
Using compactly supported radial basis functions to solvepartial di�erential equationsRobert Schaback a, Holger Wendlanda;1aInstitut für Numerische und Angewandte Mathematik, Lotze-straÿe 16-18, D-37083, Göttingen, GermanyE-Mail: schaback@math.uni-goettingen.deE-Mail: wendland@math.uni-goettingen.deAbstractWhen applied to solving partial di�erential equations by either Rayleigh�Ritz or collocation techniques, compactly supported radial basis functionsmay replace other meshless tools like multiquadrics. They generate sparseand well�conditioned matrices, and we give a survey over the current the-oretical results known in this area, as far as they seem to be relevant forboundary element techniques.1 IntroductionAs special instances of meshless methods [1], applications of radial basisfunctions (RBF) have gained quite some importance over the past years.They have been successfully applied to a large variety of problems [1-7, 17-21, 23-28, 32-34, 39, 45, 55, 61, 66-68], especially as tools for collocation[32, 33] and the Dual Reciprocity Method (DRM) [3, 4, 5, 18, 20, 30, 31, 40,41]. Unfortunately, the mathematical theory of RBF [35-38] lagged backbehind the numerical applications to PDE for quite some time, but recentlythere was some progress [15, 59] towards a solid underpinning of numericalalgorithms using RBF's for solving PDE's. We shall provide a short accountof such results.Furthermore, the construction of compactly supported radial basis func-tions (CSRBF) by Wendland, Wu and Schaback [46, 56, 62] based on atoolkit by Wu and Schaback [53] made it possible to overcome the non�sparsity of the matrices arising from radial basis function techniques. But1Partially supported by the DFG



the proper choice of the support radius and the smoothness of such func-tions seems to require some skill and experience on the user's side. We shallprovide some guidelines based on numerical experiments.2 Radial basis functionsA scalar function � : R�0 ! R may be used as a radial basis function (RBF)by forming a spaceSX := span f�(k � �xjk2) : 1 � j �Mg (1)for each �nite set X := �xj 2 Rd : 1 � j �M	 of scattered �centers�. Theadvantage is that a simple univariate function serves to create a space ofmultivariate functions, and that the space can be controlled directly bycenters, without any triangulation. It is easy to implement numerical al-gorithms acting on such spaces, and if � is compactly supported or decaysquickly towards in�nity, the basis functions �(k � �xjk2) for distant centersare only weakly coupled.A space like SX can serve for collocation, numerical integration or Rayleigh�Ritz techniques, because it can be seen as a discretization of the space inwhich the actual solution lies. We shall explain this in the next section.Some RBFs require to add polynomials of some order m (= degree - 1) tothe space (1), but we shall ignore details here. Typical cases of radial basisfunctions are provided in Table 1, where F (h) stands for the standard ap-proximation order attained for interpolation problems, measured in terms ofthe maximal distance h from any point of a compact domain to its nearestcenter. Some comments will be given later.Table 1. All entries are modulo factors that are independent of r and h;but possible dependent on parameters of �:�(x) = �(r); r = kxk2 m F (h)(�1)d�=2er� ; � 2 R>0n2Nthin-plate splines d�=2e h�=2[65](�1)1+�=2r� log r; � 2 2Nthin-plate splines �=2 + 1 h�=2[65](�1)d�=2e(2 + r2)�=2; � 2 Rn2N>0Multiquadrics d�=2e if � > 0 e��=h� > 0 [37]e��r2 ; � > 0Gaussians 0 e��=h2� > 0 [37]�2�d=2=�(k)�Kk�d=2(r)(r=2)k�d=22k > dSobolev splines 0 hk�d=2as in [65](1� r)4+(1 + 4r)d � 3Wendland function 0 h3=2[58]



3 Generalized interpolationThe range of applications of radial basis functions is extremely large, and wecon�ne ourselves here to a still rather general setting where the applicationwants to solve a linear operator equationLu = f; L : U ! F; u 2 U;where f 2 F is given and u 2 U has to be constructed. In case of problemswith boundary conditions, we put the boundary conditions either into thespace U or into the operator L, turning it into a pair (D;R) of a di�erentialand a boundary operator, respectively, and using suitable product spacesfor U and F . Examples will follow later.We then assume that the operator equation is discretized by picking Nlinear functionals �1; : : : ; �N and trying