
Generating Parametric Models of Tubes from Laser Scans
Ulrich Bauer ∗,1,

Universität Göttingen, Lotzestraße 16-18, 37073 Göttingen, Germany

Konrad Polthier 2

Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany

Abstract

We present an automatic method for computing an accurate parametric model of a piecewise defined pipe surface, consisting of cylinder and
torus segments, from an unorganized point set. Our main contributions are reconstruction of the spine curve of a pipe surface from surface
samples, and approximation of the spine curve by G1 continuous circular arcs and line segments. Our algorithm accurately outputs the parametric
data required for bending machines to create the reconstructed tube.

Key words: Pipe Surfaces, Tubes, Surface Reconstruction, Curve Approximation, Moving Least Squares.

1. Introduction

The concept of parametric modeling has gained much at-
tention in the CAD community in recent years. Instead of de-
scribing a CAD model by a standard surface description such
as polygonal meshes or NURBS surfaces, a model is described
using higher-level entities that can be modified using few intu-
itive parameters, reflecting the design process instead of only
the result. In the case of bent tubes, a parametric model could
have the lengths and angles of the segments as parameters.
These features are not explicitly deducible from a polygonal or
a NURBS representation of the surface.

Another relevant problem that attracted a lot of interest in re-
cent years is reconstruction of surfaces from point clouds. Nu-
merous algorithms have been proposed for either interpolating
or approximating an unorganized, possibly noisy set of points
on a surface. A common approach is to find a triangulation of
the point set as a subset of its Delaunay complex [1]. Another
class of methods describes the surface as the zero level set of
a signed distance function, an example being [2]. Common to
all these approaches is that they aim at reconstructing a general
smooth surface.

∗ Corresponding author.
URLs: http://ddg.math.uni-goettingen.de/ (Ulrich Bauer),

http://geom.mi.fu-berlin.de/ (Konrad Polthier).
1 Work supported by TubeExpert, Ltd.
2 Supported by DFG Research Center MATHEON “Mathematics for key
technologies” in Berlin.

Combining these two ideas, we present a method for para-
metric reconstruction of a special class of shapes, which we call
bent tube surfaces. These surfaces are pipe surfaces consisting
of alternating cylinder and torus segments joined G1 continu-
ously (see Fig. 1 for an example). A pipe surface is defined as
the envelope of a sphere with constant radius r moving along
a curve (called spine curve); in our case, the spine curve is a
piecewise defined G1 continuous curve consisting of circular
arc and line segments, called arc-line spline.

Parametric models of bent tube surfaces are of special interest
since industrial tubes produced by bending machines have a
shape of this type. Reconstructing the parametric description
of the individual segments allows to derive the data required
by bending machines to reproduce the scanned tube. Often, the
circular arcs of the curves have one common radius due to the
way most tube bending machines work.

The parametric model is generated from 3D laser scan data,
which can be acquired from a single view: utilizing the symme-
try of the cross section of a pipe surface, the scan does not have
to cover the whole surface. The goal is to extract a small num-
ber of meaningful parameters from a very large, unorganized,
and noisy data set. One important aspect is that the number
of segments is correctly identified; a model containing more
segments than necessary to faithfully describe the point cloud
would surely not be considered a good reconstruction. One the
other hand, the input samples should be metrically close to
the surface model, a few possible outliers excluded. To com-
bine these two requirements, we roughly take the following ap-
proach: we fix the maximal tolerance and then try to find the

Preprint submitted to Computer-Aided Design September 26, 2008

Figure 1. Parametric model of a bent tube – a pipe surface, consisting of cylinder (red spine) and torus (green spine) segments – automatically reconstructed
using our algorithm from a laser scan (samples in grey).

model with the least number of segments inside this tolerance.
An important application for our algorithm is inspection, i.e.,

comparison of CAD data of a tube with results after bending,
and possible correction of the data to compensate for errors
induced in the bending process. These errors may stem from
spring-back of the tube. Another application is reverse engi-
neering of tubes for which no bending data is available.

1.1. Related work

Simple methods for generating parametric models of bent
tubes from range data and for inspection based on given ref-
erence models have been proposed in [3,4]. These methods
use local estimates of principal curvatures to segment the point
cloud into cylindrical and toroidal parts. While this approach
works for a broad range of well-behaved shapes, it has a few
serious drawbacks. First, the estimation of differential quan-
tities is prone to noise and requires some averaging or other
robust methods to avoid over-segmentation. Moreover, using
local estimates alone, it is sometimes very difficult to recog-
nize very short cylindrical or toroidal segments that are clearly
recognizable from the global shape; examples of this type can
be seen in Figure 9. Another problem is that the segmenta-
tion of the point cloud alone does not yield cylinder and torus
segments that fulfil the G1 continuity constraint. Enforcing the
constraints can lead to significant deviation from the input data.
These problems motivated the research that lead to this article.
Our approach avoids both these problems by searching only
inside a set satisfying both the G1 continuity constraint and a
distance constraint.

Reconstruction of pipe surfaces from unorganized points has
been investigated by Lee in [5] and later extended to canal sur-
faces in [6]. The methods there are based on translating surface
samples along the estimated normal direction. This method is
susceptible to deviations from the exact normals and therefore
requires smoothing of the spine curve point cloud afterwards.
See Fig. 2 for a comparison to our new method.

In the aforementioned article, Lee [5] also proposed the
use of the moving least squares approximation technique for
smoothing a noisy point cloud of a curve. This method has later
gained much attention in the context of computing surfaces ap-

proximating a point cloud, and several variants are proposed
in [7,2] and references therein. We will adapt this method to
compute a point cloud approximating the spine curve of a pipe
surface, given a point cloud of the surface itself.

