp(rcos(p)) - cos(rsin(y))

R(exp(2))

which yields the globally harmonic “exponential” kernel

Enel(r )i (5:0)) 1= 3 s cos(nlp — )
n=0

= exp(c?rscos(p — 1)) - cos(c?

rssin(e — 1¥)).
Making ¢ large results in a sharp spike, but does not affect global
summability.

If we want to generate a kernel from a meromorphic function, we
can work with the geometric series to get the Poisson kernel

1 = .
9%(1_2) = %Z:Oz

oo

= Zr"cos(mp)
1 n=0
8%(l—z) = R l—rcos(go —zrsm )
I 1 —rcos(p) —|—zrsm ®) )
B (1 —rcos(p))? + 2 sin?(p)

1—r cos(gp)
1 — 2rcos(p) + r?

which requires » < 1. This yields the harmonic kernel

Kae((r,9); (s, Z 2 s™ cos(n(p — 1))

1 — c2rscos(p — )
1 —2c2rscos(p — 1) + c*r2s?’

Here, making ¢ small enough helps to satisfy the summability condition
Ars < 1,

and a large value within this range will again result in a sharp spike.
But since the second form of the kernel is the analytic continuation of



the series form, we can drop the summability condition to find that
the Poisson kernel can be used everywhere except for

*rs=1and ¢ — 9 € 217,

where it has a singularity.

4 Singularities of the Poisson Kernel

When using the Poisson kernel, the implicit placement of the singu-
larities becomes important. A single basis function written in a 2D
variable in polar coordinates (s,v) as

1—c?pjscos(t; — 1)
g](syw) T 1— 2c2pj8 COS(tj - QZ)) + C4P?SQ

for a fixed point R; = (p(t;),t;) will have a singularity at the “re-
flected” point (1/(c?p;),t;). Note that reflected points arise naturally
in standard constructions of Green’s functions for the Laplace opera-
tor [9]. The reflected points should lie outside the domain in question,
and since we here consider the origin to be inside a star—shaped domain
with boundary {(p(¢),t), t € [0,27]} in polar coordinates, we need

1
> pjorc< —
cp; Pi
to see that ¢ < 1/p; will place the singularity outside the domain,
while ¢ = 1/p; lets the singularity coincide with our data point. To
play safe, one must set
1

< maxy p(t) @)
to make sure that the resulting superposition of such functions on
arbitrary boundary points does not produce singularities inside the
domain.

If ¢ is fixed this way, each boundary point (p(t),t) has a reflected
point (1/(c?p(t)),t), and the reflected points come close to the bound-
ary only where r takes its extremal values. This means that incoming
corners of the domain cannot have close reflection points, and this will
make it hard to work on such domains, as we see later. Figure 1 shows
the reflected points for both a rectangle and a cardioid. The constant

¢ was chosen to be
0.95

max; p(t)

in both cases. One can see how the singularities in the rectangle case
come close to the corners, while they stay away from the cardioid’s
incoming corner.



Figure 1: Reflected boundary

For problems on exterior domains, one should of course choose

1

> J—
¢ ming p(t)

to get a similar argument.

5 Error Bounds

For error analysis, we first invoke a local univariate sampling inequality
of the form
ullroan) < ChM71/2|U|W;4[a,b]

for functions u in Sobolev space WM [a, b] with M > 1/2 which vanish
on a set X of points in [a, b] with fill distance

e zZ?aFjb] Ugleu)l( ”I . H = hOa
and the constant ¢ does only depend on the domain and the numbers
M, hg. See [5, 11] for details of such inequalities.

This inequality applies to errors of interpolation processes, pro-
vided that the Sobolev seminorm [s|y a4 4 of interpolants on X can
be bounded independent of the fill distance h, as is the case with
splines and other kernel-based techniques minimizing certain norms
or seminorms in certain “native ” Hilbert spaces in which the kernels
are reproducing.

To apply these techniques, we have to prove that the native Hilbert
space of the periodicized kernel K is continuously embedded in a



Sobolev space WM [a,b] of highest possible order. If we manage this
for order M, we get a convergence rate like h™~1/2 by the sampling
inequality, and since this error bound extends to the interior via the
Maximum Principle, it holds on the whole domain.

