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Abstract: Within the standard framework of quasi-steady flight, this paper derives
a speed that realizes the minimal fuel consumption per nautical mile. If this speed
is chosen at each instant of a flight plan h(x) giving altitude h as a function of
distance x, a variational problem for finding an optimal h(x) can be formulated and
solved. It yields optimal fuel-to-distance flight plans, and these turn out to consist
of mainly three phases using the optimal speed: starting with a climb at maximal
continuous admissible thrust, ending with a continuous descent at idle thrust, and
in between with a transition based on a solution of the Euler-Lagrange equation
for the variational problem. This will use less fuel in total than the competing
optimal lift-to-drag or green dot or optimal fuel-to time speed assignment and the
flight will arrive earlier at the destination, due to higher ground speed. A similar
variational problem is derived and solved for speed-restricted flights, e.g. below
10000 ft. Various numerical examples based on a Standard Business Jet are added
for illustration. There, the fuel savings range between 14% in cruise and 50% in
climb when compared to green dot speed proposed by Airbus.

1 Introduction

The problem of calculating flight trajectories that minimize fuel consumption has
a long history, see e.g. the references in [2, 12, 15]. Various mathematical tech-
niques were applied, ranging from parametrizations of trajectories [2, 15] via cer-
tain forms of Optimal Control Theory [3, 5, 10] to Multiobjective Optimization
using various cost functionals [9, 6, 13].

This paper takes a quite simple approach based on the equations of quasi-steady
flight, staying close to basic classroom texts [7, 11] and focusing on standard nu-
merical methods that just solve systems of ordinary differential equations. There
is no constraint on fixed altitude, but wind effects and fixed arrival times are ig-
nored [4, 3], and the only objective is fuel savings over the full flight distance.
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Of course, this can only be done by additional ingredients that allow to determine
the variables that usually require control, e.g. thrust T , flight path angle γ , speed
V , or lift L, whichever are chosen. We give a summary of the mathematical argu-
ment now, focusing on its practical consequences, delaying technical machinery
to the core of the paper.

Starting with quasi-steady flight in Section 2, the standard differential equations
for V and γ turn into algebraic equations, and we use one for determining lift in
terms of the other variables, and the other for an equation connecting the thrust-
to-weight ratio T/W to γ , V , and altitude h in a specific way, given the drag
polar. The next step in Section 3 is to rewrite the quasi-steady flight equations for
h, T, W and distance x in terms of x instead of time, and to minimize the total
fuel consumption over the full flight distance, i.e. the x-integral over −dW/dx.
Inserting the equation for T/W based on quasi-steady flight, the integrand can be
minimized as a function of speed at each instance of the flight. For horizontal
flight, the resulting fuel-to-distance-optimal speed VFtX turns out to be 4

√
3VLtD ≈

1.32VLtD compared to the lift-to-drag-optimal speed VLtD called green dot speed
by Airbus, “the recommended speed with the best climb performance, and the

minimum fuel consumption” [1, p. 943, 1240, 1276]. The latter uses about 14%
more fuel than the VFtX speed in level flight, but savings by VFtX speed turn out
later to be even larger in climb.

If VFtX speed is used on a flight plan given as a function h(x), this speed assign-
ment, if it does not violate thrust or speed constraints, is fuel-to-distance optimal
under all other choices of speed. But Section 4 goes one step further and varies the
flight plans that allow VFtX speed to calculate an optimal flight plan. Using VFtX

speed, the equation for quasi-steady flight now connects T/W with h and h′= tanγ

only, because VFtX speed now is a function of the other variables. Inserting this
into the differential equation for W (x) allows a transition to a differential equation
for

√

W (x) that does not contain W on the right-hand side anymore. Therefore, a
minimum of

√

W (xstart)−
√

W (xend) can be written as an integral containing h

and h′ only. This is a standard case of the Calculus of Variations, allowing to cal-
culate fuel-over-distance-optimal flight trajectories by solving the second-order
Euler-Lagrange differential equation for that variational problem.

However, the solutions are implicitly constrained, mainly by the available thrust.
By Calculus of Variations, solutions of restricted problems have to follow the con-
straints they tend to violate, and therefore Section 4 shows that optimal trajectories
have three phases (see Figures 1 3, and 4):

• they start with a climb at maximal admissible continuous thrust at VFtX

speed,
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• they end with Continuous Descent using idle thrust and VFtX speed, but

• in between there is a short transition trajectory satisfying the Euler-Lagrange
equation, flown at VFtX speed as well. In this section, thrust is reduced con-
tinuously from full to idle in a specific way.

Section 5 explains how to calculate the restricted parts of the optimal trajectories,
and it also considers horizontal flight under VFtX speed, if required by Air Traffic
Control (ATC).

So far, this suffices to treat fuel-optimal flight at altitudes above 10000 ft, but Sec-
tion 6 also treats the standard restriction to 250 knots indicated airspeed (KIAS)
below 10000 ft. The previous logic is not applicable, because a minimization
over speed is not admitted anymore. Instead, the choice of the flight path angle
is optimized now, and a second variational problem is derived to handle the speed
restriction as a second constrained variational problem. A flight that climbs to hor-
izontal flight at a prescribed altitude with 250 KIAS and fuel-to-distance-optimal
angle adjustment will have two phases (see Figure 6):

• a climb at maximal admissible continuous thrust, and

• a short transition trajectory satisfying the Euler-Lagrange equation of the
speed-restricted second variational problem. This section reduces thrust
continuously from full to the amount necessary for VFtX speed for level
flight at the target altitude.

