
On Discontinuous- and Continuous-In-Time
Unfitted Space-Time Methods for PDEs on

Moving Domains

Master’s thesis

Institute for Numerical and Applied Mathematics
University of Göttingen

October 2020

Supervisor: Prof. Dr. Christoph Lehrenfeld
Second Assessor: Prof. Dr. Gert Lube

Author: Fabian Heimann

Contents

1 Introduction 4
1.1 Outline of this thesis . 7

2 Unfitted Space-Time methods 8
2.1 The model problem . 8
2.2 Space-Time DG assuming an exact handling of the geometry 8

2.2.1 Discrete regions . 9
2.2.2 Function spaces . 10
2.2.3 The discrete problem . 11

2.3 Space-Time CG . 12
2.3.1 Discrete regions . 13
2.3.2 Function spaces . 14
2.3.3 Projection operators . 15
2.3.4 The discrete problem . 20

2.4 Geometry handling . 20
2.4.1 The merely spatial base case . 21
2.4.2 Geometry handling of the numerical space-time DG method 23
2.4.3 Geometry handling for the analysis under a weakened assumption of

an exact handling . 25
2.4.4 Mapping to the exact geometry and properties of Θ 26

2.5 Space-Time DG under a weakened assumption on the handling of geometries 27

3 Analysis of Unfitted Space-Time DG method (including geometry errors) 34
3.1 Ghost-penalty related estimates . 35
3.2 Special trace inequalities . 42
3.3 Stability . 45
3.4 Continuity . 48
3.5 Strang-type analysis . 49
3.6 Geometrical consistency analysis . 51
3.7 A priori error bounds . 54

4 Numerical investigations 55
4.1 Space-time DG . 55
4.2 Space-time CG . 60

2

5 Conclusion and Outlook 62
5.1 Summary . 62
5.2 Directions for future research . 62

3

1 Introduction

Partial differential equations can be used to describe a broad variety of problems in physics
and engineering. Often, interesting geometries of the physical setting are so complicated that
analytical methods cannot deliver solutions to the differential equation, so that numerical
methods are needed. One class of suchmethods are Finite Elementmethods, which subdivide
the domain into a mesh and turn the differential equation problem into a (linear) algebra
problem by mapping the mesh elements to a reference configuration where the so called
Finite Element is defined. While the Finite Element method is typically introduced first in
application to an elliptic problem such as the Poisson equation, it also can be applied to a
broader class of problems.

In this thesis, we want to focus on the convection-diffusion equation as a parabolic model
problem. Imagine we are given a domain Ω, typically Ω ⊆ R2 or Ω ⊆ R3, and a quantity
(such as a liquid) inside this domain. The concentration of the quantity can then by modelled
by a function u : Ω → R at each time. Further assume that there is a transport field w acting
on the quantity, because, for instance, the liquid is mixed. Then the convection process will
be governed by a generalisation of the simple one dimensional transport equation, which
reads

∂tu(x, t) + c∂xu(x, t) = 0 for all (x, t) ∈ Ω × [0, T], c ∈ R.

The n-dimensional generalisation of this equation would then be

∂tu(x, t) + div(wu(x, t)) = 0 for all (x, t) ∈ Ω × [0, T].

Now, for the convection-diffusion problem, we add diffusion as a physical process. This pro-
cess is known from the elliptic Poisson case or the heat equation and causes a high concen-
tration at some point to smoothen out in the vicinity. A typical real-world example for this
would be a drop of ink poured into water. In addition, we allow for a source of concentration
by means of a right-hand side f in order to arrive at the differential equation

∂tu(x, t) + div(wu(x, t)) − αΔu(x, t) = f(x, t). (1)

This is the convection-diffusion equation. It needs to be supplied with suitable initial and
boundary condition, which we will do later.

So far, we assumed the domain Ω to be fixed over the total time of interest. This is a
reasonable assumption covering many relevant examples, but the generalisation of a time
dependent domain Ω(t) is of interest, too. One example for this general framework is given

4

Ω(t = 0)

Ω(t = Δt)

Ω̃

Ω(t = 7
16T)

Ω(t = 8
16T)

Figure 1: Example of a domain Ω(t) moving with time. Some aspects of the unfitted DG
method introduced later are already hinted at. The convection field points merely
in y-direction and changes with time.

by a domain which is shifted itself by the convection field w. In addition, the setting of the
convection-diffusion equation posed on a varying domain is important as a preparation for
more involved problems such as two-phase flow problems, where the same problem (but
vector-valued) is essentially posed on two domains of different species. This is why we want
to study the convection-diffusion equation posed on a time-dependent domain in this thesis.
In Fig. 1, a first illustration of a moving domain problem from this thesis is given.

The domain Ω—time-dependent or not—might have a computationally simple or complex
structure. Let us for a moment consider the time-independent case. There, simple examples
of domains Ω ⊆ R2 would be polygonals such as the unit square Ω = [0, 1]2. In that case, the
Finite Element method can take into account the domain directly in the triangulation Th; the
triangles T ∈ Th could be chosen such that ∂Ω would be subdivided into edges of triangles.
But not all domains of interest are polygonal. For a more complicated example consider the
circle

Ω = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.

Obviously, the strategy of representing ∂Ω by edges of the mesh triangles does not work
exactly in this case. If one is interested in amethod of second order accuracy in space, one can
approximate Ω by a suiting polygonal. The accuracy of such an approach can be improved
by applying a mapping Ψ to the effect that the edges of Ψ(T) approximate the boundary ∂Ω

5

with higher order accuracy (see [6, Subsection 3.7] for more details). In general, we call such
methods which construct the mesh in accordance with the boundary of the domain fitted
discretisations.

Apart from fitted discretisations, there exists an important class of methods called unfitted
discretisations, where the geometry of the domain is not taken into consideration when the
mesh is generated. More specifically, a background domain Ω̃ ⊇ Ω is meshed. In our example
of the circle, we could for instance choose Ω̃ = [−2, 2]2. Then, the Finite Element space
is modified with the cut elements in mind in order to account for the fact that potentially
only a part of the triangle represents the domain. That poses new challenges such as the
generation of quadrature rules for the cut elements, but allows for a higher flexibility with
more complicated geometries. (See e.g. [5, Section 2] for more details, or [2], or [10].)

The flexibility of unfitted methods is particularly relevant for time-dependent domains.
There, a fitted method naively would need to generate a new mesh for each discrete time
ti ∈ [0, T], which would be computationally expensive. There are strategies to deal with
this issue, such as Arbitrary-Lagrangian-Eulerian formulations, but, for instance, topology
changes in time still pose a challenge for such approaches. [5, p. 69] Unfitted methods
can easily accomodate for a time-dependent domain. This is why we will consider unfitted
methods for our model problem from now on in this thesis.

This summarises two relevant classes of options concerning the discretisation in space.
In addition, our partial differential equation contains a time variable. This means that we
also need to think about a discretisation in time. Basically, one can distinguish between time
stepping methods and space-time methods. While the former—roughly speaking—extend the
spatial method by a time stepping loop, often inspired by the according methods for ordinary
differential equations, such as the implicit or explicit Euler scheme, the latter fully discretise
the problem on a space-time domain.

In recent years, progress has been made with both options for time discretisation for the
convection-diffusion problem on a varying domain, within the realm of unfitted methods.
Concerning time stepping methods, Lehrenfeld and Olshanskii [7] recently suggested an im-
plicit Euler-type based discretisation in time that makes use of extensions of functions from
the physical domain to small neighbourhoods and performed a careful analysis. General-
isations of this methods to discretisations of higher order in space and time are subject of
current research.

Concerning space-time methods, one such method was suggested and analysed by Preuß
in [9]. This method and its analysis represent the starting point for this thesis. We would like
to call the method a discontinuous (in time) Galerkin method because it allows for jumps in

6

the numerical solution across time discretisation points. Preuß introduced the method and
performed an error analysis under the assumption of an exact handling of the geometries.
This should mean the following: In the continuous problem, the space-time domain has the
following structure1

Q =
�

t

Ω(t) × {t}.

This construction is of theoretical importance, but might in general lead to a complicated
structure. Hence, in the numerical simulation we replace this integration region with a com-
putationally feasible approximation Qh and perform the integration over that region instead.
The regions Q and Qh are only allowed to differ in an controlled manner. This allows one to
accomodate the “variational crime” of replacing the integration region by a Strang Lemma.
The roadmap for one important line of thought of this thesis will be to transfer this general
strategy to the specific case.

Another way to extend the results about the Discontinuous Galerkin method is to consider
a corresponding Continuous Galerkin method. There, the numerical solution is constructed
in a continuous-in-time manner. This reduces the computational effort because on each time
slice there is one degree of freedom less in the time direction. However, new challenges for
the analysis appear. This is why we will only introduce the CG method rigorously and just
give numerical examples to illustrate how the method performes in practice.

1.1 Outline of this thesis

In line with this general plan, the remainder of this thesis is organised as follows. In the
next section, Section 2, several unfitted space-time methods for our model problem will be
introduced. For the reader’s convenience, we will start by introducing the method of [9] as
a starting point for our generalisation and its Continuous Galerkin counterpart. Afterwards,
we will describe the isoparametric mapping which is used to represent the geometry with
high order accuracy. That allows us then to present the final Discontinuous Galerkin method
we will analyse in this thesis. This analysis is presented in the following Section 3. In Section
4, we illustrate our theoretical finding with numerical experiments. Finally, Section 5 will
give a summary and contains suggestions for directions for further research.

1We omit a specification of the interval of t to just sketch the idea here. Concrete definition will be given
later.

7

2 Unfitted Space-Time methods

In this section, we want to introduce several space-time-methods in detail. Before we go
through those, we start with a complete introduction of the model problem. Afterwards, the
DG method of [9] assuming an exact handling of geometries will be introduced, followed by
its CG counterpart. Then, wewill turn to our variant of themethodwith aweaker assumption
concerning the handling of geometries.

