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Abstract

From spline theory it is well-known that univariate cubic spline interpolation,

if carried out in its natural Hilbert space W 2
2 [a, b] and on point sets with fill

distance h, converges only like O(h2) in L2[a, b] if no additional assumptions

are made. But superconvergence up to order h4 occurs if more smoothness

is assumed and if certain additional boundary conditions are satisfied. This

phenomenon was generalized in 1999 to multivariate interpolation in Reprodu-

cing Kernel Hilbert Spaces on domains Ω ⊂ Rd for continuous positive definite

Fourier-transformable shift-invariant kernels on Rd. But the sufficient condi-

tion for superconvergence given in 1999 still needs further analysis, because

the interplay between smoothness and boundary conditions is not clear at all.

Furthermore, if only additional smoothness is assumed, superconvergence is nu-

merically observed in the interior of the domain, but without explanation, so far.

This paper first generalizes the “improved error bounds” of 1999 by an abstract

theory that includes the Aubin-Nitsche trick and the known superconvergence

results for univariate polynomial splines. Then the paper analyzes what is be-

hind the sufficient conditions for superconvergence. They split into conditions

on smoothness and localization, and these are investigated independently. If

sufficient smoothness is present, but no additional localization conditions are

assumed, it is proven that superconvergence always occurs in the interior of

the domain. If smoothness and localization interact in the kernel-based case on
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Rd, weak and strong boundary conditions in terms of pseudodifferential oper-

ators occur. A special section on Mercer expansions is added, because Mercer

eigenfunctions always satisfy the sufficient conditions for superconvergence. Nu-

merical examples illustrate the theoretical findings.
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1. Introduction

This paper investigates the superconvergence phenomenon in detail, using

the term “superconvergence” for a situation where the approximating functions

(approximants) have less smoothness than the approximated function (the ap-

proximand), while the smoothness of the latter determines the error bound and5

the convergence rate. This is well-known from univariate spline theory [1, 15, 20]

and the Aubin-Nitsche trick in finite elements [2, 4]. Other notions of supercon-

vergence, mainly in finite elements [3, 21, 22] refer to higher-order convergence

in special points like vertices of a refined triangulation. Superconvergence in

the sense of this paper occurs in the whole domain or in a subdomain. In con-10

trast to the “escape” situation of [14], where smoothness of the approximands

is lower than the smoothness of the approximants, we consider the case where

smoothness of the approximands is higher. In [14], the convergence rate is like

the one for the kernel of the larger space with less smoothness, while here the

convergence rate is equal to the rate obtainable using the smoother kernel of a15

smaller space.

The paper starts with a unified abstract presentation of the standard cases

of superconvergence, including finite elements, splines, sequence spaces, and

kernel-based interpolation on domains in Rd. The sufficient criterion for su-

perconvergence in the abstract situation splits into two conditions in Section20

3 as soon as localization comes into play. In Section 4, the paper specializes
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to kernel-based function spaces on bounded domains in Rd, linking localiza-

tion to weak and strong solutions of homogeneous pseudodifferential equations

outside the domain. In the Sobolev case Wm
2 (Rd) treated in Section 5, the pseu-

dodifferential operators are classical, namely (Id−∆)m, and hidden boundary25

conditions come finally into play, i.e. when a general function f on Ω with

extended smoothness W 2m
2 (Ω) is considered. Superconvergence then requires

that f has an extension to Rd by solutions of (Id − ∆)m = 0 with W 2m
2 (Rd)

smoothness, and this imposes the boundary condition (Id − ∆)m = 0 in the

W 2m
2 (Rd) sense. Then Section 6 applies the previous results to show that su-30

perconvergence always occurs in the interior of the domain, if the approximants

have sufficient smoothness.

Because Mercer expansions of continuous kernels yield local eigenfunctions

satisfying the criteria for superconvergence, Section 7 links the previous localiza-

tion and extension results to Mercer expansions. In particular, the Hilbert space35

closure of the extended Mercer eigenfunctions coincides with the closure of all

possible interpolants with nodes in the domain. Numerical examples in Section

8 illustrate the theoretical results, in particular demonstrating superconvergence

in the interior of the domain.

2. Abstract Approach40

The basic argument behind superconvergence in the sense of this paper has a

very simple abstract form that works for univariate splines, finite elements, and

kernel-based methods. To align it with what follows later, we use a somewhat

special notation.

The starting point is a Hilbert space HK with inner product (., .)K and a

linear best approximation problem in the norm of HK that can be described by

a projector ΠK from HK onto a closed subspace ΠK(HK). The standard error

analysis of such a process uses a weaker norm ‖.‖0 that we assume to arise from

a Hilbert space H0 with continuous embedding EK0 : HK → H0. It takes the
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form

‖EK0 (f −ΠKf)‖0 ≤ ε‖f −ΠKf‖K for all f ∈ HK (1)

and usually describes standard convergence results when the projectors vary.45

Theorem 1. Superconvergence occurs in the subspace HK∗K,0 := (EK0 )∗(H0)

of HK and turns a standard error bound (1) into

‖EK0 (f −ΠKf)‖0 ≤ ε2‖((EK0 )∗)−1f‖0 for all f ∈ HK∗K,0.

