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1. Introdution. There are plenty of appliation papers in whih kernels or

radial basis funtions are suessfully used for solving partial di�erential equations

by meshless methods. The usage of kernels is typially based on spatial interpolation

at sattered loations, writing the trial funtions �entirely in terms of nodes�[2℄. For

stationary partial di�erential equations, the disretization an take pointwise analyti

derivatives of the trial funtions to end up with a linear system of equations. This

started in [6℄ and was pursued in the following years, inluding a onvergene theory

in [12℄. There are also variations that use weak data, like the Meshless Loal Petrov�

Galerkin method [1℄ with a onvergene theory in [14℄. For the potential equation,

there are speial kernels that allow the use of trial funtions that satisfy the di�erential

equation exatly [13, 5℄.

For time�dependent partial di�erential equations, meshless kernel�based methods

were similarly based on a �xed spatial interpolation, but now the oe�ients are time�

dependent, and one obtains a system of ordinary di�erential equations for these. This

is the well�knownMethod of Lines, and it turned to be experimentally useful in various

ases (see e.g. [16, 7, 4, 15℄). However, a rigid analysis of its behavior seems to be

still missing.

For the simple ase of the heat equation, this paper provides an analysis of the

Method of Lines. To this end, we start with basis on kernels, then desribe the

Method of Lines and analyze it. Though the Method of Lines needs no expliit CFL

ondition, we show how a CFL ondition ats behind ths sene. Some numerial

examples are provided as well, and a short setion showing how to generalize this to

muh more general paraboli equations.

2. Kernel-Based Spae Disretization. A kernel is a symmetri funtion

K : Ω× Ω → R

on some spatial domain Ω ⊂ R
d
. The kernel usually is assumed to be positive de�nite,

i.e. for all seletions of �nite point sets X = {x1, . . . , xn} ⊂ Ω, the n × n kernel

matries A = A(X) with entries K(xj , xk), 1 ≤ j, k ≤ n are symmetri and positive

de�nite. Standard examples are radial basis funtions like the Gaussian

K(x, y) = exp(−‖x− y‖22) for all x, y ∈ R
d

or the ompatly supported Wendland funtion

K(x, y) =

{
(1− ‖x− y‖2)4(1 + 4‖x− y‖2) ‖x− y‖1 ≤ 1

0 ‖x− y‖1 ≥ 1

1
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for all x, y ∈ R
d
with d ≤ 3.

The standard way to use kernels for solving time�dependent partial di�erential

equations is to introdue a �xed spae disretization via �nite spatial point sets X =
{x1, . . . , xn} ⊂ Ω and to generate spatial trial funtions via translates of a kernel K
in the form

s(x) :=

n∑

j=1

αjK(x, xj), x ∈ Ω.(2.1)

Interpolation of a spatial funtion f : Ω → R on the given point set X is done by

solving the system

s(xk) =

n∑

j=1

αjK(xk, xj) = f(xk), 1 ≤ k ≤ n

involving the n × n kernel matrix A with entries K(xj , xk), 1 ≤ j, k ≤ n whih is

positive de�nite for all positive de�nite kernels.

For further use we note that one an onstrut a Lagrange basis u1(x), . . . , un(x)
of the span of the funtions K(·, xj), 1 ≤ j ≤ n via solving the system

u(x) = K(x)A−1
(2.2)

where we use the notation

u(x) := (u1(x), . . . , un(x)), K(x) = (K(x, x1), . . . ,K(x, xn)).

Here and in what follows, indies running over funtions will be olumn indies, while

indies running over points will be row indies. In partiular, it is onvenient to

introdue the olumn-valued evaluation operator de�ned as

E(f) := (f(x1), . . . , f(xn))
T
for all f : Ω → R,

and appliation of this operator to a row of m funtions v1, . . . , vm should generate

the n×m matrix with entries vj(xk) with 1 ≤ j ≤ m for the olumns and 1 ≤ k ≤ n
for the rows. In partiular, the kernel matrix then is A = E(K(x)) and the Lagrange

property simply follows from

E(u(x)) = E(K(x)A−1) = E(K(x))A−1 = AA−1 = In×n.