Several methods have been proposed for computing an ap-
proximate medial axis [1] or a curve skeleton [8] derived from
the medial axis. Assuming a dense, noise-free sampling of the
tube, one of these methods could be used to obtain the spine
curve of a pipe surface. There are however several serious draw-
backs to these approaches. Most importantly, the mentioned
methods are not robust to noise and outliers in the input data.
Moreover, they are computationally quite expensive. Third, we
seek for a method that works with partial scans that cover only
one side of the tube. All of the mentioned algorithms would
require input samples around the tube surface.

An algorithm for the reconstruction of planar curves from
unorganized point sets, based on Voronoi diagrams and De-
launay triangulations, has been presented in the seminal pa-
per by Amenta et al. [9]. Another simple but provably correct
method, which also works for curves in higher dimensions, is
the NN-Crust algorithm, proposed by Dey and Kumar [10].
This is the algorithm we used in our implementation for recon-
structing a polygonal curve from a point cloud.

The problem of approximating a given curve by another
curve with a simpler description has a long history. Commonly
considered is the problem of simplification of polygonal chains,
where the distance between input and output is bounded by ε in
some distance measure. The heuristic by Douglas and Peucker
[11] is the standard technique for this problem, although it has
no optimality guarantee and a worst-case running time ofO(n2).
For the problem of simplification of a space curve, with the
vertices of the output polygon being a subset of the input ver-
tices, Eu and Toussaint [12] present an algorithm which finds
an optimal solution within a running time of O(n3). Agarwal et
al. [13] describe an efficient greedy approximation algorithm
running in O(n log n) and requiring at most as many line seg-
ments as the optimal 2ε approximating polygonal chain. For
the weak simplification problem, where the output vertices can
be chosen freely, Guibas et al. [14] propose an exact algorithm
for planar curves with a running time of O(n2); the weak sim-
plification problem for space curves is still unsolved.

Segmentation and approximation of planar and space curves

2

(a)

(b)

Figure 2. Spine point cloud obtained using (a) Lee’s method (before smooth-
ing) and (b) our method. While in (a) the noise is considerable, in (b) the
result is sharp and does not require smoothing.

by G0 and G1 continuous circular arcs and line segments has
been investigated by several authors, in most cases without any
guarantee about the optimality of the solution. Hoschek [15]
finds a G1 planar approximation; Rossignac [16] approximates a
space curve by G0 continuous circular arcs. Drysdale et al. [17]
compute a minimum segment count G0 planar approximation
with junction point chosen from the input vertices. Several au-
thors [18,19,20] describe the approximation of planar curves
using G1 continuous biarcs (pairs of circular arcs joined G1

continuously). Biarcs, first introduced in [21], are easier to han-
dle than regular arcs, because both endpoint tangents of a biarc
can be chosen independently. The problem of approximating a
polygonal chain with a G1 smooth arc spline using a minimum
number of segments is still open. Moreover, all of the men-
tioned algorithms are either not suited for certain problem in-
stances such as arc segments with an apex angle greater than π,
or only produce arc splines consisting of biarcs.

1.2. Contributions

We propose a complete method for parametric reconstruction
of bent tube surfaces. Our main contributions are:

Spine curve reconstruction
We present a novel technique to reconstruct the spine curve of

a pipe surface. We use a moving least squares based technique
to find locally best fitting cylinders approximating the input
samples, and define a projection of the surface samples onto the
estimated spine curve. Compared to a previous approach, our
method produces high-quality, thin and smooth point clouds of
the spine curve without additional post-processing. Moreover,
the method only requires a partial scan of the pipe surface,
e.g. from a single view scan.

Curve approximation by arc-line splines
We propose an algorithm to compute an approximation of a

polygonal curve by an arc-line spline within a given distance
bound distance. The method uses estimated tangent lines of
the input curve and computes an approximation with minimum
segment count for these estimates. In contrast to many other
curve approximation algorithms using circular arc segments, it

can also cope with arc segments having an apex angle equal or
greater than π.

1.3. Algorithm overview

Our algorithm for parametric reconstruction of bent tube sur-
faces performs the following steps, depicted in Fig. 3.
– First, the samples of the surface, shown in Fig. 3 (b), are

projected onto the spine curve. This procedure is described
in Section 3. The result of this step is shown in Fig. 3 (c).

– Next, we reconstruct a polygonal curve from the spine point
cloud using the NN-Crust algorithm of Dey and Kumar [10],
as shown in Fig. 3 (d).

– The polygonal curve is optionally simplified using Eu and
Toussaint’s algorithm [12] to reduce the problem complexity
for further computations.

– This polygonal curve is then approximated using an arc-line
spline as described in Section 4, see Fig. 3 (e).

– Finally, the parametric description of the bent tube sur-
face (see Section 5) is optimize with regard to the least
squares distance of the surface to the input samples using
the Levenberg-Marquardt nonlinear optimization method
(Section 6). The final output of our reconstruction is shown
in Fig. 3 (f).

2. Review of estimated differential quantities on point
clouds

In this section, we will briefly recall the methods used in our
algorithm for estimation of curvature of a surface given a noisy
point cloud of the surface.

2.1. Local polynomial surface approximation

To obtain robust local information about the surface de-
scribed by a point cloud, we use an approximation by a
(weighted) best-fitting polynomial over an estimated tangent
plane of the surface. This technique is commonly used for es-
timating normals and curvatures; Pouget [22] gives a detailed
analysis of this popular technique, and Lukácz [23] compares
it to other methods for estimating curvature in point clouds.
Local fitting of polynomials is also used for defining a distance
function to the various definitions of moving least squares
surfaces, see [7,2].