Proof. If f = (EK0 )∗(vf ) with vf ∈ H0, then

(f, g)K = ((EK0 )∗(vf ), g)K = (vf , E
K
0 g)K for all g ∈ HK , f ∈ HK∗K,0 (2)

and we get via orthogonality

‖f −ΠKf‖2K = (f, f −ΠKf)K

= ((EK0 )∗(vf ), f −ΠKf)K

= (vf , E
K
0 (f −ΠKf))0

≤ ‖vf‖0‖EK0 (f −ΠKf)‖0
≤ ε‖vf‖0‖f −ΠKf‖K ,

leading to the assertion.

Example 2. The Aubin-Nitsche trick in finite elements takes the spaces HK =

H1
0 (Ω) ⊂ H0 = L2(Ω) and uses the fact that piecewise linear finite elements are

best approximations in H1
0 (Ω). The standard O(h) convergence rate in H1

0 (Ω)

leads to superconvergence of order h2 in HK∗K,0 = H2(Ω) ∩H1
0 (Ω), though the

approximants do not lie in that space. The condition (2) is

(f, g)K = (∇f,∇g)L2(Ω)

= (−∆f,EK0 g)0

= (vf , E
K
0 g)0 for all g ∈ HK = H1

0 (Ω),

but note that vanishing boundary values are important here.

Example 3. In basic univariate polynomial spline theory [1, 15, 20] for splines

of order 2n or degree 2n− 1, the spaces are H0 = L2[a, b] and HK = Wn
2 [a, b],
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but a seminorm is used there. The projector is interpolation on finite point

sets, and it has the orthogonality property because it is minimizing the proper

seminorm. Then the abstract condition (2) is treated like

(f, g)K = (Dnf,Dng)L2(Ω)

= ((−1)nD2nf,EK0 g)0

= (vf , E
K
0 g)0 for all g ∈ HK

for D = d
dx , but note that it requires certain boundary conditions to be satisfied

that we do not consider in detail here.

These two examples show that (2) may contain hidden boundary conditions,50

but these are not directly connected to superconvergence. They concern the

transition from the second to the third formula in (2), i.e. shifting to the adjoint

operator. But we shall see now that (2) may hold without boundary conditions:

Example 4. For kernels with series expansions like Mercer kernels (see Section

7), the basic theory boils down to sequence spaces starting from H0 = `2(N). For

arbitrary positive sequences κ := {κn}n with limn→∞ κn = 0, the Hilbert space

HK is defined via sequences f = {fn}n, g = {gn}n with

(f, g)K :=
∑
n

fngn
κn

to contain all f with ‖f‖K < ∞. Projectors ΠK : HK → HK should be

norm-minimizing, e.g. as projectors on subspaces. Then (2) is

(f, g)K =
∑
n

fn
κn
gn = (f./κ, g)0 = (vf , g)0

in MATLAB notation, and we see that HK∗K,0 is the space generated by the

sequence κ. ∗ κ in MATLAB notation. There is no localization like the one55

occurring later as (4), and there cannot be any hidden “boundary conditions”. It

is easy to apply this to analytic cases with series expansions, e.g. into orthogonal

polynomials or spherical harmonics.

This example explains our seemingly strange notation in the abstract setting,

but the most important case is still to follow:60
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Example 5. For dealing with the multivariate kernel-based case in [18], we

take a (strictly) positive definite translation-invariant, continuous, and Fourier-

transformable kernel K on Rd to define HK as the native Hilbert space in which

it is reproducing. For a bounded domain Ω with an interior cone condition,

we use H0 = L2(Ω) and have a continuous embedding. Sampling inequalities

[16, 17] yield standard error bounds (1). The abstract condition (2) is now

treated via

(f, g)K =

∫
Rd

f̂ ĝ

K̂
=

∫
Rd

f̂

K̂
ĝ

=
(

( f̂
K̂

)∨, EK0 g
)
L2(Rd)

= (vf , E
K
0 g)L2(Ω) for all g ∈ HK ,

if we assume

f = K ∗ vf with vf ∈ L2(Rd) (3)

and

vf ∈ L2(Rd) supported in Ω. (4)

The space of functions with the convolution condition (3) is HK∗K where the

convolved kernel K ∗K is reproducing, and the additional localization condition

(4) defines a subspace HK∗K,0 that we shall study in more detail in the rest of

the paper. Since Fourier transform tools require global spaces like L2(Rd) or

Wm
2 (Rd) while error bounds only work on local spaces like L2(Ω) or Wm

2 (Ω),65

we have to deal with localization, and in particular we must be very careful with

maps that restrict or extend functions between these spaces.

