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Abstract

The Equal Width equation governs nonlinear wave phenomena like

waves in shallow water. Here, it is solved numerically by the Method

of Lines using a somewhat unusual setup. There is no linearization of

the nonlinear terms, no error in handling the starting approximation,

and there are boundary conditions only at infinity. To achieve a space

discretization of high accuracy with only few trial functions, mesh-

less translates of radial kernels are used. In the numerical examples,

the motion of solitary waves, the interaction of two and three solitary

waves, the generation of wave undulation, the Maxwell initial condi-

tion, and the clash of two colliding solitary waves are simulated. Our

numerical results compare favourably with results of earlier papers

using other techniques.

1 The Equal Width Equation

Nonlinear dispersive waves are of significant importance in physical phenom-
ena such as shallow water waves. The equal width (EW) equation, which was
introduced by Morrison et al. [2], is an important special kind of a nonlinear
dispersive wave equation. It is defined as

ut + uux − µuxxt = 0 (1)
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for a smooth function u = u(x, t) on a domain Ω× [0, T ] with Ω ⊆ R. Except
for a single travelling solitary wave solution, no analytic solutions are known,
and therefore numerical methods have to be used. Obviously, there also is
no nontrivial stationary solution.

In various theoretical papers for the case Ω = R, boundary conditions
u(±∞) = 0 are posed at infinity, which makes a lot of sense because the
differential equation is similar to a nonlinear transport equation showing
travelling wave phenomena. In fact, the equation has solutions of the form

u(x, t) = 3 c sech2((x− x0 − ct)/
√

4µ) (2)

travelling at constant speed c and vanishing at ±∞. Note that the speed is a
third of the amplitude, but arbitrary otherwise. Solitary waves with negative
amplitudes travel backwards.

2 Boundary Conditions

The most popular examples consider a localized starting function u0(x) =
u(x, 0) consisting of one or more solitary peaks. In numerical calculations,
this is usually handled by replacing Ω = R with Ω = [a, b] with zero boundary
conditions at both ends. This often leads to the problem that the starting
function does not satisfy the boundary conditions exactly. In order to avoid
unphysical complications, calculations are usually stopped before the waves
reach b, and then the zero boundary condition at b is redundant anyway and
should not enter into the numerical technique.

A standard example with nonzero boundary conditions is the “undular
bore” case [7] showing the development of an increasing wave starting from
a nonzero constant boundary value ua at a. However, in such cases there
is an additional compatibility condition that must be observed. In fact, the
differential equation then necessarily requires ux(a, t) = 0 for all t, and this
condition has to be observed when discretizing the equation. Consequently,
the starting function u0 should satisfy u′

0
(a) = 0 at least approximatively,

if u(a, t) = ua(t) is prescribed as a nonzero constant function. The same
argument applies for constant nonzero boundary values at b if calculations
are restricted to a finite interval [a, b].

In general, for Ω = [a, b] being a finite interval, one can pose boundary
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conditions
u(a, t) = ua(t), t ∈ [0, T ]
u(b, t) = ub(t), t ∈ [0, T ]
u(x, 0) = u0(x), x ∈ [a, b]

satisfying compatibility conditions

ua(0) = u0(a), ub(0) = u0(b).

But since the solutions will in all known cases be waves travelling for increas-
ing x, posing boundary conditions at x = b is questionable unless b = ∞.
Since the undular bore case and all other cases treated in the literature be-
have like a train of travelling waves, one should take Ω = [a,∞).

For the undular bore, one should pose the initial condition u(a, t) =
ua 6= 0 together with u′

0
(a) = 0 and no condition at infinity or at any other

spatial point. Most numerical papers do not seem to handle this correctly
and explicitly. They assume a large b, require an explicit boundary condition
u(b, t) = 0 entering into the method and restrict the time interval in such a
way that the developing wave does not reach b. Again, this makes conditions
at b artificial.

This paper will work with boundary conditions at infinity throughout.
We only assume a starting function u0 for u(x, 0) = u0(x), x ∈ R which
implies the boundary conditions at infinity.

3 Method of Lines

We aim at the Method of Lines (MOL), which leads to a system of ordinary
differential equations, and this implies that there will no time discretization
at all, and there will be no artificial linearization of the differential equation
as in various other papers. The problem of correct time–stepping will be
automatically solved by the ODE solver we invoke.