to solve the system�j(uh) = fj 2 R; 1 � j � N (2)where now uh is sought in a �nite subspace Uh � U . It should be clear thatcollocation takes the above form, where the functionals are evaluations ofdi�erential operators on points in the interior of some domain, plus func-tionals evaluating boundary value operators on (possibly only parts of) theboundary of the domain. We allow any kind of linear functionals, and thusone can handle rather exotic cases, mixing various di�erential or integraloperators in a single problem. Furthermore, certain additional conditionslike conservation laws can be written that way, and additional propertieslike ellipticity of the underlying problem are irrelevant. The generality ofthe setting is possible because the RBF approach has some built�in regu-larization that allows to handle ill�posed problems without regarding theill�posedness. We cannot dwell on this subject here, but it can be seen asboth an advantage and a drawback, depending on the user's viewpoint.The simplest case of collocation is pure interpolation at the centers, i.e.�j = �xj for the same centers xj as used in the de�nition of SX . Then we getthe symmetric matrix AX = (�(kxk � xjk2))1�j;k�N and require it to benonsingular. If this matrix is positive de�nite for all choices and all numbersN of pairwise distinct centers xj in X := �xj 2 Rd : 1 � j � N	 � Rd , theradial basis function � is called (strictly) positive de�nite (SPD) on Rd . Thisis a rather strong property for a scalar function, and the theory of radialbasis functions is focused around the construction of such functions withadditional properties. Gaussians and inverse multiquadrics (multiquadricsof Table 1 with � < 0) even have this property for all space dimensionsd, but due to a well�known characterization of such functions via completemonotonicity [38, 54], there are no compactly supported radial functionsthat work for all space dimensions. The construction of compactly sup-ported strictly positive de�nite radial basis functions (CS�SPD�RBF) forrestricted space dimensions was done in 1995 by Wu [62] and Wendland [56],



providing functions that can be chosen to suit any space dimension and anysmoothness requirement. Surprisingly, these functions are piecewise poly-nomials, and Wendland's construction provided functions with minimal de-grees under the above conditions. See Table 2 for a list, and note that thematrix AX will be sparse and positive de�nite in case of CS�SPD�RBF.In Table 2 we have used the cut-o� function (r)+ which is de�ned to ber if r � 0 and to be zero elsewhere. Furthermore, d denotes the maximalpossible space dimension, i.e. if you want to work on R`; you have to picka basis function with table entry d � `:Table 2. SPD(Rd ) Wendland functions pd;k with native spacesW d=2+k+1=22 (Rd)d k pd;k1 0 (1� r)+ C01 1 (1� r)3+ (3r + 1) C21 2 (1� r)5+ �8r2 + 5r + 1� C43 0 (1� r)2+ C03 1 (1� r)4+ (4r + 1) C23 2 (1� r)6+ �35r2 + 18r + 3� C43 3 (1� r)8+ �32r3 + 25r2 + 8r + 1� C65 0 (1� r)3+ C05 1 (1� r)5+ (5r + 1) C25 2 (1� r)7+ �16r2 + 7r + 1� C4There is an intrinsic relation of SPD�RBF's to reproducing kernel Hilbertspaces, but there is no room here to give details [52]. In short, one canintroduce an inner product (:; :)� such that(� (k� � xk2) ; � (k� � yk2)) = � (kx� yk2)holds, and then the matrix AX is a Gramian. The linear hull of all spaces SXcan be completed to form a Hilbert space called the native space for �, anda very natural application of RBF techniques would be the case where thebilinear form a(:; :) of a Rayleigh�Ritz setting coincides with the above innerproduct in the native space. However, such cases are somewhat di�cult tohandle in full generality, because (for instance) the standard bilinear formfor second�order elliptic problems lives in Sobolev spaceW 12 (R2 ) containingdiscontinuous functions and having the natural radial (Bessel) basis functionK0(r) with a logarithmic singularity. Research in this direction is still in itsearly stages, concentrating on spaces with higher regularity.For the theoretical analysis of RBF's, the study of these native spacesis of quite some importance. Error bounds normally are �rst derived forfunctions in the native space, and are then moved over to other spaces [48].The generalized RBF interpolation setting can be proven to be optimal inat least three di�erent aspects, and therefore the attained error bounds ([57]