We first handle localization by a small add-on to the abstract theory. In

contrast to the setting above, we use spaces H0 and HK that do not need

localization, i.e. they stand for L2(Rd) or Wm
2 (Rd). Then we add an abstract

localized spaceHΩ standing for L2(Ω) with additional maps E0
Ω : H0 → HΩ and

EΩ
0 : HΩ → H0, modelling restriction to Ω and extension by zero. Throughout,

we shall use a “cancellation” notation for embeddings, allowing e.g. EBAE
C
B =
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ECA . These maps should have the properties

(EΩ
0 f,E

Ω
0 g)0 = (f, g)Ω for all f, g ∈ HΩ,

(f,EΩ
0 g)0 = (E0

Ωf, g)Ω for all f ∈ H0, g ∈ HΩ.
(5)

To generalize the splitting of the abstract condition (2) into the convolution

condition (3) and the localization condition (4), we postulate

(f, g)K = (vf , E
K
0 g)0 for all f ∈ HK∗K := (EK0 )∗(H0) (6)

without localization, and then define HK∗K,Ω as the subspace of HK∗K of all

f ∈ HK∗K with

vf = EΩ
0 E

0
Ωvf , (7)

caring for localization.

Theorem 6. Besides (5), (6), and (7), assume a partially localized error bound

of the form

‖E0
ΩE

K
0 (f −ΠKf)‖Ω ≤ ε‖f −ΠKf‖K for all f ∈ HK (8)

describing a standard convergence behavior, where the constant ε now also de-

pends on Ω. Then for all f ∈ HK∗K,Ω we have superconvergence in the sense

‖E0
ΩE

K
0 (f −ΠKf)‖Ω ≤ ε2‖vf‖0.

Proof. We change the start of the basic argument to

‖E0
ΩE

K
0 (f −ΠKf)‖2Ω ≤ ε2‖f −ΠKf‖2K

= ε2(vf , E
K
0 (f −ΠKf))0

and then have to introduce a localization in the right-hand side as well. This

works by the additional assumptions (6) and (7) and yields

‖E0
ΩE

K
0 (f −ΠKf)‖2Ω ≤ ε2(EK0 (f −ΠKf), EΩ

0 E
0
Ωvf )0

= ε2(E0
ΩE

K
0 (f −ΠKf), E0

Ωvf )Ω

≤ ε2‖E0
ΩE

K
0 (f −ΠKf)‖Ω‖E0

Ωvf‖Ω
= ε2‖E0

ΩE
K
0 (f −ΠKf)‖Ω‖vf‖0.
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Summarizing, we see that the abstract condition (2) contains localization70

and boundary conditions in the first two examples, while the third is completely

without these conditions, and the fourth contains localization, but no boundary

condition. This strange fact needs clarification. Another observation in the

kernel-based multivariate case of Example 5 is that additional smoothness in

the sense of (6) leads to superconvergence in the interior of the domain, even in75

cases where (7) does not hold. We shall focus on these items from now on.

3. Localization

We now come back to the second part of the abstract theory in Section 2

and have a closer look at localization. The localized space HΩ still is separated

from the “global” spaces HK and H0, but we now push the localization into

subspaces of HK . To this end, consider the orthogonal closed subspaces

ZK(Ω) = kerE0
ΩE

K
0 and HK(Ω) := ZK(Ω)⊥ = (E0

ΩE
K
0 )∗(HΩ) (9)

of HK . The second space consists of all “functions” f in HK that are completely

determined by their “values on Ω”, i.e. by E0
ΩE

K
0 f . This is the space users work

in when they take spans of linear combinations of kernel translates K(·, x) with80

x ∈ Ω. The orthogonal complement of the HK-closure then consists of all

functions in HK that vanish on Ω, i.e. it is ZK(Ω) in the above decomposition.

To make this more explicit, recall the native space construction for contin-

uous (strictly) positive definite kernels on Rd starting from arbitrary finite sets

X = {x1, . . . , xN} ⊂ Rd and weight vectors a ∈ RN . These are used to define

the generators

µX,a(f) :=

N∑
j=1

ajf(xj), fX,a(x) :=

N∑
j=1

ajK(xj , x) = µX,a(K(·, x)) (10)

for the native space construction, and they are connected by the Riesz map.

One defines inner products on the generators via kernel matrices and then goes

to the Hilbert space closure to get HK .85
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If the sets are restricted to a domain Ω, the same process applies and yields

a closed subspace H(K,Ω) of HK that we might call a localization of HK . It is

that subspace in which standard kernel-based methods work, using point sets

that always lie in Ω.

Lemma 7. The subspace H(K,Ω) of HK defined above coincides with the space90

HK(Ω) defined abstractly in (9). The isometric embedding HK(Ω)→ HK maps

each function in HK(Ω) to the unique HK-norm-minimal extension to Rd.

Proof. The reproduction property µX,a(f) = (f, fX,a)K immediately yields the

first statement, because the space spanned by the fX,a is the orthogonal com-

plement of ZK(Ω) of (9). The second follows from the variational fact that any95

norm-minimal extension must be HK-orthogonal to all functions in HK that

vanish on Ω.

Before we go further, we could say that a function f ∈ HK can be localized

to Ω, if it lies in HK(Ω). And, we could define the K-carrier of f ∈ HK as

the smallest domain that f can be localized to, i.e. the closed set Ωf such that100

HK(Ωf ) is the intersection of all HK(Ω) such that f can be localized to Ω. It

is an interesting problem to find the carrier of functions in HK , and we shall

come back to it.

After this detour explaining HK(Ω), we assume that the range of the pro-

jector ΠK is in HK(Ω) and thus orthogonal to ZK(Ω). The standard approach105

to working with Rd-kernels on domains Ω starts with HΩ right away and does

not care for HK = HRd . These spaces are norm-equivalent, but not the same.