2.1 The model problem

We already gave the strong form of the convection-diffusion equation in (1). This is the
condition which has to hold everywhere in Ω(t), for all t ∈ [0, T]. Now, this equation is
supplemented with appropriate initial and boundary conditions. First, at t = 0, the solution
should be given as u0. Then, we assume that there is no transport of the species along the
(possibly moving) boundary, ∇u · n∂Ω = 0. Finally, we assume the convection field w to be
divergence-free. Then, we arrive at the following full strong formulation of the problem: (c.f.
also [9, Eq. 2.1])

∂tu + w · ∇u − Δu = f in Ω(t) for t ∈ [0, T] (2)

div(w) = 0 in Ω(t) for t ∈ [0, T]
∇u · n∂Ω = 0 on ∂Ω(t) for t ∈ [0, T]
u(. . . , 0) = u0 in Ω(0).

In the first line, we applied the product rule for the divergence. Further, we fixed the diffusion
coefficient to α = 1. This is the strong form of our model problem. As a technical detail,
we will assume that the right-hand side function f and the convection field w are not only
defined on Ω(t) for all t ∈ [0, T], but also in a neighbourhood which is sufficiently large to
contain the discrete versions of the space-time domain to be introduced later.

2.2 Space-Time DG assuming an exact handling of the geometry

In this subsection, we will introduce the space-time DG method of [9]. It assumes an exact
handling of the geometry. This method will be the base case for the further methods to be
introduced later.

8

2.2.1 Discrete regions

We start with the introduction of certain regions which will be relevant to the respective
function spaces.

First, we follow Preuß by assuming that we are given a decomposition of the time interval
[0, T] into intervals In = (tn−1, tn] (n = 1, . . . , N), where each pair of adjacent time points
has the same distance, Δt = tn − tn−1 for all n = 1, . . . , N . This is a simplification that
we make especially for ease of presentation of the analysis section. Let us mention that it is
however not a necessary restriction for the method itself. Exploiting the decomposition of
the time interval, we abbreviate Ωn := Ω(tn). Next, we can subdivide the whole space-time
region into slices as follows:

Qn =
�

t∈In

Ω(t) × {t}, Q =
N�

n=1
Qn.

The aim of this division of the space-time domain into slices is the reduction of numerical
effort. By this technique, it is not necessary to solve the problem for the full time interval
[0, T] in one big matrix, but to solve the problem for each smaller slice, step by step.

For the space-time boundary, we want introduce the following notation:

Γ∗ =
�

t∈(0,T]
∂Ω(t) × {t}, Γn

∗ =
�

t∈In

∂Ω(t) × {t}.

We assume that the domain Ω(t) is contained in a background domain Ω̃, where a shape
regular triangulation T̃h is given. We can define space-time slices on the background domain
as well:

Q̃n =
�

t∈In

Ω̃ × {t}, Q̃ =
N�

n=1
Q̃n = Ω̃ × [0, T].

For each time slice n, we define an extension of the exact domain Qn which has tensor
product structure:

E(Ωn) := {x ∈ T for some T ∈ Th such that (T × In) ∩ Qn �= ∅}, E(Qn) = E(Ωn) × In.

In addition, we define an interior domain with tensor product structure as

I(Ωn) := {x ∈ T for some T ∈ Th such that (T × In) ⊆ Qn}, I(Qn) = I(Ωn) × In.

9

E(Q)

I(Q)

E(Q)\I(Q) F∗
R F∗,ext

R \F∗
R

Figure 2: Discrete regions in the definition of the ghost-penalty of the plain DG method. By
F∗

R we mean the union of all F∗,n
R and respectively for F∗,ext

R .

Moreover, we collect those regions

E(Q) =
N�

n=1
E(Qn), I(Q) =

N�

n=1
I(Qn).

As we are dealing with an unfitted discretisation, ill-posed cut configurations pose a chal-
lenge to the numerical method which is solved by a Ghost penalty stabilisation. See e.g. [1]
for a general introduction of the Ghost penalty technique.

In our setting, the space of facets which will determine the classical ghost penalty is then
given in two steps: First, we define F∗,n

R :

F∗,n
R = {F ∈ F such that ∃T1 �= T2, T1 ∈ E(Ωn)\I(Ωn), T2 ∈ E(Ωn) with F = T1 ∩ T2}.

Second, this set of facets will be extended to a set F∗,n,ext
R ⊇ F∗,n

R in line with the Assumption
3.1 stated explicitly below.

All those regions and facet sets are depicted in Fig. 2 for the reader’s convenience.

2.2.2 Function spaces

After we have defined the relevant geometrical regions, we continue with introducing the
relevant function spaces:

We consider a tensor product function space in space and time. For those components, we

10

define

W ks
h,space = {v ∈ H1(Ω̃) | v|T ∈ Pks(T) ∀T ∈ T̃h},

W kt
h,time,n = Pkt([tn−1, tn]).

For the spatial part, we just consider a standard continuous discrete function space. In time,
we basically take standard polynomials on each time slice.

If we move forward in time, our interface might change. Hence, it seems reasonable to
define the discrete function on each slice only relative to the necessary finite elements of our
triangulation, which are given by the extension E(Ωn). Therefore, we define

W ks
h,space,n = {v|E(Ωn) | v ∈ W ks

h,space}.

Then on each of the time slices n, those spaces are taken together with the time spaces to
yield

W ks,kt
n = W ks

h,space,n ⊗ W kt
h,time,n =: {

�

i,j

cijφi · ψj | φi ∈ W ks
h,space,n, ψj ∈ W kt

h,time,n}.

Finally, those slices are collected for the different times, and we require the function to vanish
outside of the extended domain E(Q):

Wh = {v ∈ L2(E(Q)) | v|E(Qn) ∈ W ks,kt
n ∀n = 1, . . . , N}.

2.2.3 The discrete problem

With the help of the discrete regions and function spaces introduced above, we are now able
to formulate the variational formulation of the DG method under the assumption of an exact
handling of geometries. We define

B(u, v) =
N�

n=1
(∂tu + w · ∇u, v)Qn

+ (∇u, ∇v)Qn +
N−1�

n=1
([u]n, vn

+)Ω(tn) + (u0
+, v0

+)Ω(0),

where (. . . , . . .) is the L2 scalar product, [u]n describes the jump of the discrete function u

along the time-slice boundary at tn. Accordingly, un
± = lims→0,s>0 u(. . . , tn ± s).

The method is fully described by introducing a ghost penalty term in addition. To this end,

11

we define

jn
h (u, v) =

� tn

tn−1
γ̃J

�

F ∈F∗,n,ext
R

�

ωF

1
h2 [u]ωF

[v]ωF
dxdt

J(u, v) =
N�

n=1
jn

h (u, v)

In the sum over all F ∈ F∗,n,ext
R , we introduced the following notation: For a facet F ∈ F ,

the facet patch ωF is defined as ωF = T1 ∪ T2, where T1 and T2 are the elements adjacent to
F . The facet patch jump [. . .]ωF

is defined as the difference between the function as defined
on one of the elements Ti and the canonical polynomial extension of the function defined on
the other element T3−i.

Finally, we also introduce a right hand side:2

f(v) :=
N�

n=1
(f, v)Qn + (u0, v0

+)Ω(0).

Then, the discrete problem reads: Find u ∈ Wh such that

B(u, v) + J(u, v) = f(v) ∀v ∈ Wh.

Remark. This is one of two forms to introduce the bilinear form. Because it will be important
for our analysis later, we would like to remark here that it is possible to derive an mass
conserving form of the bilinear form also and refer to [9, Lemma 2.1] for further details.

2.3 Space-Time CG

Next, we want to introduce a variant of the discontinuous Galerkin method presented in the
previous subsection. Roughly, the idea is to enforce continuity along time slice boundaries
by setting the value for the first discrete time point of the slice fix to the last value from the
former slice. By means of that, the dimension of the problem matrix is reduced by the same
amount as choosing one polynomial order less in time would lead to. This makes the CG
variant interesting from a computational point of view, in particular for low and moderate
polynomial orders in time.

2Note that we slightly abuse notation here by using f both as a symbol for the functional and the right-
hand-side function in Eq. 2. However, the context should make clear whether a functional or a space-time
function is meant.

12

2.3.1 Discrete regions

In detail, we start to introduce the method by defining discrete regions: Fix a time slice
In = (tn−1, tn]. In order to define the discrete regions for the ghost penalty, we will only
take into consideration the interface configuration, i.e. Ω(tn) orΓ(tn) := ∂Ω(tn). We assume
that there exists a (purely spatial) extension function D which satisfies at least the following
assumptions:3

(1) For each n, Γ(t) ⊆ D(Γ(tn)) for all t ∈ In.

(2) D(Γ(tn)) contains all elements with cuts on the space-time slice and an α/ β strip in-
or outside from the boundary:

D(Γ(tn)) ⊇ {x ∈ T for some T ∈ Th s.t. (T × In) ∩ Γn
∗ �= ∅ or

dist((T × In), Γn
∗) ≤

α, if (T × In) ⊆ Qn

β, if (T × In) ⊆ Q̃n\Qn.
}

(3) For each n and T ∈ Th such that (T × In+1) ∩ Qn+1 �= ∅, T ⊆ D(Γ(tn)).

Now we define the extended domain in terms of this operator:

EP G(Ωn) : = {x ∈ T for some T ∈ Th s.t. (T × In) ⊆ Qn or T ∩ D(Γ(tn)) �= ∅},

EP G(Qn) = EP G(Ωn) × In.

In addition we define an operator for the outer and extended interface part:

OP G(Ωn) : = {x ∈ T for some T ∈ Th s.t. (T × In) ⊆ Q̃n\Qn or T ∩ D(Γ(tn)) �= ∅},

OP G(Qn) = OP G(Ωn) × In.

Those operators are now used to define the relevant facet set for the new ghost penalty:

F∗,n,P G
R = {F ∈ F such that ∃T1 �= T2, T1 ∈ OP G(Ωn) ∩ EP G(Ωn), T2 ∈ EP G(Ωn)

with F = T1 ∩ T2}.

3“at least” should mean in this context that we would like to describe some properties of the extension D
which illustrate its basic functionality. In the course of a detailed analysis, further assumptions on the
mapping and other aspects of the discretisation would be necessary (compare with Section 3 of this thesis).
But we leave the task of analysing the CG method in detail for further investigations at this point.