Using the Lagrange basis, the representation (2.1) of an interpolant to a funtion f
turns into

s(x) =

n∑

j=1

uj(x)f(xj) = u(x)E(f), x ∈ Ω,

whih is �entirely in terms of nodes� as required for meshless methods [2℄.

If L is a linear spatial di�erential operator, and if the kernel K is su�iently

smooth to allow appliation of L, an advantage of kernel�based spatial disretizations

is that

(Ls)(x) =

n∑

j=1

(Luj)(x)f(xj) = Lu(x)E(f), x ∈ Ω,
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is expliitly available and again �entirely in terms of nodes�. The required derivatives

Luj of the Lagrange basis funtions uj ome from (2.2) via solving

(Lu)(x) = (LK)(x)A−1

provided that one an expliitly evaluate the ation of L on K.

3. Method of Lines. With these notations onerning spatial funtions and

their derivatives, we now turn to modeling time�dependent funtions v(x, t) where

the spatial argument x varies in Ω. One an always interpolate values v(xk, t) of

u(x, t) at all times t to get an interpolant

s(x, t) =
n∑

j=1

v(xj , t)uj(x) = u(x)E(u(·, t))(3.1)

in terms of the Lagrange basis. This an be seen as a superposition of a separation

of variables. The ation of a spatial linear operator L then is

(Ls)(x, t) =

n∑

j=1

v(xj , t)(Luj)(x) = (Lu)(x)E(v(·, t)),

again separating the time variation from the spae variation.

A linear evolution equation

ut(x, t) = (Lu)(x, t), x ∈ Ω, t ≥ 0

with a starting funtion g on Ω with

u(x, 0) = g(x) for all x ∈ Ω

an then be modeled by substituting (3.1) and disretizing the spatial variable to the

points x1, . . . , xn. This leads to

st(xk, t) = (Ls)(xk, t) 1 ≤ k ≤ n, t ≥ 0
s(xj , 0) = g(xj), 1 ≤ j ≤ n,

i.e. the whole problem is posed disretely in spae, but ontinuously in time. The

seond part is just interpolation of the initial funtion, while the �rst takes the form

∂

∂t
v(xk, t) =

n∑

j=1

v(xj , t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0

whih is a linear system of ordinary di�erential equations

y′k(t) =

n∑

j=1

yj(t)(Luj)(xk), 1 ≤ k ≤ n, t ≥ 0

for unknowns yk(t) having the meaning yk(t) = v(xk, t) for an approximate solution

v(x, t) of the problem. The initial values are

yj(0) = g(xj), 1 ≤ j ≤ n.
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This is the lassial Method of Lines in the simplest linear ase without additional

boundary onditions. It is easy to generalize to nonlinear problems of the form

ut(x, t) = F (t, u(x, t), (Lu)(x, t)),

leading to a nonlinear system

y′k(t) = F



t,
n∑

j=1

yj(t)uj(xk),
n∑

j=1

yj(t)(Luj)(xk)





of ODEs, and it is also easy to inorporate multiple spatial di�erential operators.

Additional time�dependent boundary onditions of the form

u(z, t) = uB(z, t) for all z ∈ Γ := ∂Ω, t ≥ 0

an also be handled. One disretizes them to

v(xn+i, t) = uB(xn+i, t), 1 ≤ i ≤ m

for a hoie of boundary points xn+1, . . . , xn+m. These are added to the spatial

interpolation problem, avoiding oalesene with the points x1, . . . , xn. The trial

funtions are again spei�ed in the form (3.1), but they split into

s(x, t) =

n∑

j=1

v(xj , t)uj(x) +

m∑

i=1

v(xn+i, t)un+i(x)

=

n∑

j=1

v(xj , t)uj(x) +

m∑

i=1

uB(xn+i, t)un+i(x)

being still entirely in terms of values at the nodes. Sine we form the Lagrange basis

with respet to all points x1, . . . , xn+m, the �rst sum vanishes on the boundary points

xn+1, . . . , xn+m, while the seond attains the orret boundary values there. The

resulting ODE system then is the inhomogeneous system

y′k(t) =

n∑

j=1

yj(t)(Luj)(xk) +

m∑

i=1

uB(xn+i, t)L(un+i)(x)

in the linear ase, for 1 ≤ k ≤ n and all t ≥ 0.
In numerial experiments, this tehnique was reported to work well (see e.g. [16,

7, 4, 15℄), but a thorough mathematial analysis of its behavior is still missing, sine

one has to �ght stability properties [10℄. We shall supply a thorough analysis for a

simple speial ase, the heat equation.