They are connected by extension and restriction maps like above.

Lemma 8. If f ∈ HK is not in HK(Ω), the superconvergence argument fails

already in (8), because there is a positive constant δ depending on f, K, and Ω,

but not on ΠK , such that

‖f −ΠKf‖K ≥ δ.

Proof. This is clear because the left-hand side can never be smaller than the

norm of the best approximation to f from the closed subspace HK(Ω).110
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Note that the above argument does not need extended smoothness. But

with extended smoothness, we get

Lemma 9. The sufficient conditions (6) and (7) for superconvergence imply

f ∈ HK(Ω).

Proof. For f ∈ HK satisfying both conditions, and any w ∈ HK we get

(f, w)K = (vf , E
K
0 w)0

= (EΩ
0 E

0
Ωvf , E

K
0 w)0

= (E0
Ωvf , E

0
ΩE

K
0 w)Ω

(11)

and this vanishes for w ∈ ZK(Ω).115

Theorem 10. The conditions (6) and (7) are equivalent to

f ∈ HK(Ω) and f ∈ HK∗K (12)

if HK is dense in H0.

Proof. We only have to prove that the conditions in (12) yield (7). The condi-

tions imply that there must be some fΩ ∈ HΩ such that

(f, w)K = (vf , E
K
0 w)0 = (fΩ, E0

ΩE
K
0 w)Ω (13)

for all w ∈ HK . But then

(vf , E
K
0 w)0 = (EΩ

0 f
Ω, EK0 w)0

and by density we get vf = EΩ
0 f

Ω and fΩ = E0
Ωvf , leading to (7).

The advantage of (12) over (6) and (7) is that the two conditions for smooth-

ness and localization are decoupled, i.e. HK(Ω) does not refer to K ∗K in any

way.120

Two things are left to do: if we only assume smoothness, i.e. f ∈ HK∗K , we

should get superconvergence in the interior of the domain, and the conditions

(12) should contain a hidden boundary condition. The examples 2 and 3 use

differential operators explicitly, while Example 5 has pseudodifferential opera-

tors in the background. Therefore the next section adds details to Example 5,125

building on the abstract results of Sections 2 and 3.
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4. Fourier Transform Spaces

By HK we denote the global Hilbert space on Rd generated by a translation-

invariant Fourier-transformable (strictly) positive definite kernel K with strictly

positive Fourier transform K̂, and the inner product will be denoted by (., .)K .

For elements f, g ∈ HK the inner product in Fourier representation is

(f, g)K =

∫
Rd

f̂(ω)ĝ(ω)

K̂(ω)
dω (14)

where we ignore the correct multipliers for simplicity, even though we later use

Parseval’s identity. Borrowing the logic and the notation from L-splines [19],

we can rewrite this as

(f, g)K =

∫
Rd

f̂(ω)√
K̂(ω)

ĝ(ω)√
K̂(ω)

dω

= (LK(f), LK(g))L2(Rd)

(15)

with the standard isometry LK : HK → H0 := L2(Rd) defined by

LK(f) =

(
f̂√
K̂

)∨
and the somewhat sloppy convolution notation

f = LK(f) ∗ ∗
√
K (16)

involving the convolution-root of K, i.e. the kernel with

(
∗
√
K)∧(ω) =

√
K̂(ω) for all ω ∈ Rd (17)

such that K = ∗
√
K ∗ ∗

√
K. See [9] for the interesting problem whether the

convolution root of compactly supported kernels is compactly supported. This

is true for Wendland kernels [23] generating spaces that are norm-equivalent to130

Sobolev spaces.

In a similar way we define HK∗K and LK∗K to get vf = LK∗Kf by (3). In

case of g = K(x, ·) in (6), we have

f(x) = (f,K(x, ·))K
= (LK∗K(f),K(x, ·))L2(Rd)

= (f, LK∗KK(x, ·))L2(Rd)

(18)
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under certain additional conditions. The second line allows to recover partic-

ular solutions of the equation LK∗Kf = g for sufficiently smooth f , while the

standard use of the third is connected to K(x, ·) being a fundamental solution

to that equation. Both cases arise very frequently in papers that solve partial135

differential equations via kernels, using fundamental or particular solutions. See

e.g. [13] for short survey of both, with many references.

For Theorem 10 we need that HK is dense in H0 = L2(Rd). By a simple

Fourier transform argument, any f ∈ H0 = L2(Rd) that is orthogonal to all

functions in HK must have the property f̂ ·
√
K̂ = 0 almost everywhere, and140

thus f = 0 in L2.

In the Fourier transform situation, the extension of a function f ∈ HK(Ω)

to a global function already contains a hidden boundary condition that does

not explicitly appear in practice. By the argument in (13), for any f ∈ HK(Ω)

there is a function fΩ ∈ HΩ = L2(Ω) such that f = (E0
ΩE

K
0 )∗fΩ, i.e.

(f, v)K = (LKf, LKv)L2(Rd)

= (fΩ, E
0
ΩE

K
0 v)L2(Ω) for all v ∈ HK .