To obtain an estimate of the tangent plane, let θ : R+ →

R+ be a monotonically decreasing distance weighting function
with support [0, ε]. We consider the local neighborhood Np =

{p1, . . . , pn} of a point p consisting of all sample points inside a
ball of radius ε centered at p. A principal component analysis of
this set of points provides a first order estimate of the tangential
plane at p and the reference domain for the polynomial fitting
[2] in the following way. We use the weights θk = θ(‖pk − p‖),
and assume that the weighted barycenter

p̄ =

∑
k θk pk∑

k θk

3

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Reconstruction of a tube. (a) A photograph of the original tube. (b)
A single-view, irregular scan of the tube surface. (c) Projection of the point
cloud onto the MLS spine approximation. (d) Reconstruction of the spine
curve. (e) Approximation of the spine curve by a G1 continuous arc-line
spline. (f) The reconstructed tube surface.

lies at the origin of the coordinate system. Then the estimated
normal ν of this tangent plane to p is the solution of the opti-
mization problem

min
‖ν‖=1

∑
k

〈ν, pk〉
2 θk

which is the eigenvector with the smallest corresponding eigen-
value of the weighted covariance matrix W(p) = (wi j) with

wi j =
∑

k

〈ei, pk〉〈e j, pk〉 θk .

This estimated tangent plane is only used as the reference
domain to compute a bivariate polynomial approximation to the
neighborhood Np with the estimated tangent plane as reference
domain. Let Π2

2 denote the bivariate polynomials of degree 2.
The paraboloid π(x, y) = ax2+by2+cxy+dx+ey+ f minimizing

min
π∈Π2

2

∑
k

(π(xk, yk) − zk)2 θk

can be found by solving the linear equation system

AT

θ1 0

. . .

0 θn

 A

a

b
...

f

= AT

θ1z1

θ2z2

...

θkzn

with

A =

x2

1 y2
1 x1y1 x1 y1 1

...

x2
n y2

n xnyn xn yn 1

 .
In the presence of noise, the normal to the graph of the poly-

nomial at the origin (x, y) = (0, 0) also provides a substantially
better approximation of the surface normal than our previously
computed first order estimate of the tangent plane.

2.2. Shape operator estimation

Consider the paraboloid embedded in R3 parameterized by

π(x, y) = (x, y, (ax2 + by2 + cxy + dx + ey + f))

at the point (x, y) = (0, 0). The matrix representations of the first
and second fundamental forms at this point for the canonical
basis ∂

∂x ,
∂
∂y are

G =

 d2 + 1 de

de e2 + 1

and

H =
1

√
1 + d2 + e2

 2a c

c 2b

 .
The shape operator S has the matrix representation G−1H.

The eigenvectors of this matrix represent the principal curva-
ture directions in the basis ∂

∂x ,
∂
∂y (note that this is generally

4

not an orthogonal basis). The eigenvalues are the correspond-
ing principal curvatures κmin and κmax. These values therefore
provide the estimates for the principal curvatures of the surface
at the point p.

3. Spine curve reconstruction from samples of a pipe
surface

We present a method to reconstruct the spine curve of a pipe
surface from an unorganized, noisy set of points on the pipe
surface. We use a moving least squares technique to project
each surface point to its closest point on the spine curve. This
spine curve point cloud can then be smoothed and be used for
computing a polygonal curve using any curve reconstruction
algorithm.

Our MLS projection is based on the projection procedure
described in [7]. At a glance, this method consists of finding a
weighted local polynomial approximation to the points in the
neighborhood of a point p, similar to the method described in
Section 2.1, and projecting the point p onto this polynomial.

We extend this concept by fitting other geometric primitives
than bivariate polynomials to the local neighborhood. We re-
construct the spine curve of a pipe surface by weighted least-
squares distance fitting of a cylinder [24] to points in the neigh-
borhood of a point pc close to the spine curve, and projecting
this point onto the axis of the best-fitting cylinder.

We first define a distance function of a point p to its lo-
cally best-fitting cylinder. For each point p ∈ R3, we can try
to find the cylinder C ∈ Cylr minimizing the weighted least-
squares distance to the samples, using a locally supported dis-
tance weighting function θ:

min
C∈Cylr

∑
i d(C, pi)2θi∑

i θi

where d(C, pi) is the (signed or unsigned) distance function of
a point pi to the cylinder C, aC is the axis of the cylinder C,
and θi = θ(‖p̃ − pi‖), where p̃ is the projection of p onto the
axis. Note that p̃ can be considered as the center of a radial
weighting function. The name moving least squares hints at the
fact that this center is not fixed for a given p, but also depends
on the cylinder C to be optimized.

Let amin be the axis of the optimal cylinder Cmin. The spine
MLS distance function is now defined as

dS (p) = d(amin, p) .

Our MLS spine is defined as the zero level set of this distance
function. We can now use a simple projection procedure to
generate a point cloud of the spine curve from a point cloud of
the surface.

(i) Find an initial estimate for a point x and a tangent direc-
tion t of the spine curve.

(ii) Find the best-fitting cylinder Cmin with radial weights
centered at P(x, amin), using (x, t) as initial estimates.

(iii) Let x′ be the projection of x onto the axis amin of Cmin.
We want to note that, just as for MLS surfaces, it is important

to avoid running into a local but not global minimum of the
error function for cylinder fitting. Proper initial values for x

and t are therefore crucial for obtaining good results. How to
find these is described in the following subsections.

3.1. Estimating the pipe radius

Cylinder fitting can be done using either a fixed or a variable
cylinder radius. Depending on the quality of the input sample,
the one or the other option may be more desirable.

Under the general assumption that the bend radius rB of
the pipe is always more than twice as large as the pipe radius
rP, the larger principal curvature κmax corresponds to the pipe
radius of the surface: rP = 1

κmax
. The principal curvatures are

obtained using polynomial fitting as described in Section 2.2.
This assumption also implies that smoothness of the surface is
the same as of the spine curve.

For cylinder fitting with fixed radius, we estimate the global
pipe radius as the median of the larger principal curvature values
κmax for a sufficient number of samples of the point cloud.