13

EP G(Q)OP G(Q)

OP G(Q) ∩ EP G(Q) F∗,P G
R

Figure 3: Discrete regions in the definition of the ghost-penalty of the CG method. Again,
we denote the union over all F∗,n,P G

R by F∗,P G
R .

As a last bit of notation, we introduce a symbol for the union over all extended/outer regions
on each time slice:

EP G(Q) =
N�

n=1
EP G(Qn), OP G(Q) =

N�

n=1
OP G(Qn).

Again, we give a sketch of this construction in Fig. 3.

2.3.2 Function spaces

After having defined the relavant geometrical regions, we continue with introducing the
relevant function spaces:

For the discrete variational problem, we consider a tensor product function space in space
and time. For those components, we define

W ks
h,space = {v ∈ H1(Ω̃) | v|T ∈ Pks(T)∀T ∈ T̃h}

W kt
h,time,n = Pkt([tn−1, tn]).

For the spatial part, we just consider a standard continuous discrete function space. In time,
we basically take standard polynomials on each time slice.

If we move forward in time, our interface might change. Hence, it seems reasonable to
define the discrete function on each slice only relative to the necessary finite elements of our

14

triangulation, which are given by the extension EP G(Ωn). Therefore, we define

W ks
h,space,n = {v|EP G(Ωn) | v ∈ W ks

h,space}.

Then on each of the time slices n, those spaces are taken together with the time spaces to
yield

W ks,kt
n = W ks

h,space,n ⊗ W kt
h,time,n =: {

�

i,j

cijφi · ψj | φi ∈ W ks
h,space,n, ψj ∈ W kt

h,time,n}.

Finally, those slices are collected for the different times, and we require the function to vanish
outside of the extended domain EP G(Q):

W ks,kt

h = {v ∈ H1(Ω̃ × [0, T]) | v|EP G(Qn) ∈ W ks,kt
n ∀n = 1, . . . , N

and v vanishes outside of EP G(Q)}.

Note that we imposed continuity along the time slice boundaries by the restriction posed on
v. This function space will be the space of our ansatz functions, so we will write

Uh := W ks,kt

h .

For the space of test function, the continuity condition is relaxed:

W ks,kt

h,dc = {v ∈ L2(Ω̃ × [0, T]) | v|EP G(Qn) ∈ W ks,kt
n ∀n = 1, . . . , Nand v|Ω̃×[0,T]\EP G(Q) = 0

and v|Ω̃×In
∈ H1(Ω̃ × In)∀n}.

Furthermore, we define the abbreviation

Vh := W ks,kt−1
h,dc .

Note that the polynomial order in time is one less as usual with Petrov Galerkin methods.

2.3.3 Projection operators

We are now going to exploit these function space definitions in order to define projections
Π and Π∗. We start by presenting these operators for polynomials in 1D and extend these
definitions towards finite element functions in the paragraph afterwards. Note that the op-
erator Π will be necessary to state the CG version of the method later. Strictly speaking, the

15

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

original function
interpolant

Figure 4: The projection of type Vk → Vk,0.

operator Π∗ will not be needed for the modest purposes of this thesis. We will present both
operators anyhow, because they are easily introduced together and we believe that Π is of
importance for the highly interesting task of analysing the CG method (c.f. also Section 5).

Projection operators in 1D In the following, we are going to introduce two types of
interpolation for polynomials. Both will rely on a Lagrange basis for a concrete definition
and neglect the information from the first integration point in one or the other sense. In
particular, these two senses are

(1) Instead of the value of the function at the first integration point, fix this value to zero.
Vk → Vk,0

(2) Forget about the integration point and consider the polynomial space of one order less
spanned by the remaining integration points. Vk → Vk−1

For the case of a unit interval and a parabola, those two options are illustrated in Fig. 4 and
5.

The undivided case We are considering the space of 1D polynomials defined on the
interval [0, 1] of the order k:

Vk = Pk([0, 1]), dim(Vk) = k + 1

16

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

removed

original function
interpolant

Figure 5: The projection of type Vk → Vk−1.

and define the subspace

Vk,0 = {v ∈ Vk | v(0) = 0}, dim(Vk,0) = k.

In order to arrive at a Langrage basis for this space of functions, we need to pick k + 1
reference points. Let those be 0 = x̂0 < x̂1 < x̂2 < ... < x̂k = 1 equidistant

x̂i = i

k
for i = 0, . . . , k.

Thenwe can obtain, from the usual definition, the Lagrange basis functions (li)i=0,...,k. Hence,
we can split any function in this basis,

v(x) =
k�

i=0
li(x)v(x̂i) for v ∈ Vk.

We define the projection Π[0,1] : Vk → Vk,0 of a function v as

Π[0,1]v =
k�

i=1
li(x)v(x̂i),

and in addition the projection Π∗
[0,1] : Vk → Vk−1 of a function v as

Π∗
[0,1]v =

k−1�

i=0
l∗
i (x)v(x̂i+1),

17

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

Figure 6: The projection of type Wk → Wk,0.

where l∗
i should be the Lagrange interpolation functions stemming from the points x̂1, . . . ,

x̂k. Note that—crucially—x̂0 is “missing”.

The divided case Now we consider the divided case: The interval [0, T] is subdivided
into N intervals Ij , I0 = [0,

T

N����
=:t1

], I1 = [T

N����
=:t1

,
2T

N����
=:t2

], …. Let Φi : [0, 1] → Ii, Φi(t̂) = ti + t̂ ·

(ti+1 − ti), i = 0, .., N − 1. We define the following space of piecewise polynomials:

Wk = {v ∈ C0([0, T]) | v|Ij
∈ Pk(Ij) for all j}

where Pk(Ij) is the space of polynomials up to degree k. We also define the discontinuous
spaces

W disc
k = {v ∈ L2([0, T]) | v|Ij

∈ Pk(Ij) for all j}
Wk,0 = {v ∈ L2([0, T]) | v|Ij

∈ Pk
0 (Ij) for all j}

with Pk
0 (Ij) = {v ∈ Pk(Ij)|v(tj) = 0}. Note that Wk,0 �⊂ Wk. By application of the

previously introduced projection on [0, 1] to the respective intervals one defines

Π : Wk → Wk,0, Πv|Ii
:= Π[0,1](v ◦ Φi) ◦ Φ−1

i , i = 0, .., N − 1,

Π∗ : Wk → W disc
k−1, Π∗v|Ii

:= Π∗
[0,1](v ◦ Φi) ◦ Φ−1

i , i = 0, .., N − 1.

18

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

Figure 7: The projection of type Wk → W disc
k−1.

Projection operators for discrete functions In the next step, we will now extend the
definition of the previous paragraph towards our discrete functions: The type of the pro-
jection Π∗ is easily specified as Π∗ : Uh = W ks,kt

h → W ks,kt−1
h,dc = Vh. For Π, the according

statement is given in terms of a modified version of the discontinuous space:

W ks,kt

h,dc,0 = {v ∈ L2(Ω̃ × [0, T]) | v|EP G(Qn) ∈ W ks,kt
n,0 ∀n = 1, . . . , N

and v|Ω̃×[0,T]\EP G(Q) = 0
and v|Ω̃×In

∈ H1(Ω̃ × In)∀n},

W ks,kt
n,0 = W ks

h,space,n ⊗ Pkt
0 ([tn−1, tn]),

Pkt
0 ([tn−1, tn]) = {p ∈ Pkt([tn−1, tn]) | p(tn−1) = 0}.

Note that Pkt
0 has the same dimension as Pkt−1, and hence Vh = W ks,kt−1

h,dc and W ks,kt

h,dc,0 also
have the same dimension. Then for Π we have Π : Uh = W ks,kt

h → W ks,kt

h,dc,0. Now let us fix
some u ∈ Uh and specify the image under Π, Πu. For each point x ∈ Ω̃, we have

Πu(x, . . .) = Π(u(x, . . .)),

where the Π on the right hand side is the projection on 1D piecewise polynomials introduced
above.

The same procedure of definition applies to Π∗, where we define

Π∗u(x, . . .) = Π∗(u(d, . . .)).

19

Remark. As an alternative to this pointwise definition, we could also fix an element T and
project on each of its Lagrange points. Then, we would get the final function by picking the
polynomial which has the projected values on the Lagrange points at each t.

2.3.4 The discrete problem

Now we have all tools in place to state the variational formulation of the CG method under
the assumption of an exact handling of the geometries. It reads: Find u ∈ Uh s.t.

B(u, v) + J(u, v) = f(v) ∀v ∈ Vh,

where
B(u, v) =

N�

n=1
(∂tu + w∇u, v)Qn +

N�

n=1
(∇u, ∇v)Qn + (u0

+, v0
+)Ω0 ,

f(v) :=
N�

n=1
(f, v)Qn + (u0, v0

+)Ω(0)

and
jn

h (u, v) =
� tn

tn−1
γ

�

F ∈F∗,n,P G
R

�

ωF

1
h2 [Πu]ωF

[v]ωF
, J(u, v) =

N�

n=1
jn

h (u, v).

In this equation, the set F∗,n,P G
R denotes the facet set for the ghost penalty introduced above.

The projection operator Π sets all contributions of the discrete function u from the exact
discretisation points in time, ti, to zero, as described above.

2.4 Geometry handling

In this subsection, we will explain two ways how to achieve higher order accuracy with re-
spect to the geometry handling involved in the methods of the previous subsections. Both
suggestions are generalisations of the isoparametric mapping of [4] and [8] in a space-time
setting. Hence, we will start this subsection with a recapitulation of that base case. After-
wards, we will present the first way of generalising the construction in a space-time setting.
This generalisation will resemble the method actually implemented in the upcoming numer-
ical examples. Third, wewill also introduce another space-time generalisation of themapping
which will be counterpart of the construction actually implemented for the purposes of our
analysis.