The discretization of the spatial domain will often depend on how the
boundary conditions are posed. Here, we take a somewhat unusual approach
that has no errors at startup and does not impose finite boundary conditions.

We avoid errors at startup by including the starting function u0 into the
set of trial functions on the spatial domain. Calculations will be confined to
a spatial interval [a, b], and they will always start with the restriction of u0

to [a, b]. We discretize [a, b] as

a = x1 < . . . < xN = b (3)
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and, in addition to u0, we use a set of smooth spatial functions

uj : R → R, 1 ≤ j ≤ n

vanishing at infinity. This can be done by picking the functions uj from
a suitable space of trial functions, e.g. B–splines or translates of positive
definite radial basis functions like the Gaussian or Wendland functions.

In general, the Method of Lines uses time–dependent coefficients for a lin-
ear combination of spatial trial functions. Here, we approximate the solution
u by a linear combination

v(x, t) = u0(x) +
n
∑

j=1

αj(t)uj(x)

with smooth functions αj on [0, T ], 1 ≤ j ≤ n. Then

vx(x, t) = u′
0
(x) +

n
∑

j=1

αj(t)u
′
j(x)

vt(x, t) =
n
∑

j=1

α′
j(t)uj(x)

vxxt(x, t) =

n
∑

j=1

α′
j(t)u

′′
j (x).

At time t = 0 we impose the conditions αj(0) = 0, 1 ≤ j ≤ n to satisfy the
initial condition v(x, 0) = u0(x) on all of [a, b] without introducing any errors
at startup.

We put our trial functions into the differential equation

0 = vt + vvx − µvxxt

=
n
∑

j=1

α′
j(t)uj(x)

+

(

u0(x) +

n
∑

j=1

αj(t)uj(x)

)(

u′
0
(x) +

n
∑

j=1

αj(t)u
′
j(x)

)

−µ
n
∑

j=1

α′
j(t)u

′′
j (x).
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Evaluating this at points xk and sorting the derivatives of the αj to the left,
we get

n
∑

j=1

α′
j(t)(µu

′′
j (xk)− uj(xk))

=

(

u0(x) +

n
∑

j=1

αj(t)uj(xk)

)(

u′
0
(x) +

n
∑

j=1

αj(t)u
′
j(xk)

) (4)

for 1 ≤ k ≤ N . This is an implicit system of first–order ordinary differential
equations.

4 Implementation

If we introduce suitable column vectors and matrices into the system (4), we
have to satisfy

(µU ′′ − U) ∗ α′(t) = (u0 + U ∗ α(t)). ∗ (u′
0
+ U ′ ∗ α(t)) (5)

in MATLAB notation for the pointwise product .∗ between two matrices or
vectors of the same shape. The necessary matrices and vectors are

α(t) := (α1(t), . . . , αn(t)) ∈ R
n

uT
0

:= (u0(x1), . . . , u0(xN )) ∈ R
n

(u′
0
)T := (u′

0
(x1), . . . , u

′
0
(xN )) ∈ R

n

U := (uj(xk))1≤k≤N, 1≤j≤n
∈ R

N×n

U ′ :=
(

u′
j(xk)

)

1≤k≤N, 1≤j≤n
∈ R

N×n

U ′′ :=
(

u′′
j (xk)

)

1≤k≤N, 1≤j≤n
∈ R

N×n

where j is the column index and k is the row index. The system (5) of linear
equations for α′(t) will have N equations and n unknowns. It is allowed to
take N larger than n, and then the system should be solved in a least-squares
sense. The matrix

B := µU ′′ − U (6)

of the left–hand side is time–independent. Via a QR factorization or a
singular-value decomposition of B which is calculated once and for all, one
can get a pseudo-inverse B† of B, and the system (5) can at each time be
solved approximately via

α′(t) = B† ∗ ((u0 + U ∗ α(t)). ∗ (u′
0
+ U ′ ∗ α(t))) .
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This is the ODE system generated by our version of the Method of Lines,
and one can invoke any ODE integrator to solve it. In case N = n and
invertibility of B, the approximate solution v(x, t) will satisfy the differential
equation at all points x1, . . . , xn and all times, the latter within the accuracy
limit of the ODE integrator.. The starting vector will be

α(0) := (0, . . . , 0) ∈ R
n.