We can split H0 = L2(Rd) for any domain Ω into a direct orthogonal sum of

HΩ and HΩc , the domain Ωc being the closure of the complement of Ω. Then

0 = (E0
ΩLKf − fΩ, E

0
ΩLKv)L2(Ω)

0 = (E0
ΩcLKf,E

0
ΩcLKv)L2(Ωc)

(19)

for all v ∈ HK . If we have additional smoothness in the sense f ∈ HK∗K , then

(f, v)K = (LK∗Kf,E
K
0 v)L2(Rd) = (fΩ, E

0
ΩE

K
0 v)L2(Ω)

implies fΩ = E0
ΩLK∗Kf and 0 = E0

ΩcLK∗Kf . i.e. the equation LK∗Kf = 0

holds in Ωc. This motivates

Definition 11. If f ∈ HK satisfies the second equation of (19) for all v ∈ HK ,

we say that f is a HK-weak solution of LK∗Kf = 0 in Ωc.145

Theorem 12. The functions f ∈ HK(Ω) are HK-weak solutions of LK∗Kf = 0

on Ωc.
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In a somewhat sloppy formulation, the functions f ∈ HK(Ω) are extended

to HK(Rd) by HK-weak solutions of LK∗Kf = 0 outside Ω.

Corollary 13. The functions f ∈ HK∗K ∩ HK(Ω), i.e. those with supercon-150

vergence, are strong solutions of LK∗Kf = v in Rd with a function v ∈ L2(Ω)

extended by zero to Rd.

The carrier of a function f in the sense defined after Lemma 7 then is the

largest subdomain where LK∗Kf = 0 holds.

To squeeze more information out of (19), we need that the operators LK or155

LK∗K are classical pointwise-defined differential operators. Therefore we now

specialize to such a situation.

5. The Sobolev Case

Our main example is Sobolev space Wm
2 (Rd) with the exponentially decaying

Whittle-Matérn kernel

Wm,d(r) = rm−d/2Km−d/2(r), r = ‖x− y‖2, x, y ∈ Rd

written in radial form using the modified Bessel function Km−d/2 of second kind.

We use the notation K for kernels differently elsewhere.160

For the kernel K = Wm,d, the inverse of the mapping LK∗K = LW2m,d
:

W 2m
2 (Rd) → L2(Rd) is the convolution with the kernel K = Wm,d, and thus

LK∗K coincides with the differential operator (Id−∆)m that has the generalized

Fourier transform (1 + ‖ω‖22)m. Now Theorem 12 implies that all f ∈ HK(Ω)

are Wm
2 (Rd)-weak solutions of the partial differential equation (Id−∆)mf = 0165

outside Ω, while Corollary 13 implies that functions f ∈ HK∗K ∩ HK(Ω) are

strong solutions outside Ω. Conversely, the functions f ∈ HK(Ω) are extended

toHK(Rd) by weak solutions of (Id−∆)mf = 0 outside Ω that satisfy boundary

conditions at infinity and on ∂Ω to ensure f ∈ HK . Since the functions inHK(Ω)

and Wm
2 (Ω) are the same, the Wm

2 (Rd)-extension over ∂Ω is always possible and170

poses no restrictions to functions in HK(Ω).
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Example 14. As an illustration, consider HK = W 2
2 (R) with the radial kernel

(1 + r) exp(−r) up to a constant factor. The differential operators are LKf :=

f−f ′′ and LK∗Kf := (f−f ′′)−(f−f ′′)′′, respectively. Functions with LK∗Kf =

0 are linear combinations of ex, xex, e−x, xe−x, and for Ω = [a, b] we see that175

functions f ∈ W 2
2 [a, b] are extended for x ≤ a by linear combinations of ex and

xex only, while for x ≥ b one has to take the basis e−x, xe−x to have the extended

function in HK = W 2
2 (R). This poses no additional constraints for functions

in W 2
2 [a, b], because only C1 continuity is necessary, and the extensions are

unique.180

Similarly, functions f ∈ HK∗K∩HK(Ω) = W 4
2 (R)∩W 2

2 [a, b] are strong solu-

tions of LK∗Kf = 0 outside [a, b] with full W 4
2 (R) continuity over the boundary.

Here, the hidden boundary conditions creep in when one starts with arbitrary

functions from W 4
2 [a, b]. Not all of these have W 4

2 (R)-continuous extensions to

solutions of LK∗Kf = 0 outside [a, b], because we now need C3 smooth tran-

sitions to the span of ex and xex for x ≤ a and to e−x, xe−x for x ≥ b. An

explicit calculation yields the necessary boundary conditions

f(a) = f ′(a) = f ′′(a) = f ′′′(a), f(b) = −f ′(b) = f ′′(b) = −f ′′′(b).

We come back to this example in Section 8.

In general, the exterior problem (Id−∆)mf = 0 outside Ω is always weakly

uniquely solvable for boundary conditions coming from a function f ∈Wm
2 (Ω),

the solution being obtainable by the standard kernel-based extension. This is

no miracle, because K(x, ·) is the fundamental solution of (Id−∆)m = 0 at x in185

the sense of Partial Differential Equations, and superpositions of such functions

with x ∈ Ω will always satisfy (Id−∆)m = 0 outside Ω.