However, this is not fully satisfactory, because the VFtX speed required to start the
optimal trajectories in both cases is comparably high. This calls for two additional
acceleration phases:

• one at acceleration altitude after reaching clean configuration to start the
aforementioned fuel-optimal climb at 250 KIAS, and

• one at 10000 ft to link the two fuel optimal VFtX trajectories outlined above.

Section 7 shows how to deal with this mathematically, and Section 8 provides
examples showing that the additional accelerations for VFtX pay off against the
VLtD speed assignment. The latter uses less fuel per hour, but VFtX needs less fuel
per nautical mile and arrives earlier at the target altitude and speed, see Figure 10.
The fuel savings in climb can reach 50%, mainly because the VFtX climb uses a
smaller climb angle and a higher speed.

Since all of this ignores restrictions by Air Traffic Control, Section 9 deals with
flight level changes between level flight sections at VFtX speed. All trajectory
patches derived so far are combined by the final Section 10.
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The mathematical procedures to calculate optimal fuel-to-distance trajectories are
simple enough to be carried out rather quickly by any reasonably fast and suitably
programmed Flight Management System, and the fuel-to-distance optimal speed
VFtX could be displayed on any Electronic Flight Instrument System.

All model calculations were done for the Standard Business Jet (SBJ) of [7] for
convenience, using the simple turbojet propulsion model presented there. Sym-
bolic formula manipulations, e.g. for setting up the Euler equations for the two
variational problems, were done by MAPLE c©, and MATLAB c© was used for all
numerical calculations, mainly ODE solving. Programs are available from the
author on request.

2 Quasi-Steady Flight

The standard [7, 11, 14] equations of quasi-steady flight are

ẋ = V cosγ

ḣ = V sinγ

Ẇ = −C T

0 = T −D−W sinγ

0 = L−W cosγ.

(1)

with distance x, altitude h, true airspeed V , flight path angle γ , specific fuel con-

sumption C, weight W , thrust T , drag D, and lift L. Like weight, lift, and drag, we
consider thrust as a force, not a mass. Furthermore, we omit the influence of flaps,
spoilers, or extended gears, i.e. we exclusively work in clean configuration. The
equations live on short time intervals where speed V and angle γ are considered to
be constant, but they will lead to useful equations that describe long-term changes
of V and γ .

Lift and Drag are

L =
1
2

CLρV 2S, D =
1
2

CDρV 2S

with the air density ρ , the wing planform area S, and the specific lift and drag
coefficients CL and CR. Combining them with the drag polar

CD =CD0 +KC2
L,

the two last equations of (1) imply

CL =
2W

S

cosγ

ρV 2

T =
1
2

CD0ρV 2S+K
2W 2

S

cos2 γ

ρV 2 +W sinγ.
(2)
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The induced drag factor K and the lift-independent drag coefficient CD0 are de-
pendent on Mach number, but we ignore this fact for simplicity. When it comes
to calculations, and if speed and altitude are known, one can insert the Mach-
dependent values whenever necessary, but we did not implement this feature and
completely ignore the minor dependence on Reynolds number and viscosity.

For convenience, we also introduce

R :=
1
2

ρV 2 S

W
=

1
2

ρV 2

W

S

as the ratio between dynamic pressure 1
2ρV 2 and wing pressure W/S and call it

the pressure ratio. Avoiding mass notions, we prefer wing pressure over the usual
wing loading. It will turn out that the pressure ratio R is of central importance
when dealing with quasi-steady flight. It combines speed, altitude (via ρ), weight,
and wing planform area into a very useful dimensionless quantity that should get
more attention by standard texts on Flight Mechanics. Examples will follow.

Using it, (2) simplifies to the dimensionless equation

T

W
= CD0R+

K cos2 γ

R
+ sinγ (3)

that governs quasi-steady flight. For a given thrust-to-weight ratio T/W , it de-
scribes the pilot’s choice between speed (coded nicely into R hiding dependence
on weight and altitude) and flight path angle. It depends on the drag polar, but is
independent of propulsion properties.

The unique minimum of T/W over varying R is attained at

RLtD =

√

K

CD0

cosγ =
1
2

ρV 2
LtD

S

W
, V 2

LtD =
2W

ρS

√

K

CD0

cosγ.

Going back to (2), it is easy to see that this realizes the well-known optimal lift-

to-drag speed VLtD in case of γ = 0, and therefore we use the suffix LtD for lift-
to-drag optimality also in case of nonzero γ . Second, by (1), a minimal thrust for
momentarily constant weight realizes a momentarily minimal fuel consumption
over time, and this is why LtD speed implies minimal fuel consumption over time.
Third, if we minimize γ as a function of R in (3) for fixed T/W , it turns out after
some calculations that the maximal obtainable angle is assumed for VLtD speed.
Thus VLtD coincides with the green dot speed used by Airbus: “The recommended
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speed with the best climb performance, and the minimum fuel consumption” [1,
p. 943, 1240, 1276]. But we shall see that using LtD speed makes flights take a
seriously longer time than flights using FtX speed, and then the time-optimal fuel
consumption is inferior to the distance-optimal fuel consumption that we study in
the next section. LtD speed is more appropriate for situations with low thrust, e.g.
engine-out situations, or for maximum endurance scenarios.