4. Method of Lines for Heat Equation. Consider

ut = uxx

on (x, t) ∈ [0, 1]× [0,∞) under boundary onditions

u(x, 0) = g(x), x ∈ [0, 1],
u(0, t) = g(0) = 0, t ≥ 0,
u(1, t) = g(1) = 0, t ≥ 0
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de�ned by a smooth funtion g on [0, 1] vanishing at both ends. By standard transfor-

mations, any heat equation problem with onstant boundary values an be brought

into this form. More preisely, the uxx part of the heat equation vanishes on a�ne-

linear spatial funtions. Thus one an hange eah problem with onstant boundary

values by subtrating an a�ne-linear funtion into one with zero boundary onditions,

and �nally transform bak by adding the a�ne-linear funtion.

For simpliity, we disretize [0, 1] by

0 = x0 < x1 < . . . < xn+1 = 1(4.1)

using equidistant points xj = jh, 0 ≤ j ≤ n+1 with distane h = 1/(n+1), but any
other disretization (4.1) with �ll distane

h := sup
x∈[0,1]

min
1≤j≤n

|x− xj |

will do.

Let K be a smooth positive de�nite symmetri kernel on R that vanishes in

x0 = 0 and xn+1 = 1, and let u1, . . . , un be the Lagrange basis for interpolation using

translates ofK in the points x1, . . . , xn. Note that u1, . . . , un will automatially satisfy

the zero boundary onditions at x0 and xn+1, beause the kernel vanishes there.

When starting from a kernel K without zero boundary onditions, one an form

the power kernel [8℄ for kernel�based interpolation in 0 and 1 as the new kernel K2

with

K1(x, y) := K(x, y)− K(x, 0)K(y, 0)

K(0, 0)
,

K2(x, y) := K1(x, y)−
K1(x, 1)K1(y, 1)

K1(1, 1)
,

whih will then vanish at 0 and 1 while being still positive de�nite.

Another possibility is to use kernels of the form

K(x, y) =

∞∑

k=1

µk sin(πkx) sin(πky)(4.2)

with suitably deaying positive oe�ients µk. We shall use this onstrution [9℄ in

our examples.

We use interpolatory trial funtions

s(x, t) =

n∑

j=1

s(xj , t)uj(x)

vanishing at x = 0 nd x = 1 and interpolate the starting funtion g by requiring

s(xk, 0) = g(xk), 1 ≤ k ≤ n.

The Method of Lines uses funtions

y(x, t) =

n∑

j=1

yj(t)uj(x)
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with y(xj , t) = yj(t) and poses the linear ODE system

y′k(t) =
n∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

with starting values

yk(0) = s(xk, 0) = g(xk), 1 ≤ k ≤ n.

Introduing the matrix-vetor notation for values at the points x1, . . . , xn as in the

previous setion, we get the linear �rst�order system

y′(t) = U ′′y(t)(4.3)

with the solution

y(t) = exp (U ′′t) y(0).

The solution satis�es

yt(xk, t) = yxx(xk, t), 1 ≤ k ≤ n

by onstrution, sine

yt(xk, t) =

n∑

j=1

y′j(t)uj(xk)

= y′k(t)

=
n∑

j=1

yj(t)u
′′
j (xk), 1 ≤ k ≤ n

= yxx(xk, t), 1 ≤ k ≤ n.

5. Error Analysis. We introdue the interpolant v(x, t) to the true solution

u(x, t) at the points x1, . . . , xn for all t. This is

v(x, t) =
n∑

j=1

u(xj , t)uj(x)

and we use it to insert the true solution into the ODE system for the Method of Lines.

Then

ut(xk, t) = uxx(xk, t)

=
n∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)−

n∑

j=1

u(xj , t)u
′′
j (xk)

=

n∑

j=1

u(xj , t)u
′′
j (xk) + uxx(xk, t)− vxx(xk, t).