3.2. Choosing a neighborhood size

We now discuss appropriate choices for the neighborhood
size, i.e. the support of the weighting function θ. Similar to
MLS curves, a large support for θ has a smoothing and shrink-
ing effect on curved parts of the spine curve, while small neigh-
borhoods can cause instability in the cylinder fitting step. We
found that a neighborhood of about 1.2 rB (where rB is the bend
radius) provides a good trade-off, ensuring a stable projection
while keeping shrinkage at a low level. For a cylindrical point
set, this neighborhood is a cylinder with a height of about 1.3 rP

(where rP is the pipe radius). Under the mentioned assumption
rB > 2rP, numerical evaluation using random sampling of a
torus shows that the deviation of the spine curve approximation
found by cylinder fitting from the real spine curve is still less
than 0.038 rP in the worst case.

3.3. Tangent direction estimation

An estimation for the tangent direction of the spine curve is
required as an initial guess for cylinder fitting. A good initial
guess is crucial for obtaining the correct solution, as a bad initial
guess can cause the optimization algorithm to run into a local
(but not the global) minimum of the cylinder distance function.

From the shape operator estimate at a surface point p, we can
derive an estimate for the tangent direction of the spine curve
at p̃ (the projection of p onto the spine curve). It is easy to
observe that the tangent direction of the spine curve correlates
to the principal curvature directions onthe pipe surface itself.
Since we know by assumption that the curvature of the spine
curve is less than 1

2rP
, the maximal directional curvature κmax is

always less than 1
rP

, and the corresponding principal curvature
direction is perpendicular to the spine curve. Consequently, the
principal curvature direction corresponding to κmin is parallel
to the tangential vector of the spine curve.

5

3.4. A starting point for cylinder fitting

The above estimates of the surface normal ν (Section 2.1)
and the pipe radius rP (Section 3.1) provide an initial point p0
on the cylinder axis for cylinder fitting. We translate the surface
sample p by the pipe radius in normal direction: p0 = p− rP ·ν.
For exact values of the normal and pipe radius, p0 is a point
on the spine curve. Together with the tangent direction, this
provides a complete initial guess for cylinder fitting.

4. Curve approximation by arc-line splines

In this section, we propose an algorithm for the problem of
approximating a polygonal curve in R3 with a G1 continuous
curve consisting of circular arcs and line segments. Our goal is
to minimize the number of arc segments of the approximating
curve, while guaranteeing a distance of at most ε from each of
the vertices of the input polygon to the approximating curve.

4.1. Algorithmic framework

The algorithm is based on a general framework used in sev-
eral polygon simplification algorithms [12,25]. The main idea
is to construct a shortcut graph G = (V, E) over the vertices of
the input curve, with an edge ei j ∈ E if and only if the chain
[pi, pi+1, . . . , p j, p j+1] can be approximated by a circular arc
and two line segments, as shown in Fig. 4. To ensure tangen-
tial continuity of the segments, we fix estimated tangent lines
on which the line segments should lie. For the vertex i in the
graph, we simply choose the line li = pi pi+1 as the estimated
tangent line.

An approximating arc-line with minimum number of seg-
ments can then simply be found using breadth first search on
this graph. The graph does not have to be constructed explicitly,
therefore our algorithm only requires O(n) space, see [25].

For the computation of an edge ei j of the shortcut graph,
the estimated tangent lines ti and t j are generally not coplanar.
Therefore, we project the tangent line of the second segment
t j onto the plane P spanned by pi, pi+1, and p j+1 and use this
modified tangent line t′j to decide whether there is an edge ei j

in the shortcut graph (see Subsection 4.2).
Note that we get a different modified tangent line t′j for each

edge ei j. To ensure G1 continuity of the solution, the modified
tangent line t′j according to the shortest path in the graph from
vertex 1 to vertex j is used for subsequent computations of
outgoing edges of j, since this path is a candidate for a prefix
of the optimal solution.

It is important to note that optimality can not be guaranteed
for our algorithm, because we only consider a subset of all
possible solutions, defined by the estimated tangent lines. This
restriction is comparable to the situation for polygon simplifi-
cation, where algorithms using a shortcut graph only find sim-
plified curves with vertices from the input curve. An approx-
imating polygon with fewer vertices may exist if the vertices
are not restricted to this set.

li

lj

Figure 4. A circular arc and two line segments approximating a set of points.

In the case of polygon simplification, the set of allowed so-
lutions is restricted to a canonical subset of all possible solu-
tions. Because of the G1 continuity constraints in our problem,
such a canonical subset does not exist: the tangent directions
can, in general, not be chosen from the polygonal input curve.

4.2. Building the graph

We will now describe how to compute the edges ei j of the
shortcut graph. Given two lines on a common plane P, we
have to decide if a polygonal chain [pi, pi+1, . . . , p j, p j+1] can
be approximated by two line segments on these lines, and a
circular arc touching both lines and smoothly joining the line
segments (see Fig. 4). The error criterion is that all vertices of
the chain must have distance less or equal than ε to one of the
line segments or to the arc. This can be decided as follows:

For any vertex pk, let p′k be its projection onto the plane
P. If

∥∥∥pk − p′k
∥∥∥ > ε, then the chain cannot be approximated.

Else, let ε′k =

√
ε2 −

∥∥∥pk − p′k
∥∥∥2

. This is the maximum allowed
distance for the vertex pk to the curve in the plane, since ε′k

2 +∥∥∥pk − p′k
∥∥∥2

= ε2.
Next, we calculate for each pk the set of approximating arcs.

We assume that the first line segment starts at pi and the second
line segment ends at p j+1. The center of the arc joining the line
segments must lie on the bisector of l1 and l2 separating pi and
p j+1.