for Wendland's functions in Sobolev spaces) are optimal with respect to allother linear recovery processes based on the same data and working in thesame space of functions. We cannot say much more here, and we refer thereader to survey articles on RBF theory [9, 43, 44, 47, 50, 52].4 CollocationFor applications, the generalization from pure interpolation to collocationrequires to replace the point evaluation functionals �xj by general function-als �j that are continuous on the native space. It is not easy to tell directlywhich functionals have this property with respect to a given �, but a rule�of�thumb [52] allows any functional � that can be continuously applied toone argument of �(kx � yk2) and be approximated by �nitely supportedfunctionals (e.g. di�erential operator evaluations by �nite di�erences, or in-tegrals by quadrature formulae). But even if the functionals and � are cho-sen to match, the matrix A = ��yj�(ky � xkk2)�1�j;k�N where �yj stands forthe evaluation of �j with respect to the variable y, is not symmetric and notnecessarily nonsingular. We call this an unsymmetric collocation, becausethe functionals �xk providing the functions �(k � �xkk2)) = �yxk�(k � �yk2))of the space SX di�er from the collocation functionals �j . A symmetriccollocation [63] drops �xk altogether and works with the span of functions�yk�(k � �yk2)) to get a symmetric matrix A� = ��xj �yk�(ky � xk2)�1�j;k�Nwhich can be proven to be positive de�nite whenever the functionals �j arelinearly independent and continuous in the native space.The unsymmetric collocation technique for RBF was introduced by Kansa[32, 33] and successfully used by various other authors. e.g. [7, 8, 19, 34].However, a recent example [29] showed that it may fail in some speciallyconstructed cases which are, fortunately, rare to �nd. Kansa's techniquehas the advantage of a wider applicability, because more functionals areallowable for a given RBF, but it still lacks proven error bounds, even forelliptic model problems. This is a challenging research area with little or noprogress in the unsymmetric case.On the other side, symmetric collocation has been investigated recentlyby Franke and Schaback [15, 16], giving error bounds and criteria for theproper choice of � for a given collocation setting de�ned by functionals �j .A di�erent and independent approach was made by Wu [64]. We cannotprovide details here, but the theoretical approximation order roughly is atleast the order F (h) given in Table 1 reduced by the order of di�erentiationinvolved in the functionals, where h is the density of centers in the senseh = supy2
 min1�j�N ky � xjk2if we work in a bounded domain
 and use collocation with values of di�eren-tial operators (order zero allowed for boundary values) at centers xj . Recent



results [51] in the interpolation case suggest to replace F (h) by (F (h))2 inthe interior of the domain, and this is the order that is observable there.For interpolation and symmetric collocation with RBF there are somerules to be suggested:� Pick � smooth enough such that all collocation functionals can becontinuously applied to both arguments of �(kx� yk2) [52].� Additional smoothness of � will improve the attainable discretizationerror at the expense of increased condition number[49].� Be careful with �wide� Gaussians or multiquadrics, because these haveboth an exponentially good error behavior and an exponentially badcondition number[49].� For compactly supported RBF's, pick the support radius in such away that each RBF support contains roughly the same number B ofcenters (for each operator, i.e. separately in the interior and on theboundary). Then the condition depends on B, not on the meshwidth.For �xed B, the error �rst goes down nicely when data are gettingmore and more dense, but, from a certain h on, one has to enlarge Bto get higher accuracy [50].The proper choice of scale of the RBF in relation to the data densityis another challenging research problem. There are many experimental re-sults for multiquadrics [2, 33, 34], but so far there is no systematic theory.Numerical experiments by Floater/Iske [13, 14] and Fasshauer [10, 12] havedemonstrated the feasibility of multiscale techniques, using RBFs of di�er-ent support scales on data subsets of di�erent densities. In many cases,linear convergence with increasing levels is observed, but the theoreticalinvestigations are still rather limited [11, 22, 42].5 Rayleigh�Ritz applicationsFor a bounded domain 