Introduing vetors for values at the xk again, we get

u′(t) = U ′′u(t) + (uxx − vxx)(t)
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and

(u− y)′(t) = U ′′(u− y)(t) + (uxx − vxx)(t).

Sine the disrete starting values (u − y)(0) are zero, the standard formula for inho-

mogeneous linear �rst�order systems yields

(u − y)(t) =

∫ t

0

exp(U ′′(t− s))(uxx − vxx)(s)ds.(5.1)

This is an exat formula for the error at the disrete points.

We shall use a smooth positive de�nite translation�invariant kernel K on R of

the form (4.2) with oe�ients satisfying

0 < µk ≤ Ck−2m
for all k ≥ 1(5.2)

for some �xed m > 1/2. It will be reproduing in a �native� Hilbert spae of at least

ontinuous funtions whih is ontained in the Sobolev spae Wm
2 [0, 1] of funtions

with 1�periodi extensions into R. All funtions of this spae vanish on 0 and 1. Then

we an get

‖u(·, t)− v(·, t)‖L∞[0,1] ≤ Chm−1/2‖u(·, t)‖K(5.3)

due to [9, Cor. 3.6, p. 78℄ sine we an also assume by standard results on the heat

equation that the solution is smooth enough to lie in the spatial native spae of the

kernel for all times. Similarly,

‖uxx(·, t)− vxx(·, t)‖L2[0,1] ≤ Chm−2‖u(·, t)‖K(5.4)

if we use sampling inequalities [18℄,[11, Thm. 1℄. The orresponding result for L∞

errors of derivatives in 1D is

‖uxx(·, t)− vxx(·, t)‖L∞[0,1] ≤ Chm−2−1/2‖u(·, t)‖K .(5.5)

All of this follows from standard literature on kernel�based methods, see e.g. [17℄ for

the bakground of the ited papers.

6. Bounding the Exponential. The remaining problem now is to bound the

matrix exponential

exp(U ′′t)c =

∞∑

n=0

tn

n!
(U ′′)nc

somehow, e.g. via

‖ exp(U ′′t)c‖2 ≤
∞∑

n=0

tn

n!
ρ(U ′′)n‖c‖2

where ρ is the spetral radius. A speial way to deal with the matrix exponential

in a better way than above is to use that the matrix U ′′
will be negative de�nite.

In fat, if A is the standard kernel matrix for the given points, and A′′
is the same,

but with seond derivatives of a kernel of the form (4.2), we an use that −A′′
will

be positive de�nite, beause the kernel expansion oe�ients µk are going over to
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k2µk and thus stay positive. But U ′′
is A−1A′′

, thus negative de�nite. Therefore

the matrix exponential deays for inreasing time, and an be bounded by a onstant

when looking at the integral (5.1). By Cauhy�Shwarz applied to (5.1), we have

‖u(t)− y(t)‖2 ≤
∫ t

0

‖exp(U ′′(xj − s))(uxx − vxx)(s)‖2 ds

≤ C
√
t

(∫ t

0

‖uxx(s)− vxx(s)‖22ds
)1/2

and with (5.4) this yields

|u(xj , t)− y(xj , t)| ≤ C
√
thm−2

(∫ t

0

|u(·, s)‖2Kds

)1/2

the �nal error bound on data then is

|u(xj , t)− y(xj , t)| ≤
√
tChm−2

(∫ t

0

‖u(·, s)‖2Kds

)1/2

.(6.1)

Theorem 6.1. If the Method of Lines is arried out using a kernel of order m
in the sense of (5.2), the error on the disretization points and up to all �xed times

will be given by (6.1).✷

Sine the true solution is C∞
and vanishes for inreasing t due to its standard

series representation based on separation of variables, we know that the seond fator

in (6.1) is uniformly bounded.