The locus of the centers of valid circles consists of zero, one,
or two line segments. The endpoints of these line segments can
be obtained by constructing the classical Apollonius line–line–
circle (LLC) problem (Fig. 5, green and yellow). This problem
asks for the circles touching two lines and one circle, in our
case a circle with radius ε′k around the vertex p′k. It is easy to
see that all circles touching the two lines and having distance
less than ε′k from p′k have their centers between a pair of centers

6

Algorithm 1 Computing an approximating arc-line spline
Require: A polygonal chain C = [p1, p2, . . . , pn] and a toler-

ance value ε
Ensure: A G1 arc-line spline {l1, a1, l2, a2, . . . , lm} approximat-

ing P with distance at most ε to each vertex pi ∈ P

for all 1 ≤ i < (n − 1) do
for all j > i do

let P be the plane spanned by {pi, pi+1, p j+1}

for all pk ∈ {pi, pi+1, . . . , p j+1} do
let p′k be the vertex pk projected onto P

ε′k =

√
ε2 −

∥∥∥pk − p′k
∥∥∥2

end for
l1 = p′i p′i+1; l2 = p′j p

′
j+1; L = l1 ∩ l2

for all p′k ∈ {p
′
i+1, p′i+2, . . . , p′j} do

compute all circles tangential to:
l1, l2, and the circle around p′k with radius ε′k

if there are four solutions then
let C1,C2 be the circle centers farthest from L
Vk = C1C2

else if there are two solutions then
let C1 be the circle center farthest from L
Vk = C1L

else
Vk = ∅

end if
V = V ∩ Vk

end for
if V , ∅ and d j > di + 1 then

d j = di + 1
prev(j) = i
choose any C j ∈ V
let B j and E j be projections of C j onto l1 and l2
p j = p′j

end if
end for

end for
{i1, i2, . . . , im} = {1, . . . , prev(prev(n − 1)), prev(n − 1), n − 1}
for all 1 ≤ k < m do

let lk be the line segment Eik−1 Bik
(with Ei0 = p1 and Bim = pn)

let ak be the arc starting at Bik and ending at Eik
with center Cik

end for
return {l1, a1, l2, a2, . . . , lm}

of Apollonius circles. Note that we are only interested in one
of the possibly two pairs of solutions: the two circle centers
that are furthest away from the intersection of the two lines l1
and l2 (green in Fig. 5).

If the ε′k-disk around p′k intersects one of the two lines, say
l1, then there is only one pair of solutions to the LLC problem.
In this case, only the lower solution is of interest for us: any
arc with center beyond the upper solution is valid, since p′k has
distance less than ε to a line segment on l1.

Intersecting the ranges of valid arc centers for all p′k ∈

l1

c

l1'

l2'
l2

Figure 5. The Apollonius LLC problem and centers of approximating arcs.
The solid circles (green and yellow) are tangent to the lines l1 and l2 and
the circle c. The dotted lines and circle show the auxiliary LLP construction.

{p′i , p′i+1, . . . , p′j, p′j+1} gives the range of valid centers for the
whole chain [pi, pi+1, . . . , p j, p j+1]. If this intersection is non-
empty, then we know there exists a curve of two line segments
and a circular arc approximating the chain.

4.3. Constructions

The Apollonius circles for the line-line-circle (LLC) prob-
lem (Fig. 5) are constructed as follows. The solution circles
(tangential to two lines l1, l2 and a circle c centered at P with
radius r) have the same centers as the solution circles of a de-
rived line–line–point (LLP) problem (the circles going through
P and tangential to two lines l′1, l

′
2 at distance r from the origi-

nal lines l1, l2, shifted towards P). Therefore, the LLC problem
can be reduced to the LLP problem (Fig. 6). The other pair of
solutions is obtained by shifting the lines in the other direction.

To solve the LLP problem for two lines l1, l2 and a point P,
construct any circle c tangential to l1 and l2, with center M.
The line OP joining O, the intersection of l1 and l2, and the
point P, intersects c in two points I and J. The lines through
P parallel to IM and JM intersect the bisector b of l1 and l2 in
C1 and C2, the centers of the solution circles.

The centers of these two circles can be calculated by solv-
ing one single quadratic equation. Let L be the point where a
solution circle with center Ci touches line l1. Now we have

r = ‖Ci − L‖ = ‖Ci − P‖ .

Let s, t and u, v be points and tangent vectors of l1 and the
bisector b of l1 and l2, respectively. With Ci = s + λt and L =

u + 〈Ci − u, v〉 v, we get

‖λ(t − 〈t, v〉 v) + (s − u − 〈s − u, v〉 v)‖ = ‖λt + s − P‖ .

Setting w := (t − 〈t, v〉 v) , y := (s − u − 〈s − u, v〉 v) , and z :=
(s − P), we obtain

‖λw + y‖ = ‖λt + z‖

7

l1

l2

C1

C2

P

M

O

bc

J

I

Figure 6. The Apollonius LLP problem. The yellow circles touch the two
blue lines l1 and l2 and the point P.

which can be written as

(‖w‖2 − ‖t‖2)λ2 + 2(〈w, y〉 − 〈t, z〉)λ + (‖y‖2 − ‖z‖2) = 0 .

Solving this equation gives us the two possible centers of the
circles solving the LLP problem.

4.4. Complexity

The worst-case complexity of our algorithm on input poly-
gons of size n is O(n3), because each of the three nested loops
can have O(n) iterations. However, on real-world data, the in-
ner loop often does not have to be executed if the distance of
one of the points {pi, pi+1, . . . , p j+1} to the plane P is larger than
ε. Therefore, we observed a better running time in practice, in
the order of magnitude of about O(n2.5).