Note that the nonlinearity of the PDE is preserved, and a good ODE solver
will automatically use a reasonable time–stepping and detect stiffness of the
ODE system. At each invocation of the right–hand side, there are 3 matrix–
vector products to be calculated, leading to a computational complexity of
O(N × n) for each evaluation. But if compactly supported trial functions
are used, the matrices U and U ′ will be sparse, reducing the computational
complexity.

5 Meshless Space Discretization

It is still open how the additional trial functions u1, . . . , un should be chosen.
In principle, any choice of twice differentiable functions vanishing at infinity
could be considered. The functions should be able to model how the solution
develops over time out of the starting function u0, and in order to make the
matrices U, U ′, U ′′ sparse they should be compactly supported or quickly
decaying towards infinity.

Since they have good approximation properties, we use translates

uj(x) := φ(|x− yj|), 1 ≤ j ≤ n

of radial basis functions φ : [0,∞) → R centered at n points y1, . . . , yn with

a ≤ y1 < y2 < . . . < yn ≤ b. (7)

These functions can be evaluated easily and need no regular distribution of
the discretization points yj. In view of getting a square matrix B in (6) one
can choose N = n and take the points yj to be equal to the xj of (3) as long
as B has a reasonable inverse. So far, we did not run into problems with
taking N = n, but there might be cases where one should take more test
points xj than trial points yk, i.e. taking N larger than n. This will have a
stabilizing effect.
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There are a lot of radial basis functions in the literature, and we ran
the Method of Lines with a variety of them, including the Gaussian, inverse
Multiquadrics, Wendland’s functions [5] and the Whittle–Matèrn kernel gen-
erating Sobolev spaces. The results were not much different, but, as usual
with kernels, the scaling needed some careful consideration in each example.
According to the guidelines of [15], small scales lead to good condition and
large errors, while large scales imply bad condition and small errors, a good
compromise being achievable by picking a scaling with quite a large, but still
feasible condition of the basic matrices. In order to determine the optimal
scaling, we perform a condition number estimation of the kernel matrix with
entries uj(yk), 1 ≤ j, k ≤ n before we actually start to set up the algo-
rithm. It is an important unsolved problem to find a method to determine
the optimal value of the scale.

6 Numerical Examples

In this section, numerical solutions of the Equal Width equation will be
presented by using the method described above. In order to confirm the
accuracy and efficiency of the Method of Lines with its special treatment
of initial values and boundary conditions, a number of test problems was
chosen.

In all examples, we fixed a spatial evaluation interval [a, b] without pos-
ing boundary conditions at the endpoints, and used a trial discretization
(3) with n = 200 points and a test discretization (7) with N = 500 points.
Experiments showed that one can get good results already with less test
points, but we wanted to maintain a good graphical accuracy without hav-
ing to use additional interpolation techniques for generating intermediate
values of the solution. Since the choice of the interval [a, b] fixes the domain
where calculations can be expected to be reasonable, one must make sure
that time–dependent calculations are stopped whenever the wave phenom-
ena run outside of [a, b]. If this should happen, users should simply enlarge
the calculation interval.

All tests were carried out as instant MATLAB movies, in order to study
the dynamic behavior of the wave phenomena. Programs can be obtained
from the authors on request. The effect of choosing different radial basis
functions was not serious. In many cases, there are time invariants (see
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[8, 9, 10, 11, 12])

C1 :=

∫ b

a

u(x, t)dx, C2 :=

∫ b

a

(u2(x, t) + µu2

x(x, t))dx, C3 :=

∫ b

a

u3(x, t)dx

(8)
and by sufficiently fine spatial resolution it is no problem to maintain these
invariants to reasonable accuracy. Wherever possible, we support this state-
ment by providing numerical rsults.