Since the LtD speed minimizes T/W , we remark that the inequality

T

W
− sinγ ≥ 2

√

KCD0 cosγ

holds for quasi-steady flight in general, and equality is attained in the LtD sit-
uation. This relates necessary propulsion to the drag polar parameters and the
required climb angle of an aircraft.

3 Fuel-to-Distance Optimal Speed

But the minimal fuel consumption at each instant of time will not necessarily
produce the minimal fuel consumption over the flight distance. We replace time
by distance derivatives, using primes instead of dots, and get

h′ =
ḣ

ẋ
= tanγ,

W ′ =
Ẇ

ẋ
=

−CT

V cosγ
,

(4)

the remaining equations being invariant. We now assume that the specific fuel
consumption C is independent of speed, and then the x-integral over the quantity

−
W ′(x)

C
=

1
2

CD0ρVS

cosγ
+K

2W 2

S

cosγ

ρV 3 +W
tanγ

V
(5)

is to be minimized. We minimize the integrand over V to get a minimum at

RFtX =
1
2

ρV 2
FtX S

W
=

sinγ

2CD0

+
1

2CD0

√

sin2
γ +12CD0K cos2 γ =: A2(γ),

V 2
FtX =

2W

ρS
A2(γ)

(6)

after some elementary calculations. This determines a fuel-to-distance optimal

speed VFtX , if it does not violate external restrictions while minimizing over V . If
it does, we take the extremal admissible value, because the minimum is unique.
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Mimicking the “green dot speed” of Airbus and “BlueTEC” of Mercedes-Benz,
one could call this “blue dot speed”, and it could be displayed on the EFIS along-
side with green dot speed.

For horizontal flight, we get

RFtX = A2(0) =

√

3K

CD0

=
√

3RLtD, VFtX =
4
√

3 VLtD ≈ 1.32 VLtD, (7)

both speeds varying with altitude and weight for fixed R. Surprisingly, RFtX , RLtD

and the corresponding ratios T/W for level flight are independent of altitude and
depend only on the drag polar, not on propulsion characteristics. Since the avail-
able thrust decreases exponentially with altitude and weight decreases roughly
linearly during cruise flight, the speeds VFtX and VLtD for level flight will both
increase exponentially with altitude, but decrease with the weight loss. Conse-
quently, a level flight at constant speed is never fuel-optimal, neither with respect
to time (LtD) nor distance (FtX ). The optimal strategy is to use FtX speed and
let the square of it decrease with the weight. We provide more details in Section
5. In addition, FtX speed will be faster than LtD speed, and the flight will reach
the target earlier. Compared to fuel usage in automobiles, we have a paradoxical
situation for flights: If you want to save fuel, use more power and go faster, and
we shall see more instances of this later.

By elementary calculations based on (6) we get
(

T

W

)

FtX

=
2
√

3

(

T

W

)

LtD

≈ 1.15

(

T

W

)

LtD

and distance-relative fuel consumption using (4) is

(

−W ′

C

)

LtD

=

√
3 4
√

3
2

(

−W ′

C

)

LtD

≈ 1.1395

(

−W ′

C

)

FtX

showing that for level flight the T/W ratio for FtX speed is 15% higher, due to a
32% higher speed, but the per distance fuel savings is roughly 14%. This results
from V being in the denominator of (4).

For increasing flight path angle γ , these ratios increase roughly linearly with γ ,
making the savings even larger for steep climbs, but also RFtX and VFtX will in-
crease. Thus one can expect very good fuel savings for steep climbs, but this
requires a high initial speed. All of this is the motivation for taking a closer look
at FtX speed in what follows.
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Given the weight W , the necessary thrust for FtX speed is

TFtX =W τFtX(γ) with τFtX(γ) :=CD0A2(γ)+K
cos2 γ

A2(γ)
+ sinγ (8)

as a function of the flight path angle γ . Note that the connection depends only on
the drag polar, not on propulsion. The LtD speed has a similar connection, namely

T

W
= sinγ +2

√

KCD0 cosγ =: τLtD(γ).

By inverting the monotonic function τFtX , one can calculate the resulting flight
path angle γ for each given thrust, if FtX speed is to be flown, and similarly
for LtD speed. This inversion is easy to do, the standard way or in symbolic
calculation, e.g. using MAPLE c©.

4 Variational Problem

So far, we have determined the fuel-to-distance-optimal speed assignment for an
arbitrary flight plan given as a function h(x). If this VFtX speed does not violate
restrictions, it is the best one for that flight plan. But now we go a step further and
vary the flight plans to find an optimal flight plan under all plans that allow the
VFtX speed assignment.

To this end, we insert VFtX speed into the integral for the total fuel consumption
to get a variational problem for the flight path h(x). The integrand is

−W ′(x) =
CTFtX

VFtX cosγ

=
√

W (x)
τFtX(γ)

A(γ)cosγ
C(h(x))

√

ρ(h(x))S

2

where we now made the dependence on x, h and γ = arctanh′(x) explicit. Recall
that we already assumed the specific fuel consumption C to be independent of
speed, but it usually will depend on altitude.