4.5. Preprocessing

To speed up the computation and to stabilize the estimation of
the tangent lines, we apply a polygon simplification algorithm
on the polygonal spine curve as a preprocessing step. We used
the algorithm from [25], which computes a minimum segment
approximation using a subset of the input vertices with distance
less or equal to ε in time O(n3), using space O(n). We observed
a real-world running time in the order of magnitude of about
O(n2).

Additionally, we choose from all possible optimal curves the
one with the smallest sum of squared errors. This can be done
in a greedy way without increasing the asymptotic running time
bound of the algorithm.

5. Representation of arc-line splines

We now investigate properties and representations of arc-
line splines, the class of curves that our curve approximation
algorithm should output.

5.1. Local control of arc-line splines

We show that no parametric representation of arc-line splines
exists which has the local control property, i.e., the property
that every parameter has only influence to a constant number of
segments of the curve. For polygonal chains and other piecewise
defined curves such as B-splines, the canonical representations
fulfill this property. Local control would be very desirable as it
would simplify construction and local modification of arc-line
splines, especially in the context of least squares fitting (see
Section 6).

Consider the configuration space of an arc-line spline with
point and tangent constraints on both endpoints; we assume
alternating arc and line segments, and line segments at the
beginning and end of the curve. This space can be considered
as an algebraic set in the cartesian product of the configuration
spaces of the line and arc segments

S = L × A × · · · × L

subject to the condition that the end points and end tangents of
two consecutive segments coincide. The configuration space L
of line segments embedded in R3 has dimension 6; the space A
of arc segments embedded in R3 is 8-dimensional. The conti-
nuity constraints can be expressed using 5 equations: 3 for G0

continuity – since the junction point between two consecutive
segments is an element of R3 – and 2 for G1 continuity, since
the unit tangent at this point can be identified with a point on
the sphere S2. Therefore, the dimension of the configuration
space of an arc-line spline is

d = 6 − 5 + 8 − 5 + · · · + 6 = 4n + 6

where n is the number of arc segments of the curve.
Now consider the subspace of this configuration space S c

obtained by additionally fixing the endpoints and end tangents
of the curve. This subspace is an algebraic set of dimension at
least d − 10 = 4n − 4 for n > 1. To achieve local control of the
curve, we have to find a parameterization of the curve that has
the form

Rd → (R3 × S2) × S c × (R3 × S2) .

10 parameters should describe the constraints at the endpoints,
and the remaining (d − 10) parameters should be mapped onto
the space S c of all curves with n segments fulfilling these con-
straints. In other words, we require that the two ends of the
curve are locally controlled.

A necessary condition for the existence of such a para-
meterization scheme is that for any choice of constraints, the
subspace S c is a (d−10)-dimensional manifold. This means that
all constraint equations must be independent. This is however
not the case if the two constraints at the endpoint are collinear,

8

Figure 7. A tube and its control polygon.

i.e., if the two endpoints can be connected by a line with the
same direction as the two end tangents.

A geometric explanation for this problem can be given as
follows: since the line connecting the two endpoints has the
same direction as the two end tangents (modulo sign), the curve
between the constraints gains an additional degree of freedom
by rotation around this axis. This shows that no parametrization
of an arc-line spline can exist which achieves local control of
parameters.

It is worth noting that the same type of problem also arises
for circular arc splines in R2. In the general case, a biarc with
fixed end points and tangents has only one degree of freedom
for choosing the junction point. Now consider a biarc with
coinciding start and end points and tangents. In this case, every
point in R2 is a valid junction point.

5.2. Control polygon representation

CAD engineers most commonly represent tube geometries
using control polygons, whose vertices are the intersection
points of the lines defined by the straight line segments of the
spine curve (see Fig. 7). For curves with constant arc radius,
one additional parameter defines the arc radius. For general arc-
line splines, there is one arc radius parameter for every vertex
of the control polygon except the first and the last.

This representation, however, has serious drawbacks: first, it
can not express all possible spine curves; in particular, bends
with an apex angle of π or more cannot be represented this way.
Another problem is that not every control polygon describes a
proper tube: if two vertices are too close together, the two arcs
corresponding to these vertices may intersect.

5.3. LRA (length, rotation, angle) representation

A popular format for describing bending data for tubes is
the LRA representation (Fig. 8, see also [26]). This is the rep-
resentation used by bending machines, since it naturally de-
scribes the motion sequence of the bending machine. For an
arc-line spline with n arcs, it consists of a sequence of n + 1
triples (l, r, a) denoting the length l of a straight segment, the
apex angle a of a circular arc, and the rotation r of the normal
(in the Frenet frame) of an arc segment to its predecessor. For
two consecutive arc segments (or arcs at the beginning or end
of the curve), a line segment with length l = 0 is used.

By convention, the first triple has r = 0, because for the
first arc no rotation of the plane normal to the previous arcs is
defined. Moreover, the last triple usually has a = 0 and r = 0,
meaning that it only defines a line segment but no arc segment.
This means that the LRA representation defines arc-line splines
with alternating arc and line segments and starting and ending
with a line segment. This is a natural assumption in the context
of bending tubes.

Again, for constant arc radii one additional parameter is
required, whereas for general arc-line splines, quadruples
(l, r, a,R) with bend radius R are used instead.

This information describes any arc-line spline up to rigid
transformations in R3. The starting point and orientation of the
fist line segment of the curve is given by a point p = (x, y, z) ∈
R3 and a unit quaternion q = (qa + i qb + j qc + k qd) ∈ H.
The rotation represented by the quaternion is given by q v q−1,
where v is the vector to be rotated, considered as a quaternion
with zero real part. Since the whole configuration space of arc-
line splines is covered by the LRA representation, it is free of
the drawbacks of the control polygon representation.