20

2.4.1 The merely spatial base case

Let us start to illustrate the mechanism of the isoparametric mapping with a simple example:
Imagine our time-independent domain should have the structureΩ = {x ∈ R+2 | �x�2 ≤ 1

2},
which is embedded in the background domain Ω̃ = [0, 1]2. Then, Ω can be represented by
the levelset function φ(x, y) =

√
x2 + y2 − 1

2 . We now want to perform a numerical integra-
tion on the domain Ω. We assume our usual background mesh Th to be given, as well as an
according node-wise interpolation operator yielding the elementwise linear approximation
φlin. Because the piecewise linear function φlin leads to straight cuts on each element, nu-
merical integration can be performed there by a simple tesselation of the region. The domain
stemming from the function φlin should be called Ωlin.

Next, we want to improve the accuracy of this second-order approximation of Ω. To this
end, a mesh deformation Θh : Ω̃ → Rd is applied. To each point in the domain x ∈ Ω̃, we
assign a slightly shifted point Θh(x), such that Θh(Ωlin) is an approximation of Ω of high
order accuracy. The explicit and detailed construction of this mesh deformation is involved
and we refer the reader to [4] for a detailed account. Here, we only provide a short summary
in terms of a recipe which is an adaption of the material of [9]:

(1) We start from an exact levelset function φ and derive two interpolations, φh = Iksφ

and φlin = I1φ
h. Here, φh should be an elementwise polynomial of degree ks, and φlin

should be of first order.

(2) Exploiting the functions φlin and φh from the previous step, we search for a mapping
Θh with the property

φlin ≈ φh ◦ Θh.

This will lead to Θh(Ωlin) ≈ Ωh as desired, where Ωh denotes the region induced by
φh. In detail, the mapping Θh is constructed along the following steps:

0. First, we need to fix some notation. We define Γlin = {x ∈ Ω̂ | φlin(x) = 0}, the
approximation of the boundary induced by φlin. In terms of our triangulation Th

of Ω̃, we collect certain elements in certain sets related to the interface:

T Γ = {T ∈ Th | T ∩ Γlin �= ∅}
ΩΓ =

�
T Γ

T Γ
+ = {T ∈ Th | T ∩ ΩΓ �= ∅}

ΩΓ
+ =

�
T Γ

+

21

1. A candidate for the mapping is constructed element-wise:
Fix some T ∈ T Γ. Our aim is to construct a preliminary version of the mapping
Θh just on this element. To this end, we consider the polynomial extension of
(φh)|T , and call it Epφh. Next, we fix a search direction Gh(x). Typical choices
would beGh(x) = ∇φh, orGh(x) = P Γ

h (∇φh), whereP Γ
h is a projection operator

such as an Oswald-type projection (see [4] for more details). The idea is then that
we start from a point x ∈ T and search for the point y where Epφh(y) can serve
as a proxy for φlin(x), i.e. their values conincide. Formally, this is defined as
follows: For δ sufficiently small, define dh : T → [−δ, δ] to be the function such
that dh(x) is the smallest number such that

Epφh(x + dh(x)Gh(x)) = φlin(x) for x ∈ T.

In practice, this search procedure can be done by a Newton search.

In terms of this function dh, we can now define our first candidate for the final
mapping, ΘΓ

h,dc(x):
ΘΓ

h,dc(x) = x + dh(x)Gh(x)

Here, the subindex dc should indicate that the function so far is discontinuous.
Note that we deviate from the “standard” notation here, where this mapping
would be called ΨΓ

h .

2. Translating the element-wise construction to a function on ΩΓ:
As noted before, our mapping so far is discontinuous along elements. This is
undesirable and can be fixed by applying the projection operator P Γ

h known from
the previous step. In terms of it, we write

ΘΓ
h := P Γ

h (ΘΓ
h,dc) = id + P Γ

h (dhGh).

This transformation turns out to have the property that ΘΓ
h(Γlin) = Γh, where Γh

should be the interface stemming from the high order approximation φh of the
levelset function. This leads in turn to a high order approximation property of
ΘΓ

h(Γlin) as we aimed for.

3. Extending the mapping on all of Ω̃:
In the last step, we start with the function ΘΓ

h from the previous step and want
to extend it to all of Ω̃. Here, we use the strip ΩΓ

+\ΩΓ as a “transition region”, i.e.
the final mapping should be identical to ΘΓ

h on all of ΩΓ and the identity outside

22

of ΩΓ
+,

Θh(x) =

ΘΓ
h(x), if x ∈ ΩΓ,

x + E∂ΩΓ(ΘΓ
h − id)(x) if x ∈ ΩΓ

+\ΩΓ,

x else.

Here, the extension operator E∂ΩΓ is a standard extension operator for a piece-
wise smooth function defined on ∂ΩΓ. Such a function defined on the boundary is
extended to a piecewise smooth function defined on the volume, which vanishes
on all of Ω̃\ΩΓ

+.

(3) After we found Θh, we use it to improve the geometry approximation of Ωlin. Cor-
respondingly, we use the new geometry approximation also in our weak formulation.
The regions of integration are adapted accordingly, i.e. instead of integrating some
function f on Ωlin, we integrate on Θh(Ωlin), leading to

�

Θh(Ωlin)
fdx =

�

Ωlin
(f ◦ Θh)|det(DΘh)|

The integrals of the later kind are again easy to compute in practice.

(4) Last, the function space needs to take care of the modified domain of definition. If
we e.g. started with a discrete function u on Ωlin we now want to introduce the dis-
crete space on the curved elements as the result of first going back to Ωlin and then
evaluating u. So we define

Vh := Wh ◦ Θ−1
h := {v ◦ Θ−1

h | v ∈ Wh},

where Wh is the respective discrete function space of the merely spatial problem on
Ωlin.

2.4.2 Geometry handling of the numerical space-time DG method

In this subsection we will extend the construction of the isoparametric mapping for merely
spatial problems to the setting of space-time problem. We will first develop a description
which resembles the implementation accurately.

space-time level sets As the isoparametric method for stationary problems starts with
a merely spatial levelset function, in our setting we first assume to be given a space-time
levelset function, φ = φ(x, t) for x ∈ Ω̃ and t ∈ [0, T]. We follow the discretisation in time

23

and hence construct the mapping for a time interval In = [tn−1, tn] now, or in other words
for the slice Q̃n = Ω̃ × In.

(1) The discretisation in time depends on a parameter kt resembling the polynomial order.
Our goal is it to approximate the exact levelset φ by discrete functions of different
polynomial degree in space and degree kt in time. For matters of illustration, we want
to present the polynomials in time in terms of a Lagrange basis. To this end, we assume
that the time slab In is in turn subdivided as follows:

tn−1 = tn,∗
0 , tn,∗

1 , . . . , tn,∗
kt

= tn, tn,∗
j+1 − tn,∗

j = const.

Then a basis for the polynomials Pkt of order kt on In will be given as the Lagrange
polynomials li defined relative to the evaluation points (tn,∗

j)j . So we assume that we
are given a high order interpolation of φ in the space V ks

h ⊗Pkt for some spatial discrete
space V ks

h of order ks. This can be written as

φh(x, t) =
kt�

i=0
li(t) · φh

i (x) φh
i ∈ V ks

h .

One way to obtain such an approximation consists of projecting the levelset function
onto the intermediate time points (tn,∗

j)j and applying the spatial interpolation known
from the merely spatial construction then. However, for the purpose of the analysis it
is not relevant how the high-order interpolation is obtained in detail.

In addition to this high-order approximation of the domain in space, we introduce a
low-order variant by considering φlin

i := I1φ
h
i for each i. Then we define

φlin(x, t) =
kt�

i=0
li(t) · φlin

i (x).

The spatially polygonal approximation of Ω(t) stemming from this function will serve
the job of the base case of which the mapping is applied, as before.

space-time deformation In the second step, we want to derive a deformation function
in space and time. The construction will in the end mostly be an application of the merely
spatial construction at all intermediate time points. One slight deviation is the definition of
new discrete regions for the whole time slice:

24

(2) We define

T Γn = {T ∈ Th | T ∩ Γlin(t) �= ∅ for some t ∈ In}
ΩΓn =

�
T Γn

T Γn
+ = {T ∈ Th | T ∩ ΩΓ,n �= ∅}

ΩΓn
+ =

�
T Γn

+

Fix some tn,∗
j . Then let Θh,j be the isoparametric mapping derived from the merely

spatial functions φh
j and φlin

h in terms of the “new” regions T Γn etc. as defined above.
We apply this procedure for all intermediate time points and collect the results as
follows:

Θh(x, t) =
kt�

i=0
li(t) · Θh,i(x)

This function then has the property that Θh(. . . , t)(Ωlin(t)) = Ωh(t), so that it approx-
imates Ω(t), for each t ∈ In.

2.4.3 Geometry handling for the analysis under a weakened assumption of an
exact handling

Lastly, we want to describe a variant of the construction of the previous paragraphs which
will be used in the analysis. Roughly, we will assume there that we are able to perform the
integration in time exactly, but the construction in space remains as it is.

We fix a time slice In and some time point t ∈ In. Then, our goal is to construct the
mapping Θh(x, t) for that time. To this end, we proceed as follows:

(1) We fix the time t in the levelset function and derive φh and φlin in the merely spatial
manner: φh = Iksφ(. . . , t), φlin = I1φ

h.

(2) We generate the mapping Θh at t by performing the construction of the merely spatial
case in terms of the regions T Γn etc. as defined above.

Next, we want to extend this function towards a full spacetime mapping, where the time
coordinate remains fixed. To this end, we define

Definition 2.1. The space-time version of the isoparametric mapping Θst
h is defined as

Θst
h (x, t) := (Θh(x, t), t)T ,

where Θh(x, t) refers to the above construction for a time point t.

25

The next lemma collects some properties of the function so defined. For each time t ∈
[0, T], the properties follow from the according properties of the merely spatial mapping, as
the extension of the region of definition does not affect them:

Lemma 2.2. For each time t ∈ [0, T], t ∈ In, the following holds with ΩΓn
+ denoting the

extended domain of cut elements as defined above

Θst
h (x, t) = x for all x vertices of Th or x ∈ Ω̃\ΩΓn

+ ,

�Θst
h (x, t) − x�∞,Ω̃ � h2 �DΘst

h (x, t) − I�∞,Ω̃ � h

In terms of Θst
h , we can define our discrete approximation of the space-time domain

Definition 2.3. We define the approximated space-time domain Qh and the slices thereof as

Qh := Θst
h (Qlin), Qh,n := Θst

h (Qlin,n).