The substitution Z(x) :=
√

W (x) yields

−2Z′(x) =C(h(x))τFtX(arctanh′(x))

√

ρ(h(x))S

2

√

1+h′(x)2

A(arctanh′(x))
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and eliminates W and Z from the right-hand side. Since it does not matter whether
we reduce W (x) optimally or

√

W (x) optimally, we now minimize

∫ x1

x0

C(h(x))

√

ρ(h(x))S

2
τFtX(arctanh′(x))

√

1+h′(x)2

A(arctanh′(x))
dx (9)

to find an optimal flight plan under all flight plans with fuel-to-distance-optimal
speed assignments. This is a classical variational problem, leading to a second-
order Euler-Lagrange ODE for h(x) by standard arguments.

The integrand is a product of a function F of h and a function G of h′. The latter
is dependent only on the drag polar, not on propulsion, and derivatives wrt. h′

can be generated by symbolic computation, e.g. using MAPLE c©. The first part
is C(h)

√

ρ(h) up to constants and depends on propulsion only via the altitude-
dependency of the specific fuel consumption C(h). In simple models [7] for tur-
bofans and turbojets, C(h) is an exponential function of h, as well as the air density
ρ(h). Then symbolic computation will work as well for the h-dependent part.

A closer inspection of the Euler-Lagrange equation

h′′ =
G(h′)

G′′(h′)

F ′(h)

F(h)
−

G′(h′)

G′′(h′)
h′

for the variational problem shows that F ′(h)/F(h) is a constant if C(h) and ρ(h)
have an exponential law, and then the right-hand-side of the Euler-Lagrange equa-
tion is a pure equation in h′. Since the equation is also autonomous, the solutions
h(x) in the (x,h) plane can be shifted right-left and up-down, and they can be
calculated by solving the above second-order differential equation.

Figure1 shows typical solutions of the Euler-Lagrange equation for the Standard
Business Jet (SBJ) model from [7], but the trajectories contain red parts where
thrust is too high and green parts where thrust is below idle. A closer inspection
of the differential equation reveals that the solutions are always concave in the
(x,h) plane, and the speed is always decreasing.

This looks disappointing at first sight, but we have to take the thrust limits into
account and view the variational problem as a constrained one. Such problems
have the property that solutions either follow the Euler-Lagrange equation or a
boundary defined by the restrictions.

We now visualize this in phase space, where we replace h′ by γ = arctanh′ for con-
venience. Figure 2 plots Euler-Lagrange trajectories (h(x),γ(x)) in (h,γ) phase
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speed profile for the SBJ model in [7]
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space, and marks the thrust-restricted areas in red, while the 250 KIAS (knots in-
dicated airspeed) limit below 10000 ft is given in cyan. Since an explicit speed
restriction is not compatible with our variation of V for getting an optimal speed,
we have to ignore that area, but we shall come back to it in Section 6.

By the standard theory of constrained variational problems we now can read off
the fuel-optimal flight paths above 10000 ft. If they do not hit the upper thrust
limit in phase space, they are blue curves with a maximum altitude and going
down in phase space until they reach the idle thrust boundary below. Compare
with the plots of Figure 1 in (x,h) space. From the idle thrust boundary, they
follow idle thrust and perform a continuous descent, moving to the left in phase
space. If a flight path hits the upper thrust limit somewhere, it has to reach that
point left-to-right in phase space, i.e. moving along the upper red/blue boundary
to the right in phase space, until it leaves the boundary and then works as in the
other case, going down along a blue solution of the Euler-Lagrange equation and
ending up with continuous descent at idle thrust, going left in phase space.

This means that long-distance flights above 10000 ft that maintain FtX speed have
necessarily three sections:

1. a climb/cruise at maximal continuous admissible thrust, proceeding in phase
space from left to right along the upper red/blue boundary,

2. a transition following a solution of the Euler-Lagrange equation, downward
along a blue curve in phase space,

3. and a continuous descent at idle thrust, along the lower red/blue boundary,
going from right to left.

See the top plots in Figure 4 for other examples, in (x,h) space and (h,γ) phase
space. We shall see later that all blue curves in the phase space figure arise in
optimal flight plans, also for lower altitudes, as shown by Figure 12.

For the model aircraft in [7], Figure 3 shows a typical case. The flight is over 700
nm distance, starting at altitude 10000 ft, using a power setting P = 0.97 for the
climb/cruise, and ending at 3000 ft. The figure shows the flight path, a close-up
of the transition, speed, thrust, weight, and γ as functions of the distance. The
transition piece takes about 13 nm and 2 minutes at roughly 400 kts, decreasing
speed by roughly 50 kts and altitude by roughly 1500 ft. Flying the “bang-bang”
trajectory above the transition piece at FtX speed is physically impossible due to
the speed discontinuity, but a closer inspection confirms that it uses slightly more
fuel than the transition piece satisfying the Euler-Lagrange equation.
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Figure 3: A three section flight over 700 nm with fuel-optimal speed. Flight path,
close-up, speed, thrust, weight, and γ .