The error outside the data an be bounded by a�posteriori analysis, using the

Lagrange basis again. Writing

y(x, t) =

n∑

j=1

uj(x)y(xj , t)

and making use of the fat [3℄ that the Lagrange basis funtions are uniformly bounded

if the distribution of spatial data points is not too irregular, we have

|v(x, t)− y(x, t)| =

∣
∣
∣
∣
∣
∣

n∑

j=1

uj(x)(v(xj , t)− y(xj , t))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

n∑

j=1

uj(x)(u(xj , t)− y(xj , t))

∣
∣
∣
∣
∣
∣

≤ Cn
√
thm−2

≤ C
√
thm−3

(6.2)

for the global error between the interpolant v to the true solution and the solution y
via the Method of Lines. The error between the true solution u and its interpolant v
has the better bound (5.3). This implies

Theorem 6.2. If the Method of Lines is arried out using a kernel of order m
in the sense of (5.2), the error on the disretization points and up to all �xed times

will be of order O(
√
thm−3).✷

Note that there is no CFL ondition here, sine there is no time step. At this

point, it is assumed that the ODE system indued by the Method of Lines is solved
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exatly, and propagation of roundo� is ignored. Any ODE solver has to ope with

the linear system (4.3) somehow, and sine we shall see in the next setion that U ′′

has negative eigenvalues of absolute value O(h−2), the ODE system will be hard to

integrate with good quality if h is small. All instability issues are shifted bak to the

ODE system when using the Method of Lines, but there is a CFL ondition behind

the sene, as we shall see in the next setion.

7. Time Stepping Tehniques. Using the above spatial disretization, and

using the notation w(x, t) for our approximate solution, a variation of a forward Euler

time�stepping method would then be

w(xk , t+∆t)− w(xk, t)

∆t
= wxx(xk, t) =

n∑

j=1

w(xj , t)u
′′
j (xk).

It still has a time disretization, but the spae disretization is hidden in the exat

di�erentiation of the spatial interpolant. In our vetor notation, it is

E(w(·, t +∆t)) = (I + U ′′∆t)E(w(·, t)).

Its stability an thus be analyzed via linear algebra, and the algorithm is the same as

a forward Euler step for the linear ODE system

w′(t) = U ′′w(t)

we enountered before. We shall have to analyze the spetrum of U ′′
for asserting

stability, and this will follow below.

By standard approximation results like (5.5) for kernel�based methods, we get

Theorem 7.1. For kernels with orders m > 5/2, the forward Euler method (and

others disretizing the spatial seond derivative in the same way) will be onsistent of

order m− 5/2.
Note that for stable methods the onsisteny order will be the onvergene order.

To hek stability and to get a CFL ondition, we need

Theorem 7.2. The spetral radius of U ′′
satis�es

ρ(U ′′) ≤ Ch−2

if spatial disretization is done with m > 5/2.
Proof: If λ is an eigenvalue of U ′′

with eigenvetor c, then

U ′′c = λc,
n∑

j=1

u′′
j (xk)cj = λck, 1 ≤ k ≤ n,

and the funtion

sλ(x) :=
n∑

j=1

cjuj(x)

satis�es

s′′λ(xk) = λsλ(xk), 1 ≤ k ≤ n
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and vanishes on both x0 = 0 and xn+1 = 1. We invoke the �sampling� inequality

‖s′′‖∞,[0,1] ≤ C
(

hm−5/2‖s‖m + h−2‖s‖∞,X

)

for all s ∈ Wm
2 [0, 1]

from [18℄ for m > 5/2 and normalize s to satisfy ‖s‖m = 1. Then

|λ||sλ(xk)| ≤ ‖s′′‖∞,[0,1]

≤ Ch−2‖s‖∞,X .

Piking k with |sλ(xk)| = ‖s‖∞,X yields the assertion.✷

Thus, for Euler time�stepping in the ODE system (4.3), a spetral radius of order

h−2
means that there must be a CFL ondition of the form

∆t ≤ C(∆x)2

as is to be expeted.

8. Example. Figure 8.1 shows the approximate solution and absolute error for

the following paraboli equation

ut(x, t) = uxx(x, t), x ∈ (0, 1), 0 ≤ t ≤ 0.2,
u(x, 0) = 2min(x, 1− x), x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 0.2,

with the exat solution

u(x, t) =
∞∑

k=1

8(−1)k+1

(2k − 1)2π2
sin((2k − 1)πx) exp−(2k − 1)2π2t .