2.4.4 Mapping to the exact geometry and properties of Θ

Themapping Θst
h allows us to map the linear approximation of the space-time region Qlin to

a high-order approximation Qh = Θst
h . In order to describe this high-order approximation

property exactly (and for other purposes), we assume in addition the existence of a mapping
Ψst between Qlin and the exact domain Q:

Assumption 2.4. There exists a smooth bijective function Ψst : Qlin → Q such that

�u�L2(Q) � �u ◦ Ψst�L2(Qlin) for all u ∈ H1(Q).

In terms of this mapping, we can extend Lemma 2.2 as follows:

Lemma 2.5. For each time t ∈ [0, T], t ∈ In

�Θst
h (. . . , t) − Ψst(. . . , t)�∞,Ω̃ + h�D(Θst

h (. . . , t) − Ψst(. . . , t))�∞,Ω̃ � hks+1.

Proof. Transfer the spatial proof for each time.

Assumption 2.6. In addition, we assume for each t ∈ [0, T], t ∈ In

� ∂

∂t
(Θst

h − Ψst)(. . . , t)�∞,Ω̃ � hks+1.

26

Q

Qlin

Ψst Θst
h

Φst Qh

Figure 8: Schematic illustration of the mappings Ψst, Θst
h , and Φst. Note that the situation

is depicted just for one time, while the mappings are actually full space-time map-
pings.

Remark. If we would consider the construction of 2.7.2 instead of that of 2.7.3, we would
expect

�Θst
h (. . .) − Ψst(. . .)�∞,Ω̃×[0,T] + h�Dx(Θst

h − Ψst)�∞,Ω̃×[0,T]

+ Δt� ∂

∂t
(Θst

h − Ψst)�∞,Ω̃×[0,T] � hks+1 + Δtkt+1.

IntroducingΦ In the previous paragraphs, we introduced a mapping Θst
h : Qlin → Qh and

a mapping Ψst : Qlin → Q. Naturally, one might also want to switch back and forth between
Qh and Q directly. For this purpose, we want to introduce a mapping Φst as follows

Definition 2.7. The mapping Φst : Qh → Q is defined as

Φst := Ψst ◦ (Θst
h)−1.

Corollary 2.8. It holds
Ψst = Φst ◦ Θst

h .

For the reader’s convenience, we give an overview over all three mappings in Fig. 8.

2.5 Space-Time DG under a weakened assumption on the handling
of geometries

In the previous subsection, we defined a high order accurate approximation of the geometry
Qn of each time-slab, Qh,n = Θst

h (Qlin,n). In terms of this new region, we nowwant to define
the discrete method of high order.

A first step towards this goal consists of introducing the relevant function spaces. The
introduction of the function spaces for the high order method follows the known recipe:

27

The function space is first defined for the linear approximation, and those discrete functions
are then lifted to the curved geometry. So we start the definition of the function spaces by
treating the piecewise linear case.

From the piecewise linear in space function φlin, we can obtain the space-time regions

Ωlin(t) = {x ∈ Ω̃ | φlin(x, t) = 0}

Qlin,n =
�

t∈In

Ωlin(t) × {t}, Qlin =
N�

n=1
Qlin,n.

This change in the computational domains also affects the extended and interior space-time
regions. Hence, we define

E(Ωlin,n) : = {x ∈ T for some T ∈ Th such that (T × In) ∩ Qlin,n �= ∅},

E(Qlin,n) = E(Ωlin,n) × In.

For the interior domain, we introduce I(Ωlin,n) for the interior region with the obvious ac-
cording changes. The respective facet spaces will be denoted by F∗,lin,n

R , F∗,lin,n,ext
R , c.f. As-

sumption 3.1.
Next, we basically copy the definition of the respective function spaces from the construc-

tion of the method involving the assumption of an exact handling of geometries.

W ks
h,space,lin,n = {v|E(Ωlin,n) | v ∈ W ks

h,space},

W ks,kt

n,lin = W ks
h,space,lin,n ⊗ W kt

h,time,n,

Wh,lin = {v ∈L2(E(Qlin)) | v|E(Qlin,n) ∈ W ks,kt

n,lin ∀n = 1, . . . , N}.

This allows us define the final discrete space:

Wh = Wh,lin ◦ (Θst
h)−1.

Fix a function u ∈ Wh. Then, by definition of Wh, the function can be “factorised” over
Θst

h : While u is of type u : Θst
h (Qlin) = Qh → R, we can find a corresponding function

û : Qlin → R such that

u = û ◦ (Θst
h)−1, or û = u ◦ Θst

h .

28

This can also be written in coordinates as

û(x̂, t) = u(Θh(x̂, t), t) for x̂ ∈ Qlin.

That factorisation leads to an equivalence of norms:

Lemma 2.9. For a discrete function u ∈ Wh, u = û ◦ (Θst
h)−1, and each set S ⊆ Ω̃ and time t

there holds
�û(t, . . .)�S � �u(t, . . .)�Θst

h
(t,S).

We can exploit the representation of û as û = u ◦ Θst
h in order to calculate a formula for

the partial derviative in time direction. In general, the multi-dimensional chain rule applied
to this case yields

D(û) = D(u ◦ Θst
h)(x, t) = D(u)(Θst

h (x, t)) · D(Θst
h)(x, t).

Denoting the components of Θst
h as Θst

h = (Θst
h,x1, . . . , Θst

h,xn, Θst
h,t)T , we observe

D(Θst
h) =

∂Θst
h,x1

∂x1
. . .

∂Θst
h,x1

∂xn

∂Θst
h,x1

∂t
...

∂Θst
h,xn

∂x1
. . .

∂Θst
h,xn

∂xn

∂Θst
h,xn

∂t

0 . . . 0 1

The Jacobian D(û) will be a row vector. For ∂û
∂t
, we are interested in the last entry. In line

with the general rule above, we obtain

∂û

∂t
= (∂u

∂x1
◦ Θst

h) · ∂Θst
h,x1

∂t
+ · · · + (∂u

∂xn

◦ Θst
h) · ∂Θst

h,xn

∂t
+ ∂u

∂t
◦ Θst

h

= (∇u ◦ Θst
h) · ∂Θst

h

∂t
+ ∂u

∂t
◦ Θst

h

In the numerical method, the time derivative of ∂û
∂t

is assembled, while, physically speaking,
we want to have ∂u

∂t
in our bilinear form. Hence, we note for later purposes that

∂u

∂t
◦ Θst

h = ∂û

∂t
− (∇u ◦ Θst

h) · ∂Θst
h

∂t
.

For the purposes of the analysis, we need a further directional derviative of a function u.
To this end, we define:

29

Definition 2.10 (Derivative in mesh direction). The derivative ∂Θ
t is defined as follows

∂
Θst

h
t u = ∂tu + ∇u · (∂Θst

h

∂t
◦ (Θst

h)−1).

Often, we write ∂Θ
t as a shorthand notation for ∂

Θst
h

t .

From the definition of ∂Θ
t and the calculations above, we obtain

Corollary 2.11. In terms of the notation introduced above,

∂Θ
t u = (∂tû) ◦ (Θst

h)−1.

This implies for some S ⊆ Ω̃ and a time t

�∂Θ
t u�Θst

h
(t,S) � �∂tû�S

Similar to the case of the time derivative, we can exploit the general version of the chain
rule to derive a relation between the gradients of u and û. For instance, for the first compon-
ent of the gradient, we calculate

∂û

∂x1
= (∂u

∂x1
◦ Θst

h)
∂Θst

h,x1

∂x1
+ · · · + (∂u

∂xn

◦ Θst
h)

∂Θst
h,xn

∂x1
.

With the notation

Dx(Θst
h) =

∂Θst
h,x1

∂x1
. . .

∂Θst
h,x1

∂xn...
∂Θst

h,xn

∂x1
. . .

∂Θst
h,xn

∂xn

,

this can be generalised as follows:

∇û = Dx(Θst
h)T (∇u ◦ Θst

h)

With the help of the bound on Θst
h in Lemma 2.2, we can conclude

Corollary 2.12. For a discrete function u ∈ Wh, u = û ◦ (Θst
h)−1, and each set S ⊆ Ω̃ there

holds
�∇û�S � �∇u�Θst

h
(S).

With the help of the discrete regions and function spaces introduced above, we are now
able to formulate the variational formulation of the DG method without assumptions of an

30

exact handling of geometries. We define

B(u, v) =
N�

n=1
(∂tu + w · ∇u, v)Qh,n

+ (∇u, ∇v)Qh,n +
N−1�

n=1
([u]n, vn

+)Ωh(tn) + (u0
+, v0

+)Ωh(0).

Remark. At this point, we would like to remark that there is a difference between the bilinear
form introduced here and analysed below and the actually implemented version concerning
the ([u]n, vn

+)Ωh(tn) term. More specifically, the calculation of the jump [u]n poses a challenge
as the mapping determining the discrete regions might be discontinuous in time. A full
account of this would probably involve the definition of a suiting projection operator (c.f. [9,
p. 54]). We leave this as a task for future research as far as this thesis is concerned.

The method is fully described by introducing a ghost penalty term in addition. To this
end, we define in a first step the transformed facet patch region for some facet F from the
uncurved mesh.

ωh
F (t) = Θst

h (t)(ωF)

Note that the time dependence might actually cause the mapped domain to change within
a time slab, such that the tensor-product structure of the space-time domain of integration
known from Preuß does not hold any more.

In addition, we need a jump operation on these curved elements. Let us assume u =
û ◦ (Θst

h)−1, ωF = T1 ∪ T2 and we interested on the jump for some point x in the mapped T1:

[u]ωh
F (t)|Θst

h
(t)(T1)(x) = u(x) − Ep(û|T2)((EpΘst

h (t)|T2)−1(x))

This situation is depicted in Fig. 9.
With that notation, we are in a position to introduce the Ghost penalty terms:

jn
F (u, v) : =

� tn

tn−1

�

ωh
F (t)

γ̃J

h2 [u]ωh
F (t)[v]ωh

F (t)dxdt

jn
h (u, v) =

�

F ∈F∗,lin,n,ext
R

jn
F (u, v), J(u, v) =

N�

n=1
jn

h (u, v).