Finally we remark that the above analysis applies locally to parts of
the boundary. Thus one can expect good convergence rates where there
are no singularities induced by the boundary shape or the boundary
data. This will be confirmed by examples.

6 Smoothness Results
To make the above argument work, we have to investigate the smooth-

ness of our trial functions more closely. We represent the 2r—periodic
function

j;1
= > ;K (p(ty), p(t))
j=1
g(t) = Zaj Z)\ " (t5)p" (t) cos(n(t — t;))
_] 1 n=0
= Z)\ " p"(t) (cp cos(nt) + dy, sin(nt)) .
with

Cn = Zajp ) cos(nt;)

N
d, = Zajp”(tj)sin(ntj).
j=1

In the native space for the periodicized kernel K, this function has the
norm

N

Z ajakf((tj, tk)

J,k=1
N

= 3 e > Aec? (k)" plte)" cos(n(ti — 1)
n=0

k=1
oo

2
lgll%

= ACE )
n=0



which is finite due to our summability condition. To arrive at error
bounds in Sobolev spaces, we have to bound derivatives of g in terms
of this norm. We assume the boundary function p to be k—fold con-
tinuously differentiable. Then all functions of the form of g are k—fold
continuously differentiable. To bound derivatives of g from above, we
have to bound derivatives of the functions

p" (t) cos(nt) and p"(t) sin(nt)

from above, and we have to care for the behavior with respect to large
n. The j-th derivative of p™ has n/ bounded terms, and then the
product rule shows that the k—th derivative of the above functions is
bounded by a constant times 2¥n*. Then we get

B = 3 dne® (calp (0 cos(nt)® + d (" (0 sin(u) )
n=0

g ()] < C2F Z AP y/c2 4 d?
n=0
< C2F z An €27 (c2 + d2) Z Apc2n2k
n=0 n=0
and

o0
l9l3s00m < Cllaly 4% > Ancn®.
n=0

The constant C' above is formally independent of k£, but contains a
uniform bound of all derivatives of the boundary function up to order

k.
Theorem 2 If the boundary function is in C* and if

oo
;= C 4k Z A < oo,

n=0

then the native space of the periodicized kernel K is continuously em-
bedded in Sobolev space W¥|[0,2x] with norm ¢y of the embedding. Fur-
thermore, interpolation by harmonic kernels on the boundary has an
error of order h*=1/2 in the Lo norm. O

7 Special Cases

If we take the exponential kernel, there is no summability condition on
the kernel parameters to be satisfied, because convergence is guaran-
teed for all parameter choices. Consequently, the convergence rate is



entirely determined by the smoothness of the domain and the smooth-
ness of the data function. For domains with smoothness C* in po-
lar parametrization, there always is convergence of order k — 1/2 for
smooth enough data, because the condition in Theorem 2 is satisfied
for all parameter choices. For very smooth domains, i.e. when there
is arbitrary smoothness order k with k—independent bounds on the
derivatives, the convergence rate is arbitrarily high, provided that the
data function is of arbitrary smoothness. This occurs for circles or
ellipses, for instance. By invoking sampling inequalities for infinitely
differentiable functions [6], one can get exponential convergence rates,
because the constants in Theorem 2 are uniformly bounded with re-
spect to k. However, all of this is limited by the smoothness of the
data function.

For the Poisson-type kernel, we saw that we have to be more care-
ful. If we take (2), everything works. However, the condition of The-
orem 2 is satisfied for all k£, but not uniformly for & — oo. Thus the
convergence rate, depending on the smoothness of the domain and the
data function, can be arbitrarily high but is not necessarily exponen-
tial.

8 Numerical Results

We ran a series of test examples, and Table 1 contains some typical
results we shall explain now. After quite some experiments, we settled

for choosing
0.85

~ max; p(t)
in view of (2) for the Poisson kernel, while we used

1
maxy p(t)

for the exponential kernel, though there are no singularities to care for.
The notations for the columns of Table 1 are as follows:

Dom = Domain, can be circle, rectangle or cardioid

p(t) = /2 + [sin(t/2)| /v + 1, ¢ = 0.3218

Fun = Function f(z,y), can be y=y, poly=y3z2, abs=|y|
Ker = Kernel, can be exp = exponential or poi = Poisson kernel
N = number of data points for collocation on boundary
n = number of selected basis functions, = degrees of freedom used

€co = Lo error on 1000 test points on boundary
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The algorithm used for providing the examples is a variant of the adap-
tive technique presented in [7] which selects a certain subset of the col-
location data locations for use as trial points in a representation (1). In
the table, N stands for the full number of data and collocation points,
of which n are adaptively selected for entering into a representation
(1) on the trial side. The selection is stopped when either a relative
improvement of 0.00001 or an absolute improvement by at least the
machine precision is impossible. A MAT LAB© program reproducing
all examples is available from the author’s website.