6. Least-squares distance fitting

After computing an arc-line spline approximation of our
spine curve polygon as explained in Section 4, we have deter-
mined the combinatorial structure of the spine curve. Using a
nonlinear optimization algorithm (Levenberg-Marquardt), we
now modify the parameters of the spine curve to minimize the
least squares orthogonal distance from the tube surface to the
samples of the input point cloud. The Jacobian of the distance
energy function is approximated using finite differences.

For reasons explained in Section 5, we use the LRA repre-
sentation of the tube as parameters for the optimization. An
analogous technique was proposed by Hoschek [15] for least-
squares fitting of an R2 arc spline.

7. Outlier classification

During the various processing stages of our pipe surface re-
construction framework, outliers can occur due to several rea-
sons. The raw scan data often contains a number of outlier sam-
ples that do not belong to the surface and are caused by tech-
nical deficiencies or human errors during the scanning process.
Moreover, the scanning data is noisy and can show distortions

x0 y0 z0

qa qb qc qd

l1 − a1 R1

l2 r2 a2 R2

...

ln − − −

x0 y0 z0 R

qa qb qc qd

l1 − a1

l2 r2 a2

...

ln − −

Figure 8. LRA representation of arc-line splines with variable and constant
arc radius.

9

significantly above the expected noise level, caused by unfa-
vorable circumstances such as bad surface reflectance proper-
ties or steep angle of incidence of the laser line. Irregular and
noisy sampling can give rise to bad estimates of normals and
shape operators. As a result, errors in the input data can also
affect convergence of the cylinder fitting step due to bad initial
guesses.

By imposing a set of constraints to the data in each processing
step, determined by thresholds for several locally evaluated
quantities, we can classify outliers and significantly improve
robustness of our geometry processing pipeline.

Estimation of normals and shape operators is done by poly-
nomial fitting as described in Section 2.1. To obtain robust es-
timates for these quantities, a sufficiently large number of sam-
ples is required. We use a ball with radius 2

3 rP as the neighbor-
hood and require the sample count in the neighborhood to be
at least 10.

The maximum curvature κmax obtained by polynomial fitting
should be close to the inverse of the pipe radius 1

rP
. If the value

deviates by a factor of more than 0.1 from the expected curva-
ture, we consider the point to be an outlier. The standard devi-
ation of the samples from the fitting polynomial also provides
a criterion for outlier classification.

After MLS projection of the samples onto the spine curve, we
have yet another criterion to check for outliers in the data. The
distance between the projected sample and its original position
should be close to the pipe radius. If this is not the case, the
sample is discarded as an outlier. This error can stems from
both displacement of an individual sample p from the surface
and from the deviation of the best fitting cylinder’s axis to the
actual spine curve. We set our threshold for outlier classification
using this error to 0.1 rP.

8. Results

We have tested our algorithm on a benchmark data set con-
sisting of scans of 30 different tubes, with radii ranging from 2
mm to 50 mm. Our algorithm was able to determine the correct
segmentation of the tubes in 28 of 30 cases. In the two cases
where the algorithm failed, it produced one and two additional
arc segments, respectively, while still properly approximating
the spine curve. Figure 9 shows the results of a few interesting
examples from our test data set.

After optimization by least-squares distance fitting, the me-
dian distance of input surface samples to the reconstructed sur-
face was between 50 and 150 µm, which is in the order of
magnitude of the accuracy of the used laser scanners (FARO
Platinum Laser ScanArm and KonicaMinolta VIVID 9i). Fig-
ures 9 (g) and (h) visualize the distances of the input samples to
the reconstructed surface. The measurement is accurate enough
to make the deformation of the tube caused by the bending
visible. It is clearly recognizable that the most significant devi-
ation of the samples from the model surface is caused by this
deformation.

Running time of the algorithm pipeline is clearly dominated
by the spine curve reconstruction and the least squares mini-

mization. For a typical scan of a tube with 4 mm pipe radius
and 268 mm length, consisting of 6005 samples, shown in Fig-
ures 3 and 9 (g), reconstruction of the spine curve took about
16 seconds on a 2 GHz PC, while least-squares fitting took 34
seconds. All other steps of the reconstruction (curve reconstruc-
tion, curve simplification, and arc-line spline approximation)
took less than one second in total. The polygonal spine curve
approximation consisted of 471 vertices before simplification
and 30 vertices after simplification.

Running time for the least-squares optimization is propor-
tional to the number of samples and the number of parameters
of the LRA description. This means that for complex tube ob-
jects, such as the ones shown in Figures 9 (c) and (d), optimiza-
tion can take several minutes. This could however be improved
by employing more elaborate optimization strategies than the
one used in our implementation.

9. Future work

As we mentioned above, the least-squares fitting of the recon-
structed tube surface to the input point cloud still leaves room
for enhancements. A possible direction would be the use of
constrained optimization methods, such as interior point meth-
ods or other barrier methods (see [27]). This would allow to
optimize in the configuration space S = L × A × · · · × L of the
segments, while enforcing the G1 continuity and the ε tolerance
of the solution using constraints.

There is an increasing trend in the industry to use more
complicated shapes of tubes. Several assumptions, such as a
constant tube radius or a circular cross section of the tube, do
not necessarily hold anymore. It would be interesting to extend
our method to these more general cases.

10. Conclusion

We present a complete process to parametric reconstruc-
tion of bent tube surfaces. We propose a moving least squares
method to compute the spine curve of a pipe surface from a
point cloud of the surface. We then give a heuristic to the prob-
lem of approximating a polygonal curve by a G1 continuous
spatial arc-line spline. We construct a graph representing a cer-
tain subset of all possible solutions in a greedy way and then
find the optimal solution contained in this subset.

Our algorithm has been implemented in a software product
of our industry partner and is already used in the tubing process
of several car manufacturers.

Acknowledgments

The work of Ulrich Bauer was supported by TubeExpert
Ltd. Konrad Polthier was supported by the DFG Research Cen-
ter MATHEON “Mathematics for key technologies” in Berlin.
Thanks to Martin Kavalar from TubeExpert for providing scan
data.