Here, γ̃J =
�
1 + Δt

h

�
γJ .

31

Ep Θst
h (t)

x̂

T1 T2

ωF = T1 ∪ T2

x = Θst
h (t)(x̂)

ωh
F (t) = Θst

h (t)(ωF)

[u]ωh
F
(x) = u(x)

� �� �
=û(x̂)

−Ep(û|T2)((EpΘst
h (t)|T2)−1(x))

Figure 9: Details of the definition of the jump operator on the curved elements.

In accordance to the previous definitions, the right-hand side f is given as

f(v) :=
N�

n=1
(f, v)Qh,n + (u0, v0

+)Ωh(0).

In total, the discrete problem reads: Find u ∈ Wh such that

B(u, v) + J(u, v) = f(v) ∀v ∈ Wh. (3)

In addition, we define a variant of this bilinear form, which deviates by a term stemming
from the numerical handling of the geometry in space.

Bmc(u, v) =
N�

n=1
(u, −∂tv − w · ∇v)Qh,n

+ (∇u, ∇v)Qh,n −
N−1�

n=1
(un

−, [v]n)Ωh(tn) + (uN
+ , vN

+)Ωh(T).

The difference between those two formulations can be controlled by the following Lemma.

Lemma 2.13. For all u, v the following holds

B(u, v) − Bmc(u, v) =
� T

0
dt

�

∂Ωh(t)
dx (w · n − Vh

n(t))uv,

where Vh
n(t) denotes the velocity of the approximated boundary Ωh(t) in normal direction.

32

Proof. For the proof, we just use partial integration as Preuß did in the proof of [9, Lemma
2.1].

With the help of this lemma, we can make an assumption on the maximum norm of the
difference in the integrand:

Assumption 2.14. We assume

|w · n − Vh
n(t)|L∞(0,T,L∞(∂Ωh(t))) = sup

t∈[0,T]
sup

x∈∂Ωh(t)
|w · n − Vh

n(t)| ≤ Cmc(h, Δt),

where Cmc has the following property: For all C > 0, there exists h̃ and Δ̃t such that for all
h < h̃ and Δt < Δ̃t,

C · Cmc(h, Δt)
Δt

≤ 1
4 .

The difference between B and Bmc reflects as following the Lemma about the positivity
of the bilinear form summands:

Lemma 2.15 (Counterpart of P3.6). For all u ∈ Wh, and denoting d(u, v) = �N
n=1(∂tu + w ·

∇u, v)Qh,n and b(u, v) = �N−1
n=1 ([u]n, vn

+)Ωh(tn) + (u0
+, v0

+)Ωh(t0) we have

(1) Testing d with u symmetrically yields

d(u, u) =1
2

N−1�

n=1

�
�un

−�2
Ωh(tn) − �un

+�Ωh(tn)
�

+ 1
2�uN

− �2
Ωh(T) − 1

2�u0
+�2

Ωh(0)

+ 1
2

� T

0
dt

�

∂Ωh(t)
dx (Vh

n(t) − w · n)u2.

(2) In accordance with Preuß, we note

b(u, u) = 1
2

N−1�

n=1
�[u]n�2

Ωh(tn) + 1
2

N−1�

n=1

�
�un

+�2
Ωh(tn) − �un

−�2
Ωh(tn)

�
+ �u0

+�2
Ωh(0).

(3) Adding the two contributions up, we obtain

B(u, u) = 1
2 ||[u]||2 +

N�

n=1
(∇u, ∇u)Qh,n + 1

2

� T

0
dt

�

∂Ωh(t)
dx (Vh

n(t) − w · n)u2.

Proof. (1) For the first part, note that the generalisation of the formula relating d(u, v) and

33

d�(u, v) goes as follows:

d(u, v) =
N�

n=1

�
(un

−, vn
+)Ωh(tn) − (un−1

+ , vn−1
+)Ωh(tn−1)

�
+ d�(u, v)

+
� T

0
dt

�

∂Ωh(t)
dx (Vh

n(t) − w · n)uv

Following Preuß, we consider v = u and note that d(u, u) = −d�(u, u) by definition
in order to obtain the result.

Remark. This finishes the presentation of the DG method under a weakened assumption on
the handling of geometries. Wewould like to note that it should be possible and an interesting
direction for future research to extend the CG method in the same direction.

3 Analysis of Unfitted Space-Time DGmethod (including
geometry errors)

One main ingredient for the numerical analysis of the suggested method are the relevant
norms. First, we will prove stability in terms of the norm ||| . . . |||j , which is defined as the
sum of a norm ||| . . . ||| and the ghost penalty:

|||u|||2 :=
N�

n=1
Δt(∂Θ

t u, ∂Θ
t u)Qh,n + ||[u]||2 +

N�

n=1
(∇u, ∇u)Qh,n

||[u]||2 :=
N−1�

n=1
([u]n, [u]n)Ωh(tn) + (u0

+, u0
+)Ωh(0) + (uN

− , uN
−)Ωh(T)

|||u|||2j := |||u|||2 + J(u, u)

For the continuity proof, another norm will be relevant which contains an integral over u

instead of ∂Θ
t u (with a different scaling in Δt) and a different expression for the jump:

|||u|||2∗ :=
N�

n=1
(1
Δt

u, u)Qh,n + ||[u]||2∗ +
N�

n=1
(∇u, ∇u)Qh,n

||[u]||2∗ :=
N�

n=1
(un

−, un
−)Ωh(tn)

|||u|||2j,∗ := |||u|||2∗ + J(u, u)

34

The analysis of our method is based on a list of assumptions. Those are variants of the
assumptions given by Preuß. The first assumption relates to a technical aspect of the Ghost
penalty

Assumption 3.1 (Existence of an exterior-interior mapping for the Ghost penalty). There
exists a mapping E : {T ∈ Th | T ⊆ E(Ωlin,n)} → {T ∈ Th | T ⊆ I(Ωlin,n)} such that

(1) For some element T in the image of E , the number of exterior elements which are mapped
onto T is bounded

#{B−1(T)} ≤ C for T ⊆ I(Ωlin,n).

(2) Fix some T ∈ Th such that T ⊆ E(Ωlin,n)\I(Ωlin,n). Then, there exists a path {Ti}M
i=0

between T0 = T and TM = E(T) such that all facets along it are in F∗,lin,n,ext
R .

(3) Moreover, the number of elements in E(Ωlin,n)\I(Ωlin,n) is bounded as follows:

#{T ∈ Th | T ⊆ E(Ωlin,n)\I(Ωlin,n)} ≤ CB

�
1 + Δt

h

�
,

where CB is independent of Δt and h.

Next, there are further more general assumptions

Assumption 3.2. The convection velocity is bounded, �w�∞ ≤ C .

Assumption 3.3. Time step Δt and mesh size h satisfy

h2

Δt
≤ CG Δt ≤ Co.

We start the analysis (parallel to Preuß) by stating some results concerning the Ghost
penalty.

3.1 Ghost-penalty related estimates

First, we recapitulate the Lemma about the general mechanism behind Ghost penalty in the
case of an uncurved mesh:

Lemma (Counterpart of 3.1 Preuß). Let T1 and T2 be the elements corresponding to the patch
ωF of the facet F . The v be a piecewise polynomial of degree at most ks ∈ N defined on the
macro-element ωF . Then there holds

�v�2
T1 ≤ CP.3.1

�
�[v]ωF

�2
T1 + �v�2

T2

�

35

Proof. First, note that the proof of this Lemma should be regarded as a preparation for the
proof of the following Lemma. This Lemma is not needed for the analysis of our method in a
strict sense, but its proof can be seen as a simple version of the proof of themore sophisticated
following Lemma, which is why we want to present it here.

Fix a point x ∈ T1. There it holds

v(x) = (v − Ep(v|T2))(x) + Ep(v|T2)(x) = [v]ωF
(x) + Ep(v|T2)(x).

Then, we obtain by integration on all of T1

�v1�2
T1 � �[v]ωF

�2
T1 + �Ep(v|T2)�2

T1 .

Because of shape regularity, the norms of the polynomial Ep(v|T2) on T1 and T2 are equivalent
and we can conclude

�v1�2
T1 � �[v]ωF

�2
T1 + �v�2

T2 .

The Lemma can be extended to the mapped case as follows:

Lemma 3.4 (P.3.1M (mapped)). Let T1 and T2 be the elements of the facet patch ωF . Let
v = v̂ ◦ (Θst

h (t))−1, where v̂ is a piecewise polynomial of degree at most ks defined on ωF . Then
there holds

�v�2
Θst

h
(t)(T1) ≤ CP.3.1M

�
�[v]ωh

F
�2

Θst
h

(t)(T1) + �v�2
Θst

h
(t)(T2)

�

�∇v�2
Θst

h
(t)(T1) ≤ CP.3.1M

� 1
h2 �[v]ωh

F
�2

Θst
h

(t)(T1) + �∇v�2
Θst

h
(t)(T2)

�

Proof. First note that we are considering a fixed time t and can define T h
i := Θst

h (t)(Ti),
i = 1, 2 relative to that. Then we have a norm equivalence between Ti and T h

i and the
corresponding discrete functions:

�v�T h
i

� �v̂�Ti
, where v = v̂ ◦ (Θst

h (t))−1.

In particular, �v�T h
1
� �v̂�T1 . That motivates to start our proof by deriving a representation

for v̂|T1 with the help of the facet patch jump: On T1,

[v]ωh
F

◦ (Θst
h (t)) = v̂ − Ep(v̂|T2) ◦ (EpΘst

h (t)|T2)−1 ◦ (Θst
h (t)).

36

Rearranging and integrating over T1 yields

�v̂�T1 ≤ �[v]ωh
F

◦ (Θst
h (t))�T1 + �Ep(v̂|T2) ◦ (EpΘst

h (t)|T2)−1 ◦ (Θst
h (t))�T1 .

By Cauchy-Schwarz and Young’s inequality,

�v̂�2
T1 � �[v]ωh

F
◦ (Θst

h (t))�2
T1� �� �

��[v]
ωh

F
�2

T h
1

+�Ep(v̂|T2) ◦ (EpΘst
h (t)|T2)−1 ◦ (Θst

h (t))�2
T1 .