If we vary the point at which the second piece begins, we get Figure 4 that shows
flights that either end at 3000 ft altitude or at empty fuel. Compare the phase space
plot with Figure 2. The lower magenta line in the phase space plot must be thick
because the flights arrive at idle thrust with different weights, and the continuous
descent angle for VFtX speed depends slightly on weight. The phase space plot 2
is for a single weight.

5 Prescribed Thrust or Altitude

To follow the thrust-restricted red/blue boundaries in Figure 2 in (h,γ) phase
space, we assume thrust being given as a function of altitude, either as maxi-
mal admissible continuous thrust or idle thrust. The function τFtX of (8), being
dependent only on the drag polar and nearly linear, is inverted symbolically and
its inverse allows to calculate γ as a function of thrust and weight, using

γ(x) = τ
−1
FtX(T (h(x))/W(x)), RFtX(x) = A2(γ(x)), VFtX(x)

2 =
2W (x)RFtX(x)

Sρ(h(x))
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Figure 4: Three section flights with fuel-optimal speed. Flight paths, phase space
trajectories, speed and thrust.
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thus implementing FtX speed via (6). This is enough to set up an ODE system in
terms of h and W as functions of x, namely

h′(x) = tanγ(x)

W ′(x) = −
C(h(x))T (h(x))

V (x)cosγ(x)

using the above formulae. The trajectories in the previous figures were obtained
that way.

Similarly, continuous descent at idle thrust with speed VFtX is modelled. It is very
close to, but not identical to using LtD speed, because the functions τ

−1
LtD and τ

−1
FtX

are slightly different at small arguments like Tidle/W .

A flight at FtX speed at fixed altitude is just a point in (h,γ) phase space, but the
associated flight will have a varying speed. We already know that the optimal FtX

speed must decrease with weight, and it is easy to set up and solve the ODE in
W for that, using (4), (6), (7), and (8). For the SBJ model of [7], Figure 5 shows
the speed at altitudes from 40000 ft down in steps of 2000 ft as functions of the
distance, and the reachable distance in nm as a function of altitude. The curves
at the left-hand side start at full weight and stop when fuel is empty. They never
reach stall speed, because they start at full fuel at sufficiently high values of the
fuel-to-distance optimal speed, and the aircraft runs out of fuel before reaching
stall speed. Summarizing, the speed reduction during a flight at constant altitude
and optimal FtX speed is tolerably low.

6 Prescribed Speed

To deal with the usual speed restriction below 10000 ft, we have to abandon the
above scenario, because we cannot minimize fuel consumption with respect to
speed anymore. If the speed is given (in terms of R), equation (3) still has one
degree of freedom, connecting T/W to the flight path angle γ , and we have to
solve for a fuel-to-distance-optimal climb strategy in a different way now.

Implementing a 250 KIAS restriction including conversion to true airspeed, we
get an altitude-dependent prescribed speed VF(h). Since air density ρ is also
h-dependent, so is the dynamic pressure q̄(h) = 1

2ρ(h)VF(h)
2 and the variable

U(h) = q̄(h)S connecting the pressure ratio R to the weight W via

R(h,W) =
q̄(h)

W
S

=
ρ(h)V 2

F (h)S

2W
=

U(h)

W
.
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Figure 5: Speed profiles and reachable distances for fuel-optimal flight at constant
altitude

Then (3) yields

T =CD0U(h)+
KW 2 cos2 γ

U(h)
+W sinγ.

Inserting into the fuel consumption integrand, we get

−W ′(x) =
C(h)

VF(h)

(

CD0U(h)

cosγ
+

KW 2 cosγ

U(h)
+W tanγ

)

which is a Lagrangian L(W,h,h′) = L(W,u,v) and leads to a variational problem
with an Euler-Lagrange equation. In contrast to Section 4, the weight is not elimi-
nated, but we simply keep it in the Lagrangian. We only need the Lagrangian for h

up to 10000 ft, and then we can fit each h-dependent part with good accuracy by a
low-degree polynomial in h.The γ- or h′ = tanγ- dependent parts can be differen-
tiated symbolically, as well as the polynomial approximations to the h-dependent
parts. We get the ODE system

h′ = v

v′ =
1

Lvv(W,u,v)
(Lu(W,u,v)−Lvu(W,u,v)v)

W ′ = −L(W,u,v)

for the Euler-Lagrange flight paths, under suitable initial or boundary value con-
ditions, and we can roughly repeat Section 4 for the new variational problem.
Above, the subscripts denote the partial derivatives.
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Figure 6: Euler paths for climbing at 250 KIAS, as flight paths and in phase space

For the aircraft model in [7], we get Figure 6 showing trajectories in (x,h) space
and in (h,γ) phase space between 1500 and 10000 ft, the red parts violating the
thrust restrictions. Like our arguments for FtX speed above 10000 ft, we see that
fuel-to-distance optimal trajectories, if they are not violating thrust restrictions,
must follow a blue curve. All others must follow the boundaries of the restrictions
they violate. For the standard case of climbing to 10000 ft, we have to select a
trajectory in phase space that meets γ = 0 at 10000 ft. There is only one that arrives
there at γ = 0, and it has to be flown from low altitude using maximal admissible
continuous thrust, following the red/blue boundary up to a point where thrust is
reduced to follow the blue curve up to 10000 ft and γ = 0. All other climbing
trajectories that reach 10000 ft do so at certain positive final angles, and they all
use maximal thrust for most of their climb. If thrust and speed are prescribed, the
basic equation (3) for quasi-optimal flight is solved for γ , and it is easy to come
up with the ODE system for h(x) and W (x).