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and h � 0, at least one of them being uniformly bounded away from zeroon a subset of nonzero measure of 
 or @
, respectively.The corresponding variational problem�nd u 2 W 12 (
) : a(u; v) = F (v) for all v 2W 12 (
) (5)excludes worrying about boundary values, and allows to work with the wholeSobolev space W 12 (
).Under the strong regularity assumption u 2W k2 (
) and �(x) = �(kxk2)having a Fourier transform b� satisfyingb�(!) � (1 + k!k2)�2� : (6)with � � k > d2 +m, the Rayleigh�Ritz�Galerkin solution s of the sti�nesssystem based on � satis�es the error boundku� skWm2 (
) � C hk�m kukWk2 (
)for h � h0. These results are best possible as far as the approximationorder is concerned. However, this work still is preliminary in the sensethat boundary conditions were excluded and su�cient regularity had tobe assumed. A second paper [60] uses a multilevel technique to attackdiscretizations of elliptic problems by RBFs. Here, the proof of error boundsstill is missing.6 Homogenization in the interior (DRM)Let us consider a standard elliptic model problemLu = f f in 
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u � uh uh 2 Sh �W
:in certain Hilbert spaces. We assume that the map R from the data (f; g) 2L
 �W@
 back to the solution u 2 W
 is linear and bounded. This meansthat the problem can be solved stably in the above setting.Radial basis functions can be used in two ways to solve such a problemvia homogenization. Going over to a homogeneous problem in the interioris called the Dual Reciprocity Method (DRM) [3, 4, 5, 18, 20, 30, 40, 41].We outline the computational steps here:1. Approximate f well in L
 by some f0 in 
, but make sure that youknow explicitly some u0 with Lu0 = f0. This is easily achieved byusing various RBFs, because one can either start with some � and�nd  with L( (k � �xk)) = �(k � �xk); (7)or start with some  and apply L to get � via (7).



2. Evaluate the boundary values g0 := Bu0 and pose the homogeneousproblem Lu1 = 0 in 
; Bu1 = g� g0 in @
. Using a BEM technique,one gets a function u2 that satis�es Lu2 = 0 exactly, but with dis-turbed boundary values Bu2 = g2, such that kg� g0 � g2k is small inW@
.3. Compose the �nal numerical solution by u3 := u0 + u2.The error analysis takes u4 := u � u0 � u2 and gets Lu4 = f � f0 in
; Bu4 = g � g0 � g2 in @
. By our assumption on the stable solvabilityof the problem, we get an error bound. But any special application mustmake sure that the approximations lie in the correct spaces and have smallerrors in the correct norms. This sometimes causes problems and requiresquite some theoretical work [20, 31]. But, at least in principle, the basicidentity (7) for RBFs makes this approach feasible.7 Homogenization on the boundaryThere is a complementary technique that homogenizes on the boundary.For a BEM audience, this is hardly an advantage, but we have in mind touse CS-RBF with zero boundary values in the interior of the domain, andthus want to go over to a sparse problem that is inhomogeneous in theinterior, but has homogeneous boundary data. We assume the same settingas above, but now the steps are1. Solve the problem approximately by invertible RBFs, but just on andnear the boundary. This yields functions u0 2 W
; f0 2 L
; g0 2W@
such that Lu0 = f0; Bu0 =: g0, where g1 := g � g0 is small in W@
.Of course, the function f � f0 will not be small in the interior, but wecorrect this in the following step.2. We now suggest to use invertible CS-RBF to solve the problem Lu1 =f1 := f � f0 2 L;Bu1 = 0 2 W
. In practice, we will get a functionu2 2W
 such that Lu2 = f2 � f�f0 and Bu2 = g2, where f�f0�f2and g2 are small in L
 and W@
, respectively.Now we consider u3 := u0 + u2 to be an approximation of the solutionu, and we get L(u� u3) = f � f0 � f2; B(u� u3) = g � g0 � g2 = g1 � g2,and again we can use the stable solvability to conclude that the result mustbe a good approximation to the solution.Let us compare these two approaches.� The classical DRM has the advantage of reducing the problem by onedimension, but the system on the boundary usually has a non�sparsematrix, even if CS�RBF are used there.
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