Using the Method of Lines for 150 equidistant spatial points, using the kernel in (4.2).

9. General Paraboli Equations. We onsider the problem

ut(x, t) = ∇ · (a(x, t)∇u(x, t)) + f(x, t) + c(x, t)u(x, t) x ∈ Ω ⊂ R
d, 0 ≤ t ≤ T,

u(x, 0) = g(x), x ∈ Ω,
u(y, t) = uB(y, t), y ∈ Γ := ∂Ω, 0 ≤ t ≤ T.

A meshless disretization in terms of values at nodes an be arried out using u(xj , t)
for xj ∈ Ω \ Γ, 1 ≤ j ≤ N . Known values are

u(yk, t) = uB(yk, t), yK ∈ Γ, 1 ≤ k ≤ K.

We assemble all points into

Z = {x1, . . . , xN , y1, . . . , yk} = {z1, . . . , zN+K}
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Fig. 8.1. Approximation and absolute error

and represent meshless trial funtions in Lagrange form by the Lagrange basis {vj}N+K
j=1

as

v(x) =

N+K∑

j=1

v(zj)vj(x)

vj(zi) = δji, 1 ≤ j, i ≤ N +K

v(x, t) =

N+K∑

j=1

v(zj , t)vj(x)

∇v(x, t) =

N+K∑

j=1

v(zj , t)∇vj(x)

a(x, t)∇v(x, t) =

N+K∑

j=1

v(zj , t)a(x, t)∇vj(x)

∇ · (a(x, t)∇v(x, t)) =

N+K∑

j=1

v(zj , t)∇ · (a(x, t)∇vj(x))
︸ ︷︷ ︸

=:wj(x,t)

=

N+K∑

j=1

v(zj , t)wj(x, t).
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We now state the PDE on the trial funtions:

vt(x, t) = ∇ · (a(x, t)∇v(x, t))
+c(x, t)v(x, t) + f(x, t)

N+K∑

j=1

vt(zj , t)vj(x) =

N+K∑

j=1

v(zj , t)wj(x, t)

+c(x, t)
N+K∑

j=1

v(zj , t)vj(x) + f(x, t)

and olloate on points zi, 1 ≤ i ≤ N +K to get

N+K∑

j=1

vt(zj , t)vj(zi) =

N+K∑

j=1

v(zj , t)wj(zi, t)

+c(zi, t)
N+K∑

j=1

v(zj , t)vj(zi) + f(zi, t)

vt(zi, t) =

N+K∑

j=1

v(zj , t)wj(zi, t)

+c(zi, t)v(zi, t) + f(zi, t).

Due to the known boundary values v(zj , t) = uB(zj , t) with j = N +1, · · · , N +K, in

terms of vetors v(t) := (v(z1, t), . . . , v(zN ))T , vB(t) := (v(zN+1, t), . . . , v(zN+K))T ,
and f(t) := (f(z1, t), . . . , f(zN+K))T , we get the system

v
′(t) = A(t)v(t) +B(t)vB(t) + f(t)

with the matrix A(t) having the entries

wj(zi, t) + c(zi, t)δij , 1 ≤ i, j ≤ N,

and the matrix B(t) having the entries

wj(zi, t), N ≤ i, j ≤ N +K.

This an be solved via the method of Lines, the initial values provided by interpolation

of g.
A further generalization to nonlinear problems is

ut(x, t) = F (t, x, u)

whih similarly leads to

vt(zi, t) = F



t, zi,

N+K∑

j=1

v(zj , t)vj(x)





or

v
′(t) = G(t,v(t))

with suitable nonlinear mappings F and G.
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10. Example for a General Paraboli Equation. We onsider the one di-

mensional paraboli equation

ut(x, t) = xuxx(x, t) + (π2x+ 1)et sinπx, x ∈ (0, 1), 0 ≤ t ≤ 0.8,
u(x, 0) = sinπx, x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 0.8,

with the exat solution

u(x, t) = et sinπx .

Utilizing the Method of Lines for 100 equidistant spatial points, using the kernel in

(4.2), we plot the absolute error between the exat solution and approximation in

Figure 10.1.
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Fig. 10.1. Absolute error.
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