10

r = 16 mm

(a)

r = 2 mm

(b)

0
median = 0.127 mm

0.2 0.4 0.6 0.8 mm
r = 16 mm (c)

Figure 9. Results of our algorithm on difficult real-world data. Our method can reconstruct thick tubes (a) just as well as with thin wires (b). It can handle
fairly complicated tubes (d,e) and special cases such as multiple consecutive bends joined by very short straight segments (a), bends with angles greater than π
(f), and very small angles (g). Coloring the distances between the samples and the reconstructed surface clearly shows that deviations are mainly caused by
deformation of the tubes at the bends (c,h). (Continued on next page.)

11

r = 16 mm r = 4 mm

(d) (e)

r = 3 mm

r = 9 mm

(f) (g)

0
median = 0.073 mm

0.2 0.4 0.6 0.8 mm
r = 4 mm

(h)

12

References

[1] N. Amenta, S. Choi, R. K. Kolluri, The power crust, in: SMA ’01:
Proceedings of the sixth ACM symposium on Solid modeling and
applications, ACM Press, 2001, pp. 249–266.

[2] A. Adamson, M. Alexa, Approximating and intersecting surfaces from
points, in: SGP ’03: Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, Eurographics
Association, 2003, pp. 230–239.

[3] W. E. L. Grimson, T. Lozano-Perez, N. Noble, S. J. White, An
automatic tube inspection system that finds cylinders in range data, in:
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1993, pp. 446–452.

[4] F. Goulette, Automatic cad modeling of industrial pipes from range
images, in: First International Conference on Recent Advances in 3-D
Digital Imaging and Modeling (3DIM ’97), IEEE Computer Society,
Los Alamitos, CA, USA, 1997, pp. 229–233.

[5] I.-K. Lee, Curve reconstruction from unorganized points, Comput. Aided
Geom. Des. 17 (2) (2000) 161–177.

[6] I.-K. Lee, K.-J. Kim, Shrinking: Another method for surface
reconstruction, in: GMP ’04: Proceedings of the Geometric Modeling
and Processing 2004, IEEE Computer Society, 2004, p. 259.

[7] D. Levin, Mesh-independent surface interpolation, in: G. Brunnett,
B. Hamann, H. Müller, L. Linsen (Eds.), Geometric Modeling for
Scientific Visualization, Springer, 2003, pp. 37–49.

[8] N. D. Cornea, D. Silver, P. Min, Curve-skeleton properties, applications,
and algorithms, IEEE Transactions on Visualization and Computer
Graphics 13 (3) (2007) 530–548.

[9] N. Amenta, M. Bern, D. Eppstein, The crust and the beta-skeleton:
combinatorial curve reconstruction, Graphical Models and Image
Processing 60 (2) (1998) 125–135.

[10] T. K. Dey, P. Kumar, A simple provable algorithm for curve
reconstruction, in: SODA ’99: Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, Society for Industrial and
Applied Mathematics, 1999, pp. 893–894.

[11] D. H. Douglas, T. K. Peucker, Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,
The Canadian Cartographer 10 (2) (1973) 112–122.

[12] D. Eu, G. T. Toussaint, On approximating polygonal curves in two and
three dimensions, CVGIP: Graph. Models Image Process. 56 (3) (1994)

231–246.
[13] P. K. Agarwal, S. Har-Peled, N. H. Mustafa, Y. Wang, Near-linear time

approximation algorithms for curve simplification, Algorithmica 42 (3)
(2005) 203–219.

[14] L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, J. S. Snoeyink,
Approximating polygons and subdivisions with minimum link paths,
Internat. J. Comput. Geom. Appl 3 (1993) 383–415.

[15] J. Hoschek, Circular splines, Computer-Aided Design 24 (11) (1992)
611–618.

[16] A. Safonova, J. Rossignac, Compressed piecewise-
circular approximations of 3d curves, Computer-Aided Design 35 (6)
(2003) 533–547.

[17] S. Drysdale, G. Rote, A. Sturm, Approximation of an open polygonal
curve with a minimum number of circular arcs, in: Proceedings of the
22nd European Workshop on Computational Geometry (EWCG), IEEE
Computer Society, 2006, pp. 25–28.

[18] D. S. Meek, D. J. Walton, Approximation of discrete data by G1 arc
splines, Computer-Aided Design 24 (6) (1992) 301–306.

[19] L. Piegl, W. Tiller, Data approximation using biarcs, Engineering with
Computers 18 (1) (2002) 59–65.

[20] M. Held, J. Eibl, Biarc approximation of polygons within asymmetric
tolerance bands, Computer-Aided Design 37 (4) (2005) 357–371.

[21] K. Bolton, Biarc curves, Computer-Aided Design 7 (2) (1975) 89–92.
[22] F. Cazals, M. Pouget, Estimating differential quantities using polynomial

fitting of osculating jets, Comput. Aided Geom. Des. 22 (2) (2005)
121–146.

[23] P. Krsek, G. Lukács, R. Martin, Algorithms for computing curvatures
from range data, in: Proceedings of the 8th IMA Conference on The
Mathematics of Surfaces, 1998, pp. 1–16.

[24] G. Lukács, R. Martin, D. Marshall, Faithful least-squares fitting of
spheres, cylinders, cones and tori for reliable segmentation, in: 5th
European Conference on Computer Vision, Vol. 1406 of Lecture Notes
in Computer Science, Springer, 1998, pp. 671–686.

[25] O. Daescu, New results on path approximation, Algorithmica 38 (1)
(2003) 131–143.

[26] P. Chapman, State of the art cnc tube bending, TubeNet.org.
URL http://www.tubenet.org.uk/technical/addison m.html

[27] J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999.

13