However, strong solutions of (Id−∆)m = 0 outside Ω with W 2m
2 (Rd) regu-

larity will not necessarily exist as extensions of arbitrary functions in W 2m
2 (Ω),

as the above example explicitly shows. This is no objection to the fact that all190

such functions have extensions to Rd with W 2m
2 (Rd) regularity, but not all of

these extensions are in HK(Ω) to provide superconvergence.
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Example 15. In the cubic spline case, interpolants on Ω = [a, b] ⊂ R minimize

the norm of LKf = f ′′ in Ω = [a, b] ⊂ R, leading to (19) and they have

linear extensions outside [a, b]. The additional solutions x2 and x3 of LK∗Kf =195

f (4) = 0 are ruled out at infinity to keep f ′′ globally in L2(R). For additional

smoothness in W 2
2 [a, b] ∩W 4

2 (R), the extension must be C3 over the boundary,

requiring f ′′ = f ′′′ = 0 on a and b.

Example 16. The compactly supported Wendland kernels [23] are reproducing

in Hilbert spaces that are norm-equivalent to Sobolev spaces, but their associated200

pseudodifferential operators LK∗K with symbols K̂−1 are somewhat messy be-

cause their Fourier transforms [7] are. Nevertheless, the kernel translate K(x, ·)

is a fundamental solution of LK∗Kf = 0 at x, and the fundamental solutions

have the nice property of compact support. Further details are left open.

Example 17. For other situations with pointwise meaningful pseudodifferential

operators like in the Gaussian case with

LK∗Kf =

∞∑
n=0

(−∆)nf

n!

up to scaling, the same argument as in the Sobolev case should work, but details205

are left to future work.

6. Interior Superconvergence

We now go for a proof of superconvergence in the interior of the domain, if

only the smoothness assumption holds, not the localization. In cases without

boundaries, like for infinite grids or on tori, superconvergence can be observed210

in general [12]. Otherwise, users have used the term “boundary effect” for the

loss of accuracy near the boundary [8, 25], and investigated the effect to quite

some detail [11]. See also [5] for a nice interpolation result on domains that

admit multiresolution, but without dealing with the boundary effect.

Assume a function f ∈ HK∗K to be given, and split it into a “good” and a

“bad” part, i.e.

f = v ∗K = v1 ∗K + v2 ∗K, v = v1 + v2 ∈ L2(Rd)

15



with v1 supported in Ω and v2 supported outside Ω. We would have supercon-215

vergence if we would work exclusively on the good part f1 = v1 ∗K, by Sections

2 and 3.

We focus on the bad part f2 = v2∗K and want to bound it inside Ω. Assume

that a ball BR(x) of radius R around x is still in Ω. Then we use (18) to get

f2
2 (x) ≤

∫
Rd\Ω v

2
2(y)dy ·

∫
Rd\ΩK(x− y)2dy

≤
∫
Rd\Ω v

2
2(y)dy ·

∫
Rd\BR(x)

K(x− y)2dy

=
∫
Rd\Ω v

2
2(y)dy ·

∫
Rd\BR(0)

K(y)2dy,

the second factor being a decaying function of R that is independent of the size

and placement of Ω. Consequently, for each kernel K there is a radius R such

that the bad part of the split is not visible within machine precision, if points220

have a distance of at least R from the boundary. In a somewhat sloppy form,

we have

Theorem 18. If there is HK∗K smoothness, superconvergence can be always

observed far enough inside the domain. If the kernel decays exponentially to-

wards infinity, this boundary effect decays exponentially with the distance from225

the boundary.

Corollary 19. If there is only HK smoothness, one can work with the convo-

lution square root ∗
√
K instead of K, and still get the convergence rate expected

for working with K, but only far enough in the interior of the domain.

For kernels with fixed compact support, the subdomain with superconver-230

gence is clearly defined. This may have consequences for multiscale methods

that use kernels with shrinking supports. The subdomains with superconver-

gence will grow when the kernel support shrinks.

7. Mercer Extensions

The quest for functions with guaranteed superconvergence has a simple out-

come: there are complete L2(Ω)-orthonormal systems of those, and they arise

16



via Mercer expansions of kernels. We assume a continuous translation-invariant

symmetric (strictly) positive definite Fourier-transformable kernel K on Rd to

be given, with “enough” decay at infinity. It is reproducing in a global native

space HK of functions on all of Rd. On any bounded Lipschitz domain Ω ⊂ Rd

we have a Mercer expansion

K(x− y) =

∞∑
n=0

κnϕn(x)ϕn(y) =: Kκ(x, y)

into orthonormal functions ϕn ∈ L2(Ω) that are orthogonal in the native Hilbert

space H(Ω,Kκ) of Kκ that is defined via expansions

f(x) =

∞∑
n=0

(f, ϕn)L2(Ω)ϕn(x), x, y ∈ Ω (20)

and the inner product

(f, g)Ω,Kκ :=

∞∑
n=0

(f, ϕn)L2(Ω)(g, ϕn)L2(Ω)

κn

such that

(ϕj , ϕk)Ω,Kκ =
δjk
κk

.