But these trajectories need 250 KIAS at their start on the red/blue boundary, and
this calls for acceleration at the “acceleration” altitude where clean configuration
is reached and “at which the aircraft accelerates towards the initial climb speed”
[1, p. 1245].

7 Acceleration at Fixed Altitude

The final speed of the previous section will be 250 KIAS at 10000 ft, irrespective
of the final angle, and we want to continue with an optimal fuel-to-distance flight



7 ACCELERATION AT FIXED ALTITUDE 17

path at FtX speed. But this requires a much higher speed at 10000 ft, calling for
an acceleration. Another acceleration will be necessary at acceleration altitude
after takeoff and before climbing, as we saw in the previous section, because we
need 250 KIAS.

For acceleration at fixed altitude, thrust is the only remaining degree of freedom,
and we have no quasi-steady flight anymore. The equations now are

ẋ = V

Ẇ = −CT

V̇ =
g

W
(T −D)

0 = L−W,

and we use the last one to eliminate CL via

CL = 2
W

ρV 2S
.

We plug this with the drag polar into the ODE for speed and get

V̇

g
=

T

W
−CD0R−K/R, R =

ρV 2S

2W

after a few simplifications. Together with Ẇ =−CT this is a system of two ODEs
for W and V with given T . There is nothing to optimize. If we want to go from
speed V0 to speed V1, we should rewrite the system as one for x and W in terms of
V . Using primes temporarily for derivatives wrt. V , we get the system

x′ =
V

V̇

W ′ =
Ẇ

V̇

and insert V̇ and Ẇ from above. On the theoretical side, we see that in order to
get any acceleration, thrust must satisfy

T

W
≥CD0R+K/R ≥CD0RLtD +K/RLtD = 2

√

KCD0 ,

and if thrust is only somewhat larger than the right-hand constant, we can only ac-
celerate from speeds near to VLtD, and the acceleration will be only slowly getting
better by loss of weight. We note in passing that this argument supports the state-
ment [8] ” Green dot speed is the one or 2 engine out operating speed in clean

configuration; being approximately the best lift-to-drag ratio speed, it provides
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Figure 7: Acceleration for two power settings.

in general the lowest fuel consumption”, because it is the speed of choice for all
cases of low thrust, in particular in case of engine failure. But the “lowest fuel
consumption” of green dot speed is true only against time, not distance.

Figure 7 shows acceleration of the model aircraft at 10000 ft from 250 to 400
kts as a function of distance in nm. The left-hand plot uses P = 0.90 and needs
6.5 nm, while the right-hand plot uses P = 0.85 and takes 500 nm and consumes
plenty of fuel.

If this is incorporated into a full optimization of fuel consumption of a long-
distance flight, one also has to check the consumption in relation to covered dis-
tance. Figure 8 shows the speed profile for P = 0.86 to 0.98 in steps of 0.01, and
the corresponding fuel consumption, absolutely and in relation to the covered dis-
tance. Now a low power setting uses less fuel per mile, but the rate is still much
too high compared to flight at high altitude. For a long-distance flight, it is easy
to check by simple calculations that it pays off to be able to start a speed-optimal
climb quickly, i.e. to accelerate at high power setting. The situation for an accel-
eration altitude of 1500 ft and acceleration to 250 KIAS is quite similar, but takes
at most 2 nm. In Section 8 we take a closer look into how acceleration pays off.

Here is a little detour. The same arguments apply for deceleration at constant
altitude and fixed idle thrust, and the same equations work. If started either at a
Final Approach Fix at 3000 ft and 250 kts or for a flare over a runway at 10 ft
and 150 kts, there is a sharp stalling effect given in Figure 9 This is calculated
in clean configuration without flaps, and the crash occurs after roughly 7 or 1.8
nm, respectively. The nice linear speed reduction at the beginning might lure
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3000 ft and 250 kts (left) and 10 ft and 150 kts (right), the flare situation.
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unexperienced pilots into assuming that this decrease goes on, but the speed drop-
off is sudden, unexpected, and dramatic.

8 Climb to Prescribed Altitude

We now compare two basic strategies for climbing from 10000 ft to some pre-
scribed high altitude:

1. the FtX strategy:

(a) accelerate to FtX speed at 10000 ft with thrust Tmax,

(b) do an FtX climb with Tmax

(c) stop it in time with an Euler path to arrive at the given altitude.

2. the LtD strategy:

(a) climb at Tmax with LtD speed, i.e. maximal climb rate,

(b) at the final altitude, accelerate at Tmax to the speed FtX will need,

(c) then use the optimal FtX speed until arriving at the same point and
speed as the previous case.