Hence, it remains to bound the right hand side term in terms of v|T2 . To this end, we first
exploit shape regularity to arrive at a maximum norm estimate

�Ep(v̂|T2) ◦ (EpΘst
h (t)|T2)−1 ◦ (Θst

h (t))�T1� �� �
I

� hd/2�Ep(v̂|T2) ◦ (EpΘst
h (t)|T2)−1 ◦ (Θst

h (t))�∞,T1 .

Next, we defineB to be a ball on the reference domain such that, (Θst
h (t)|T2)−1◦(Θst

h (t))(T1)∪
T2 ⊆ B. Then, we can conclude

I � hd/2�Ep(v̂|T2)�∞,B.

Next, we note that our discrete function space is finite dimensional, so that all norms are
equivalent. This suffices to establish

I � hd/2�Ep(v̂|T2)�∞,T2 .

Note that the constant in this estimate does not degenerate as we could find a ball B2 ⊆ T2,
B2 ⊆ B and estimate the ∞-norm on B against that on B2. As the radius of B and B2 would
only differ by a constant, the constant for the norm estimate is also bounded. Eventually, we
move back to the T2 norm, taking into account that we are on a polynomial space:

I � �Ep(v̂|T2)�T2 = �v̂�T2 � �v�T h
2
.

That finished the overall proof for v. To see the result for ∇v we introduce v0 = 1
T2

�
T2 v̂ds ∈

R (with [v0]ωh
F

= 0 and ∇v0 = 0) and use standard inverse inequalities and interpolation

37

results to obtain

�∇v�2
Θst

h
(t)(T1) = �∇(v − v0)�2

Θst
h

(t)(T1) �
1
h2 �(v − v0)�2

Θst
h

(t)(T1)

� 1
h2 �[v − v0]ωh

F
�2

Θst
h

(t)(T1) + 1
h2 �v − v0�2

Θst
h

(t)(T2)

� 1
h2 �[v − v0]ωh

F
�2

Θst
h

(t)(T1) + 1
h2 �v̂ − v0�2

T2

� 1
h2 �[v]ωh

F
�2

Θst
h

(t)(T1) + �∇v̂�2
T2

� 1
h2 �[v]ωh

F
�2

Θst
h

(t)(T1) + �∇v�2
Θst

h
(t)(T2).

This Lemma allows us to “traverse” along the mesh and estimate norms of a function on
the extended domain E(Qh,n) against the norm on I(Qh,n) at the expense of ghost penalty
summands. This is summarised in the following Lemma:

Lemma 3.5 (Counterpart of P.3.2). There exists a constant C3.2 such that for every u ∈ Wh

there holds

�u�2
E(Qh,n) ≤ C3.2

�
h2

γJ

jn
h (u, u) + �u�2

I(Qh,n)

�

�∇u�2
E(Qh,n) ≤ C3.2

�
1
γJ

jn
h (u, u) + �∇u�2

I(Qh,n)

�

Proof. Basically, we can copy the proof of Preuß, taking into consideration that the changes
between I(Qlin,n) and I(Qn) and the respective extensions exactly accord to the modified
facet set in the new ghost penalty.

In detail, the proof goes as follows: As E(Qh,n)was defined as the image of E(Qlin,n) under
the mapping Θst

h , we can write

�u�2
E(Qh,n) =

�

T ∈E(Ωlin,n)

�

In

dt�u�2
Θst

h
(t,T)

=
�

T ∈E(Ωlin,n)\I(Ωlin,n)

�

In

dt�u�2
Θst

h
(t,T) +

�

T ∈I(Ωlin,n)

�

In

dt�u�2
Θst

h
(t,T)

We can identify the summand �
T ∈I(Ωlin,n)

�
In

dt�u�2
Θst

h
(t,T) with �u�2

I(Qh,n) in the statement
of the Lemma. Hence, it remains to bound the first term.

To this end, fix an element T ⊆ E(Ωlin,n)\I(Ωlin,n). By Assumption 3.1, we find an ele-
ment E(T) ⊆ I(Ωlin,n) and a path between T and E(T) of finite length, {Ti}M

i=0, T0 = T ,
TM = E(T). If we traverse along this path, we can apply Lemma 3.1M in each step in order

38

to obtain for each T ⊆ E(Ωlin,n)\I(Ωlin,n) and time t ∈ In

�u�2
Θst

h
(t,T) � �u�2

Θst
h

(t,E(T)) +
�

F ∈F∗,lin,n,ext
R

�[u]ωh
F
�2

ωh
F (t).

If we integrate this equation in time over In and iterate over all elements from E(Ωlin,n)\
I(Ωlin,n), we end up with

�u�2
E(Qh,n) �

 �

T ∈I(Ωlin,n)
(1 + #B−1(T))

�

In

dt�u�2
Θst

h
(t,T)

+ #{T ∈ Th | T ⊆ E(Qlin,n)\I(Qlin,n)}
�

In

dt
�

F ∈F∗,lin,n,ext
R

�[u]ωh
F
�2

ωh
F (t)

��u�2
I(Qh,n) +

�
1 + Δt

h

� �

F ∈F∗,lin,n,ext
R

�

In

dt�[u]ωh
F
�2

ωh
F (t)

��u�2
I(Qh,n) + h2

γJ

jn
h (u, u).

This finishes the proof for the first estimate of �u�2
E(Qh,n). For the result about �∇u�2

E(Qh,n)

we proceed in the same way, taking into account the second result of Lemma 3.4.

In the next Lemma, we will derive a bound for the norm of a discrete function on the
temporal parts of the space-time boundary against the norm on the space-time “volume”:

Lemma 3.6 (Counterpart of 3.3). For any u ∈ Wh, it holds

(un−1
+ , un−1

+)Ωh(tn−1) + (un
−, un

−)Ωh(tn) ≤ C

Δt
�u�2

E(Qh,n)

≤ C3.3

Δt

�
h2

γJ

jn
h (u, u) + �u�2

I(Qh,n)

�

Proof. For the proof of this Lemma, we transfer a result from the linear reference configur-
ation to the curved geometry. By a similar argument to that in the proof of Lemma 3.3 of
Preuß, it can be established that

�ûn−1
+ �2

Ωlin(tn−1) �
1

Δt
�û�2

E(Qlin,n).

Then we can exploit the equivalence between Qlin and Qh to obtain

�un−1
+ �2

Ωh(tn−1) � �ûn−1
+ �2

Ωlin(tn−1) �
1

Δt
�û�2

E(Qlin,n) �
1

Δt
�u�2

E(Qh,n)

39

Combining this with the result of Lemma 3.2 gives the result for the first term. For the second
term, one argues similary.

This finishes the estimates for discrete functions u itself. Next, we will also consider a
similar estimate for the time derivative of the discrete function. Both will be of importance
for later application.

Lemma 3.7 (Counterpart of 3.4). For any u ∈ Wh, it holds

Δt(∂Θ
t u, ∂Θ

t u)Qh,n ≤ C3.4

Δt

�
h2

γJ

jn
h (u, u) + �u�I(Qh,n)

�
,

and for the gradient

Δt(∂Θ
t ∇u, ∂Θ

t ∇u)Qh,n ≤ C3.4

Δt

�
1
γJ

jn
h (u, u) + �∇u�I(Qh,n)

�
.

Proof. First, let us consider the first claim. Fix u ∈ Wh. Then, by Corollary 2.11

Δt�∂Θ
t u�2

Qh,n � Δt�∂tû�2
Qlin,n

By the construction according to that in the proof of Lemma 3.4 of Preuß, we note

Δt�∂tû�2
Qlin,n � 1

Δt
�û�2

E(Qlin,n � 1
Δt

�u�2
E(Qh,n)

Applying Lemma 3.5 yields the result for u ∈ Wh.
Next, consider the second estimate about ∇u for u ∈ Wh. We observe

Δt�∂Θ
t ∇u�2

Qh,n � Δt�∂t∇û�2
Qlin,n ≤ Δt�∂t∇û�2

E(Qlin,n)

The region E(Qlin,n) has tensor product structure and ∇û is a polynomial elementwise. So
we can apply an inverse inequality to obtain

Δt�∂Θ
t ∇u�2

Qh,n � 1
Δt

�∇û�2
E(Qlin,n) �

1
Δt

�∇u�2
E(Qh,n)

Now we can apply the second result of Lemma 3.5 to arrive at the result.

Finally, we also note that the relation between the ghost penalty of the time derivative and
the function itself can be transfered:

40

Lemma 3.8 (Counterpart of 3.5). For all u ∈ Wh, and for a constant C3.5 only dependig on
polynomial degree and shape regularity, it holds

J(∂Θ
t u, ∂Θ

t u) ≤ C3.5

Δt2 J(u, u) + C3.5γ̃J · h2

Δt2 �∇u�2
Qh .

Proof. We fix a time interval In and a facet F from F∗,lin,n,ext
R and observe

jn
F (∂Θ

t u, ∂Θ
t u) =

� tn

tn−1

�

ωh
F (t)

γ̃J

h2 [∂Θ
t u]2ωh

F (t)dxdt

=
� tn

tn−1

�

i,j=1,2,
i�=j

�

Θst
h

(t)(Ti)

γ̃J

h2

 ∂Θ

t u(x)
� �� �

=(∂tû|Ti
)◦(Θst

h
(t)|Ti

)−1

−Ep(∂tû|Tj
)((EpΘst

h (t)|Tj
)−1(x))

2

dxdt

�
� tn

tn−1

�

i,j=1,2,
i�=j

�

Ti

γ̃J

h2

∂tû|Ti

− Ep(∂tû|Tj
) ◦ (EpΘst

h (t)|Tj
)−1 ◦ (Θst

h (t)|Ti
)

� �� �
:=ψ

(x)

2

�
� tn

tn−1

�

i,j=1,2,
i�=j

�

Ti

γ̃J

h2

�
∂tû|Ti

− Ep(∂tû|Tj
)
�2

+ γ̃J

h2

�
Ep(∂tû|Tj

) − Ep(∂tû|Tj
) ◦ ψ

�2

The first expression ∂tû|Ti
− Ep(∂tû|Tj

) is a polynomial in time and we can apply an inverse
inequality. For the second term, we can find a bound as follows:

Ep(∂tû|Tj
) − Ep(∂tû|Tj

) ◦ ψ � �∇∂tEp(û|Tj
)�∞,Ti

· �id − ψ�∞,Ti� �� �
�h2

.