Dom Fun Ker N n €00
circ y exp 200 24 7.622044e-010
circ y poi 200 121 3.422198e-009
circ poly exp 200 27 7.697248e-010
circ poly poi 200 108 3.593031e-009
circ abs exp 200 27 4.869433e-002
circ abs poi 200 184 4.738652e-003
rect poly exp 200 25 1.448961e-002
rect poly poi 200 74 6.848998e-004
rect abs exp 200 25 7.693859e-002
rect abs poi 200 78 2.498604e-002

card poly exp 200 25 1.286584e-003
card poly poi 200 97 7.384259e-004
card abs exp 200 24 2.175175e-001
card abs poi 200 98 1.764641e-001

card abs poi 200 124 7.695109e-002

Table 1: Results of test runs

Users should be aware that the exponential kernel will work best
if the data come from a globally harmonic singularity—free function.
This occurs for the first two lines of Table 1. Since the solution is
singularity—free, the Poisson kernel needs 121 degrees of freedom, while
the exponential kernel uses only 24.

The next two lines of Table 1 show a case interpolating non—harmonic
data from f(x,y) = 2%y> on the unit circle. This fits into our error
analysis, and the rate of approximation should be exponential. Again,
the exponential kernel is superior.

We no go to the rectangle. By our theory, this induces nondiffer-
entiability into the problem, even if the data are smooth like poly =
f(x,y) = 2%y3. The error for the Poisson kernel now gets better, be-
cause due to Figure 1 the singularities of the Poisson kernel come close
to the corners. If we take f(x,y) = |y| on the rectangle, we get two
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additional derivative singularities on smooth parts of the boundary,
but these cannot be reached by singularities of the Poisson kernel due
to Figure 1. Consequently, its performance drops.

On the cardioid, we cannot reach the incoming corner by singu-
larities in reflected points, due to Figure 1. Even for smooth data,
all algorithms have problems. But this also occurs for other methods
like the MFS, unless special singularity—dependent trial functions are
added manually.

Now for the separate final line of Table 1. There, we treated 100
points on the boundary as before, but the other 100 got close-by re-
flection points by choosing a point—dependent ¢ according to the rule

0.95
p(tj)

The 200 offered and 124 adaptively selected points are shown in Figure
2. Note that our convergence analysis still works, because we kept half
of the points in the standard setting, adding certain additional degrees
of freedom which can only decrease the error. Figure 3 shows the
error behavior. Since our convergence analysis is completely local, the
error is everywhere small except near the singularities. Similar results
are obtained also in the other cases we treated before: the bad error
behavior is confined to neighborhoods of the singularities.

c(ty)

Figure 2: Point configuration for the last line of Table 1

But one can also be as bold as to fit harmonic functions to scattered
data. This is an ill-posed problem, but algorithmically it will work,
even for general non—harmonic functions. However, due to the maxi-
mum principle, the error behavior will be disastrous if the data are not

12



Figure 3: Error behavior for the last line of Table 1

close to those of a harmonic function. Figure 4 shows the well-posed
recovery of a harmonic function from its scattered data, while Figure
5 shows how our kernel method tries to do the impossible: providing a
harmonic interpolant to data coming from a non—harmonic function.

9 Conclusions

This paper seems to be the first to produce a fairly general quantita-
tive error analysis for a method which solves homogeneous boundary—
value problems by a simple superposition of homogeneous solutions
centered at boundary points. In contrast to the Method of Fundamen-
tal Solutions, no “fictitious” or “artificial” boundary is needed, and
the convergence analysis works for general domains.

The method should be generalized to other differential operators,
and possibly applied to inverse problems. In general, it seems to be a
promising strategy to use kernel techniques which are tailored to solve
certain PDE problems, using newly designed kernels.
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