To make the two cases comparable, we have to begin and end at the same altitude
and speed. This implies that we have to deal with the horizontal flight in the
second case in an optimal way. Since we know that FtX speed at constant altitude
uses less fuel per distance than LtD speed at constant altitude, we have to use
FtX speed there. We want to see the payoff of the higher speed in the FtX case,
and evaluate the fuel savings. Besides, we want to check whether acceleration
at a higher altitude (case LtD) is preferable to acceleration at a lower altitude
(case FtX ). The first case has the advantage of lower air density, but the second
has more available thrust and can do the acceleration in much less time. Note
that acceleration in the sense of physics is independent of altitude, just an action
involving force, mass and speed, but force will depend seriously on altitude here.
Another argument for making this comparison is the possibility that using VLtD on
a trajectory being too steep for VFtX may be advantageous, because this case lies
outside of what was discussed up to this point, since we focused on trajectories
that allow VFtX speed.

Figure 10 shows the results for the model aircraft climbing from 10000 to about
25000 ft. All curves have the above three consecutive phases. The flight paths (top
left) show the LtD case as the upper curve, with the steep climb, the acceleration
to FtX and the horizontal FtX flight. The lower FtX path first accelerates, then
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Figure 10: Flight path, speed, and weight for a climb from 10000 ft to 25000 ft

climbs at FtX speed, and than goes into an Euler path. The speed plot (top right)
uses the same colors and clearly shows the serious differences in speed. Below, we
plotted the weight as a function of distance (left) and time (right). Over distance,
the FtX case is always superior to the LtD case, which is clear by definition if used
on the same flight path, but here the flight paths are considerably different. With
respect to time, LtD speed uses less fuel than FtX if used on the same flight path,
but the FtX flight path is again the better choice, leading after about 4 minutes to
less consumption per time than VLtD on its flight path. In addition, the FtX case
covers more distance due to higher speed, and it reaches the common goal about
two minutes earlier than the LtD case. The fuel consumption is 330 kg in the LtD

case and 157 kg in the FtX case, a serious savings in favor of VFtX and its flight
path.
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This example shows that the FtX strategy is superior to LtD not only in cruise,
but even more in climb. And, though it uses less fuel per distance, an FtX flight
will arrive earlier than a LtD flight, due to the larger groundspeed both in climb
and cruise.

9 Flight Level Change in Cruise

We now consider the practical situation that a long-distance high-altitude cruise
under Air Traffic Control is a sequence of level flights with various short-term
flight-level changes. These are short-term changes of γ , and it is debatable whether
they should be considered as quasi-steady flight. We know from Section 5 that
such a flight is never fuel-to-distance-optimal, but each level section should apply
the VFtX speed given by (7). This means that all level flight sections in cruise use
the same RFtX and T/W ratio, no matter what the flight level or the propulsion
model is. Only the drag polar is relevant.

The VFtX speed at γ = 0 then is a function of weight and altitude alone, and flight
level changes should comply with this, i.e. the speed should still vary smoothly,
while γ and thrust may change rapidly. We shall deal with this by keeping the
flight level change as quasi-steady flight, except for the beginning and the end,
where we allow an instantaneous and simultaneous change of γ and thrust.

The idea is to keep the quasi-steady flight equation (3) and the RFtX equation (7)
valid at all times. Then a jump in γ must be counteracted by a jump in thrust, one
in the beginning and one in the end of the flight level change. These instants are
not quasi-steady, but the rest is.

Consider a climb from altitude h0 to altitude h1. When flying at VFtX at h0 at
maximal thrust Tmax(h0), the flight level change is impossible. Otherwise, the
quasi-steady flight equation (3) at time t0 and γ = 0 is

T0

W0
=CD0RFtX +

K

RFtX
, T0 < Tmax(h0), (10)

and we apply maximal thrust and go over to

Tmax(h0)

W0
=CD0RFtX +

K

RFtX

cos2
γ0 + sinγ0

defining a unique climb angle γ0 satisfying

2K sinγ0 = RFtX −

√

R2
FtX −4K

Tmax(h0)

W0
RFtX +4KCD0R2

FtX +4K2. (11)
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We could keep this angle for the climb, but we might reach the thrust limit if we
do so. Therefore we prefer to satisfy

Tmax(h)

W (h)
=CD0RFtX +

K

RFtX
cos2

γ(h)+ sinγ(h)

at each altitude using

K sinγ(h) = RFtX −

√

R2
FtX −4K

Tmax(h)

W (h)
RFtX +4KCD0R2

FtX +4K2.

This is put into an ODE system for h and W with γ as an intermediate variable,
namely

h′ = tanγ(h)

W ′ = −
C(h)Tmax(h)

VFtX(h,W)cosγ(h)
.

The result is a climb with constant RFtX that keeps VFtX of (7) at all times and
thus starts and ends with the correct speed for FtX level flight. For descent, the
same procedure is used, but idle thrust is inserted. If the altitude change is small,
the solution is close to using the fixed climb/descent angle γ0 of (11). At the end
of the flight-level change at altitude h1, the final speed VFtX(h1,W1) is the starting
speed of the next level flight, and the thrust has to be decreased instantaneously to
T1 in order to keep the ratio

T0

W0
=

T1

W1

from (10).

We omit plots for our standard aircraft model, because they all show that the crude
simplification

h1 −h0

x1 − x0
≈ γ0 ≈

T −T0

W0

holds for small altitude changes between level flights, where the thrust T is either
Tmax or Tidle. Thus in (x,h) space the transition is very close to linear with the
roughly constant climb angle given above.