It is clear that the functions ϕn and the eigenvalues κn depend on the domain235

Ω chosen, but we do not represent this fact in the notation. Furthermore, the

close connection to Example 4 in Section 2 is apparent.

We have to distinguish between the space H(Ω,Kκ) that is defined via the

expansion of K into Kκ on Ω and the space HK(Ω) of Lemma 7 in Section 4.

Since we now know that extensions and restrictions have to be handled carefully,240

and since the connection between local Mercer expansions and extension maps

to Rd does not seem to be treated in the literature to the required extent, we

have to proceed slowly.

Our first goal is to consider how the functions ϕn can be extended to all of

Rd, and what this means for the kernel. Furthermore, the relation between the245

native spaces HK , H(Ω,Kκ), and HK(Ω) is interesting.

17



Besides the standard reproduction properties in H(Ω,Kκ), a Mercer expan-

sion allows to write the integral operator

(IΩ
Kf)(x) :=

∫
Ω

K(x− y)f(y)dy =: (K ∗Ω f)(x) for all x ∈ Ω (21)

as a multiplier operator

f(x) 7→ (IΩ
Kf)(x) =

∞∑
n=0

κn(f, ϕn)L2(Ω)ϕn(x)

with a partially defined inverse, a “pseudodifferential” multiplier operator

f(x) 7→ (DΩ
Kf)(x) =

∞∑
n=0

(f, ϕn)L2(Ω)

κn
ϕn(x)

defined on all f with
∞∑
n=0

(f, ϕn)2
L2(Ω)

κ2
n

<∞.

For such f , making up the spaceHK∗K , there is a local L2 reproduction equation

f(x) = (DΩ
Kf,K(x, ·))L2(Ω)

that trivially follows from

(IΩ
Kf)(x) = (f,K(x, ·))L2(Ω) = (K ∗Ω f)(x)

and is strongly reminiscent of Taylor’s formula. Note that we have an instance

of (18) here.

The eigenvalue equation

κnϕn(x) =

∫
Ω

K(x− y)ϕn(y)dy for all x ∈ Ω, n ≥ 0 (22)

can serve to extend ϕn to all of Rd. We cannot use the norm-minimal extension

in HK at this point, because so far there is no connection between these spaces.

If we define an eigensystem extension ϕEn by

κnϕ
E
n (x) :=

∫
Ω

K(x− y)ϕn(y)dy for all x ∈ Rd, n ≥ 0

we need the decay assumption∫
Ω

K(x− y)2dy <∞

18



to make the definition feasible pointwise, and if we introduce the characteristic

function χΩ, we can write

κnϕ
E
n = K ∗ (χΩϕn)

to see that ϕEn is well-defined as a function with Fourier transform

κn(ϕEn )∧ = K∧ · (χΩϕn)∧ = K∧ · (χΩϕ
E
n )∧,

and it thus lies in HK∗K and can be embedded into HK . We note in passing

that global eigenvalue equations like the local one in (22) cannot work except250

in L2 with the delta “kernel”, because κnϕ̂n = K̂ · ϕ̂n would necessarily hold.

Anyway, from ϕEn (x) = ϕn(x) on Ω we get that the eigenvalue equation

(22) also holds for ϕEn and then for all x ∈ Rd. Furthermore, the functions

ϕEn satisfy the sufficient conditions for superconvergence, and thus they are in

HK(Ω) ∩HK∗K .255

We now use the notation in (10) again. Hitting the eigenfunction equation

with µX,a yields

κnµX,a(ϕEn ) =

∫
Ω

µxX,aK(x− y)ϕn(y)dy

=

∫
Ω

fX,a(y)ϕn(y)dy

= (E0
ΩfX,a, ϕn)L2(Ω)

= κn(fX,a, ϕ
E
n )K .

Since all parts are continuous on HK , this generalizes to

(E0
Ωf, ϕn)L2(Ω) = κn(f, ϕEn )K for all f ∈ H(K,Rd) (23)

and in particular

δjk = κk(ϕEj , ϕ
E
k )K , j, k ≥ 0

proving that the H(Ω,Kκ)-orthogonality of the ϕn carries over to the same

orthogonality of the ϕEn in HK , though the spaces and norms are defined differ-

ently. Another consequence of (23) combined with Lemma 7 is

Lemma 20. The subspace HK(Ω) is the HK-closure of the span of the ϕEn .
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The extension via the eigensystems generalizes (20) to

fE(x) :=

∞∑
n=0

(f, ϕn)L2(Ω)ϕ
E
n (x) for all x ∈ Rd. (24)

Lemma 21. The extension map f 7→ fE is isometric as a map from H(Ω,Kκ)260

to HK(Ω).

It is now natural to define a kernel

KE(x, y) :=

∞∑
n=0

κnϕ
E
n (x)ϕEn (y)

that coincides with K on Ω× Ω. If we insert it into (23), we get

κn(KE(x, y), ϕEn )K = ((E0
Ω)yKE(x, y), ϕn)L2(Ω)

=

( ∞∑
k=0

κkϕ
E
k (x)ϕk, ϕn

)
L2(Ω)

= κnϕ
E
n (x)

proving that KE is reproducing on the span of the ϕE in the inner product of

HK , i.e. on HK(Ω), and the actions of K and KE on that subspace are the

same.