6.1 Single Solitary Wave
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Figure 1: Movement of single soliton for c = 0.1 and c = 0.03

C1 C2 C3

analytic, c=0.1 1.20000000 0.028800000 0.0005760000
numeric, c=0.1 1.19999799 0.028800005 0.0005760001
analytic, c=0.03 0.36000000 0.025920000 0.001555000
numeric, c=0.03 0.36000134 0.025912000 0.001555200

Table 1: Invariants for single soliton

The Equal Width equation (1) has the solitary wave solution (2) with
boundary conditions U → 0 as x → ±∞. We worked on [a, b] = [0, 30]
and [0, T ] = [0, 80] using the starting function u0(x) of the form (2) with
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parameters µ = 1, x0 = 10 , c = 0.03 and c = 0.1. The results are in
Figure 1 using the Gaussian kernel, and agree with [8, 9, 10, 11, 12] using
a linearization of the differential equation, a time–stepping technique, and
finite boundary conditions. Table 1 gives the theoretical [7] and numerical
values of the invariants (8) . Using other kernels lead to similar results.

It should be noted that the soliton itself is a positive definite kernel. Thus
its translates could be used in the Method of Lines, but we leave this to future
research.

6.2 Two Solitary Waves

As a second test problem for the Equal Width equation, we chose the inter-
action of two solitary waves, as in the cited literature. The initial function
is

u0 = U1 + U2

Uj = 3cjsech
2(kj(x− x̃j − cj)), , j = 1, 2

(9)

with µ = 1, k1 = 0.5, k2 = 0.5, x̃1 = 10, x̃2 = 25, c1 = 1.5 and c2 = 0.75.
Calculation was done on [a, b] = [−10, 70] and [0, T ] = [0, 30] using the
Gaussian kernel, and with the result of Figure 2. The higher wave travels
faster, passes the smaller one, and proceeds, without change of shape of both.
Table 2 provides the invariants.
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Figure 2: Movement of two solitons
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C1 C2 C3

analytic 27.000000 81.000000 218.700000
numeric 27.000046 81.000247 218.702058

Table 2: Invariants for two solitons

6.3 Three Solitary Waves

Now we take

u0(x) =
3
∑

i=1

3cisech
2(ki(x− x̃i − cj)) (10)

where ki = 0.5, c1 = 4.5, x̃1 = 10, c2 = 1.5, x̃2 = 25, c3 = 0.5, x̃3 = 35. The
result on [a, b] = [−10, 100] and for T = 15 is in Figure 3. Again, the larger
waves pass the smaller ones and leave them travelling along, unchanged in
form, at their lower speed. The invariants are in Table 3.
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Figure 3: Movement of three solitons

6.4 The Undular Bore

Finally, the development of an undular bore is studied by using the following
initial function

u0(x) = 0.05
(

1− tanh
(x

2

))

(11)
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C1 C2 C3

analytic 78.000000 655.2000000 5450.400000
numeric 78.000019 655.2080531 5450.216822

Table 3: Invariants for three solitons

on [a, b] = [−20, 50] up to time T = 800. This example is comparable to
[7, 8, 9, 10, 11] and gives Figure 4. The stimulated waves move to the right,
while their starting point moves slowly to the left. The expressions in (8) are
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Figure 4: Undular bore

not constant over time now. Instead, their time-derivative is constant, and
this behavior could be verified numerically to good accuracy.

6.5 The Maxwell Wave

Another standard case is to look at what happens if the starting function is
a Gaussian

u0(x) = 0.05 exp(−(x− 20)2/25).

The analytic result is not known, and the numerical result on [a, b] = [0, 50]
and T = 500 is in Figure 5. The single starting wave leads to a train of waves
of smaller and smaller amplitudes and speeds.
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Figure 5: Wave from Gaussian

6.6 The Clash

We now let two solitary waves of exactly the same form but different signs
move towards each other. When they meet, they form a singularity which
emits trains of smaller waves to both sides, while the singularity gradually
vanishes over time, see Figure 6. Due to the singularity in the clash, this
example is much harder to calculate, and therefore we used N = n = 1001.
We encourage readers to try other methods on this case.
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Figure 6: The Clash

12



7 Conclusion

In this study, the meshless kernel based Method of Lines has been used
to obtain numerical solutions of the Equal Width equation without artifi-
cial linearization and artificial boundary conditions. The results compare
favourably with the available literature, are easy to program and run fast
enough to allow a thorough study of the dynamic behavior of the solutions.

8 Acknowledgement

Yılmaz Dereli’s research is supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK).
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