But we have to ask whether climbing at maximal thrust is fuel-to-distance optimal
against all other choices of thrust. If we insert the above approximation into the
fuel consumption with respect to the distance and just keep the thrust varying, we
get

∫ x1

x0

CT

V cosγ
dx ≈W0(h1 −h0)+T0(x1 − x0)
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up to a factor, and thus we should minimize the climb angle if we relate consump-
tion to distance. For descent, this leads to taking Tidle and is easy to obey, but
for climb the fuel-optimal solutions cannot be taken because they take too long.
Consequently, pilots are advised to perform the climb at smallest rate allowed by
ATC.

10 Flight Phases for Optimal Fuel Use

As long a Air Traffic Control does not interfere, we now see that a long fuel-to-
distance optimal flight should have the following phases:

1. Takeoff to clean configuration and acceleration altitude,

2. accelerate there to 250 KIAS at maximal admissible continuous thrust, us-
ing Section 7,

3. climb at maximal admissible continuous thrust, keeping 250 KIAS and fol-
lowing the fuel-to-distance-optimal angle selection strategy of Section 6,
and continuing with

4. a solution of the variational problem given there to end at precisely 10000
ft,

5. accelerate at 10000 ft until the required FtX speed for the climb is reached,
using Section 7 again,

6. perform an FtX climb/cruise following Sections 4 and 5 at maximal contin-
uous admissible thrust until shortly before the top-of-descent point, leaving
that climb for

7. an Euler path satisfying the variational problem of Section 4 until thrust is
idle,

8. do a continuous descent at idle thrust down to the Final Approach Fix.

To arrive at the right distance and altitude, the time for starting phase 7 needs to
be be varied, like in Figure 4.

If ATC requires horizontal flight phases and correspondent flight-level changes,
step 6 is followed by

6a. an Euler path satisfying the variational problem of Section 4 to reach the
prescribed altitude,
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6b. using Section 5 for FtX speed at level flight, and

6c. flight path changes following Section 9,

but the flight will not be fuel-optimal with respect to distance. Various examples
show that a continuous descent from high altitude ends up at speeds below 250
KIAS at 10000 ft, and deceleration is not needed.

For short-distance flights, the situation is different. Very short flights may fol-
low Figure 6 and can stay roughly below 10000 ft, but might go off the red/blue
boundary early, follow a blue trajectory over a top altitude downward until reach-
ing the lower red/blue boundary, i.e. doing a continuous descent at idle thrust
while moving to the left in phase space.

Medium-distance flights perform the first three steps completely and then continue
by paths in in Figure 2. If they do not reach the upper red/blue boundary in phase
space, they follow a blue curve downward and then end with continuous descent
at idle thrust. All longer flights run along the upper red/blue boundary to the right
and leave at some point to follow a blue curve downward.

Altogether, all of these flight paths follow the above steps for long-haul flights
up to a certain point where they take a “shortcut” from the long-distance flight
pattern. Like in our treatment of the flight level change, we keep the speed con-
tinuous and allow simultaneous jumps in T and γ that allow to continue with an
Euler piece of Section 4. Thus we can plot them all in one figure, the final altitude
and distance depending on when the shortcut is taken.

Figure 11 shows the flight paths, a close-up, and the speed assignment for short-
and medium distance flights. The acceleration phases at 1500 ft and 10000 ft
are in cyan (the first being too short to be well visible), the 250 KIAS climb
in red, followed by a short Euler piece for the variational problem of Section 6
in magenta, and the second acceleration at 10000 ft, in cyan again. From this
basic flight plan, blue Euler pieces of Section 4 emanate, followed by continuous
descent by idle thrust plotted in green. All flights end at 3000 ft at reasonable
speeds.

If long-distance flights are included, the basic behavior is like in Figure 4, ex-
tending Figure 11 to the right, but we add a phase space plot in Figure 12 that
agrees well with Figure 2. If we take the fuel consumption of each full flight and
divide by the distance covered, we get the right-hand plot, showing the relative
fuel efficiency of long-distance flights over short-distance flights.
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Figure 11: Flight paths for short- and medium distance, in (x,h) space, a close-up
of the transition, and speed, all as functions of distance.
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11 Summary and Open Problems

For total fuel consumption over a flight, the choice of VFtX speed is clearly advan-
tageous, since it can be expected to save more that 14% fuel and will also result
in earlier arrival than the optimal lift-to-drag or fuel-to-time speed. It buys this
advantage by larger groundspeed, at the expense of two rather short additional
acceleration phases. Optimal flight paths with VFtX speed assignments either use
maximal or minimal thrust, or follow a flight path solving the Euler equation of a
variational problem. There are two of these: one for unrestricted speed and one
for the 250 KIAS restriction below 10000 ft. Full flight plans can be assembled
from the various pieces described in the paper.

The basic restriction here is that we strictly consider quasi-steady flight, with
instantaneous exceptions where thrust and flight path angle are varied abruptly.
Also, the numerical examples are currently confined to the Small Business Jet of
[7] with its turbojet engines and simplified propulsion models. However, most of
the results are general enough to be easy to adapt for other aircraft and engine
characteristics.
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