Theorem 22. The localized spaces HK(Ω) and H(Ω,Kκ) can be identified,265

and the extensions to Rd via eigenfunctions and by norm-minimality coincide.

Working with a Mercer expansion on Ω means working in the space HK(Ω) that

shows superconvergence if HK∗K-smoothness is added.

A similar viewpoint connected to Mercer expansions is that superconvergence

occurs whenever there is a range condition in the sense of Integral Equations,270

i.e. the given function f is in the range of the integral operator (21).

8. Numerical Examples

The reproducing kernel of W 2
2 (R1) is

K2(r) :=
√

π
2 exp(−r)(1 + r),
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and we shall work with K := K2 in HK = W 2
2 (R1), continuing Example 14

from Section 5. We interpolate the function f := K2 ∗χ[−1,+1], which can easily

be calculated explicitly as

f(x) =


e+x−1(x− 3) + e+x+1(1− x) x ≤ −1

e+x−1(x− 3) − e−1−x(x+ 3) + 4 −1 ≤ x ≤ +1

e−x+1(1 + x) − e−1−x(x+ 3) 1 ≤ x


with the correct extension to R by solutions of L4f = (f − f ′′)− (f − f ′′)′′ = 0

on either side, together with the needed decay at infinity.

The convolution domain [−1,+1] is kept fixed, but then we vary the domain275

Ω = [−C,+C] that we work on. Note that reasonable approximations to f will

try to come up with coefficients that are a discretization of the characteristic

function χ[−1,+1], but this is not directly possible for C < 1.

In each domain [−C,+C] chosen, we took equidistant interpolation points,

and for estimating L2 norms, we calculated a root-mean-square error on a suf-280

ficiently fine subset. Working in W 2
2 (R1) with the kernel K2 would usually

give a global L2 interpolation error of order h2 due to standard results, see e.g.

[6, 24, 10], and this is the order arising in the standard sampling inequality

that is doubled by Theorem 6. Thus we expect a convergence rate of h4 in the

superconvergence situation, while the normal rate is h2.285

If we use C = 1.2 and interpolate f2 in H(K,Rd) there. we are in the

superconvergence case, because f2 is a convolution with K of a function sup-

ported in [−1,+1] ⊂ Ω. The observed rates are around 4 in [−1.2,+1.2] and in

the “interior” domain [−0.8,+0.8], see Figure 1. Up to a Gibbs phenomenon,

the coefficients of the interpolant recover χ[−1,+1], and this is also visible when290

looking at the error.

For C = 0.8, we still have enough smoothness for superconvergence, but the

localization condition (7) fails. The standard expected global convergence rate

is 2, but in the “interior” [−0.6,+0.6] we still see superconvergence of order 4

in Figure 2. The global error is attained at the boundary.295

Surprisingly, the global rate is 2.5 instead of 2, and this is confirmed for many
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Figure 1: Superconvergence case in [−1.2,+1.2], rate estimates (left) and error function for

41 points (right)

other cases, even various ones with just W 2
2 (R1) smoothness. This is another

instance of superconvergence, and it needs further work. Experimentally, it can

be observed that the norms ‖f−sf,X,K‖K often go to zero like 1/
√
|X|, possibly

accounting for the extra
√
h contribution to the usual convergence rate 2 that300

is obtained when assuming that the norms are only bounded by ‖f‖K .

The standard error analysis of kernel-based interpolation of functions f ∈

HK(Ω) using a kernel K and a set X of nodes ignores the fact that the Hilbert

space error ‖f − sf,X,K‖K decreases to zero when |X| gets large and finally

“fills” the domain. It seems to be a long-standing problem to turn this obvious305

fact into a convergence rate that is better than the usual one given by sampling

inequalities that just use the upper bound ‖f‖K for that error.

If the same function is interpolated using the Wendland kernel K(x, y) =

(1+3‖x−y‖2)(1−‖x−y‖2)4
+ that generates a space norm-equivalent to W 2

2 (R),

no global superconvergence is observed. This is clear because one cannot ex-310

pect that the implicit boundary conditions for HK∗K smoothness are satisfied.

However, superconvergence in the interior is clearly visible in plots similar to

Figure 2. To construct a case with superconvergence when approximating with
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Figure 2: Convergence in Ω := [−0.8,+0.8] and “interior” [−0.6,+0.6], rate estimates (left)

and error function for 41 points (right)

Wendland kernels, we convolve the above kernel with χ[−3,+3] to get a quintic

nonnegative bell-shaped C2 spline with support in [−4,+4] that is constant in315

[−2,+2] and has breakpoints in x = ±3. For this function there is supercon-

vergence on intervals [−C,+C] for C ≥ 3, as examples like Figure 1 show, but

for C < 3 the sufficient conditions for superconvergence are not satisfied, and

superconvergence will only occur necessarily in the interior, in spite of the fact

that C ≤ 2 means approximation of a constant. In that case, a strong Gibbs320

phenomenon near the boundary occurs, while for large C the error near the

boundary is smaller than in the interior. Figure 3 shows the interpolation error

for C = 2.8 and C = 3.2 for illustration.
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