The term ∇∂tû|Tj
is also a polynomial so that an inverse inequality holds and we overally

have

jn
F (∂Θ

t u, ∂Θ
t u) �

� tn

tn−1

�

i,j=1,2,
i�=j

�

Ti

γ̃J

h2 · Δt2

�
û|Ti

− Ep(û|Tj
)
�2

+ γ̃J · h2

Δt2

�
�∇Ep(û|Tj

)�∞,Ti

�2

Concerning the expression
�
û|Ti

− Ep(û|Tj
)
�2
, we apply triangle inequality to yield

�
û|Ti

− Ep(û|Tj
)
�2

�
�
û|Ti

− Ep(û|Tj
) ◦ ψ

�2
+ (Ep(û|Tj

) ◦ ψ − Ep(û|Tj
)

� �� �
�h2�∇Ep(û|Tj

)�∞,Ti

)2.

41

Putting together the last two results yields

jn
F (∂Θ

t u, ∂Θ
t u) � 1

Δt2 jn
F (u, u) +

� tn

tn−1

�

i,j=1,2,
i�=j

�

Ti

γ̃J · h2

Δt2 (�∇Ep(û|Tj
)�∞,Ti� �� �

��∇Ep(û|Tj
)�∞,Tj

)2

� 1
Δt2 jn

F (u, u) +
� tn

tn−1

γ̃J · h2

Δt2 �∇u�2
ωh

F (t)

Next, we consider the sum of all those facet contributions in the total ghost penalty term

J(∂Θ
t u, ∂Θ

t u) =
N�

n=1

�

F ∈F∗,lin,n,ext
R

jn
F (∂Θ

t u, ∂Θ
t u) � 1

Δt2 J(u, u) + γ̃J · h2

Δt2 �∇u�2
E(Qh)

We can exploit the second equation of Lemma 3.5 to obtain the bound

J(∂Θ
t u, ∂Θ

t u) � 1 + h2

Δt2 J(u, u) + γ̃J · h2

Δt2 �∇u�2
Qh .

For h sufficiently small, the result follows.

3.2 Special trace inequalities

In addition to the technical Ghost penalty lemmata, we also need specific special trace in-
equalities, which we present in this subsection.

Lemma 3.9 (Special trace inequality). For all u ∈ Wh it holds

� T

0
dt

�

∂Ωh(t)
u(t)2 ≤ Cstra

Δt
|||u|||2j .

Proof. We start by fixing a time t ∈ [tn−1, tn] for some n. Next, we define the image of the
interior region on the reference configuration as follows:

I(Ωh,n) := Θst
h (I(Ωlin,n), t).

In some contexts, the time dependence of this region will be also of importance. Then, we
write I(Ωh,n)(t) for this construction.

Next, note that if I(Ωh,n) ⊆ Ωh(t) has non-vanishing measure, trace and Poincare in-
equality yield

�u(t)�2
∂Ωh(t) � �∇u�2

Ωh(t) +
��

I(Ωh,n)
u(t) dx

�2

42

Next, we want to find an estimate for the right hand side term involving the directional time
derivative. To this end, we observe that with the factorisation u = û ◦ (Θst

h)−1, we obtain
�

I(Ωh,n)(t)
u(t) dx �

�

I(Ωlin,n)
|û(x̂, t)| dx̂

≤
�

I(Ωlin,n)
|û(x̂, tn−1)| dx̂ +

� t

tn−1

�

I(Ωlin,n)
|∂û

∂t
(x̂, τ)| dτ dx̂,

using the fundamental theorem of calculus in the last inequality. Next, we apply the Corol-
lary about the directional time derivative to obtain (∂Θ

t u) ◦ Θst
h = ∂tû and in turn

�

I(Ωh,n)(t)
u(t) dx �

�

I(Ωh,n)(tn−1)
|u(x, tn−1)| dx +

� t

tn−1

�

I(Ωh,n(τ))
|∂Θ

t u(x, τ)| dτ dx. (4)

The square of the left-hand-side term in this equation can be bound by the expression where
the square is taken inside the integral, and this expression respectively can be bound by
integrating this squared integrands of both right-hand-side summands. Finally, we extend
the integration of the time interval over all of In. This yields together with the first equation

� tn

tn−1
�u(t)�2

∂Ωh(t) dt ��∇u�2
Qh,n + Δt�u+(tn−1)�2

Ωh(tn−1) + Δt�∂Θ
t u�2

Qh,n

Δ-ineq
� �∇u�2

Qh,n + Δt�u−(tn−1)�2
Ωh(tn−1) + Δt�[u]n−1�2

Ωh(tn−1)

+ Δt�∂Θ
t u�2

Qh,n

Concerning the second summand, we apply the Lemma new 3.3 to obtain

Δt�u−(tn−1)�2
Ωh(tn−1) ≤ C3.3

�
h2

γJ

jn−1
h (u, u) + �u�2

I(Qh,n−1)

�

Now, we can restate the result from equation (4) above as follows:

�u�2
I(Qh,n) � Δt�u+(tn−1)�2

Ωh(tn−1) + Δt�∂Θ
t u�2

Qh,n .

Applying this to the term �u�2
I(Qh,n−1) of our previous estimate, we obtain

�u�2
I(Qh,n−1) � Δt�u+(tn−2)�2

Ωh(tn−2) + Δt�∂Θ
t u�2

Qh,n−1

� Δt�u−(tn−2)�2
Ωh(tn−2) + Δt�[u]n−2�2

Ωh(tn−2) + Δt�∂Θ
t u�2

Qh,n−1

43

Collecting the results from the previous inequalities, we arrive at
� tn

tn−1
�u(t)�2

∂Ωh(t) dt � �∇u�2
Qh,n + Δt�u−(tn−2)�2

Ωh(tn−2) + Δt�[u]n−1�2
Ωh(tn−1)

+ Δt�∂Θ
t u�2

Qn + Δt�[u]n−2�2
Ωh(tn−2) + Δt�∂Θ

t u�2
Qh,n−1

+ h2

γJ

jn−1
h (u, u)

We apply this recipe until we arrive at t = 0 to obtain
� tn

tn−1
�u(t)�2

∂Ωh(t) dt � �∇u�2
Qh,n + Δt�u+(0)�2

Ωh(0)

+
n�

j=1
Δt�[u]j�2

Ωh(tj) + Δt�∂Θ
t u�2

Qh,j + h2

γJ

jj
h(u, u)

We can make the terms of the kind �n
j=1 . . . independent of n by letting the sum run to

t = T in each case. Then, summing up the contributions will lead to 1
Δt

summands, which
finally gives

� T

0
�u(t)�2

∂Ωh(t) dt � �∇u�2
Qh + Δt�u+(0)�2

Ωh(0)

+
n�

j=1
�[u]j�2

Ωh(tj) + �∂Θ
t u�2

Qh + h2

γJ

J(u, u)

� 1
Δt

|||u|||2j ,

where the last inequality holds under the assumption that γJ is sufficiently large.

Lemma 3.10 (special trace inequality 2). For all u ∈ Wh + H1(Qh), v ∈ Wh it holds

� T

0
dt

�

∂Ωh(t)
u(t)v(t) ≤ Csstra√

Δt
|||u|||∗|||v|||j.

Proof. We start by introducing an inner product notation for the left-hand-side expression:

(u, v)Γ :=
� T

0
dt

�

∂Ωh(t)
u(t)v(t).

Then, we can apply Cauchy-Schwarz to split the contributions:

(u, v)2
Γ ≤ (u, u)Γ · (v, v)Γ

44

As v ∈ Wh, the special trace inequality 1 can be applied to obtain (v, v)Γ � 1
Δt

|||v|||2j .
Concerning the u-term we observe that for each time

�u�2
∂Ωh(t) � �∇u�2

Ωh(t) + �u�2
Ωh(t)

due to the usual trace inequality. Integration over all t ∈ [0, T] yields

(u, u)Γ � �∇u�2
Qh + �u�2

Qh � |||u|||2∗,

for Δt sufficiently small. Collecting all the results leads to the conclusion.

3.3 Stability

In the stability proof, we will consider a linear combination between u and ∂tu as the test
function v. The results of Lemma 3.6 help to gain control over the term stemming from
u. Now, we also want to gain control over the pairing (u, ∂tu) stemming from the second
summand. This is the aim of the following Lemma:

Lemma 3.11 (Counterpart of 3.7 Preuß). For any u ∈ Wh, there holds

B(u, Δt∂Θ
t u) + J(u, Δt∂Θ

t u) ≥1
2

N�

n=1
Δt(∂Θ

t u, ∂Θ
t u)Qh,n − C3.7||[u]||2

− C3.7

N�

n=1
(∇u, ∇u)Qh,n − C3.7J(u, u)

Proof. We start by writing out B(u, Δt∂Θ
t u):

B(u, Δt∂Θ
t u) =

N�

n=1
(∂tu, Δt∂Θ

t u)Qh,n +
N�

n=1
(w · ∇u, Δt∂Θ

t u)Qh,n + (∇u, Δt∇∂Θ
t u)Qh,n

+
N−1�

n=1
Δt([u]n, (∂Θ

t u)n
+)Ωh(tn) + Δt(u0

+, (∂Θ
t u)0

+)Ωh(0)

45

From Definition 2.10, we obtain ∂tu = ∂Θ
t u − ∇u · (∂Θst

h

∂t
◦ (Θst

h)−1)
� �� �

=:w̃

, leading to

B(u, Δt∂Θ
t u) −

N�

n=1
Δt(∂Θ

t u, ∂Θ
t u)Qh,n =

N�

n=1
(−∇u · w̃, Δt∂Θ

t u)Qh,n + (w · ∇u, Δt∂Θ
t u)Qh,n

� �� �
=:I

+
N−1�

n=1
Δt([u]n, (∂Θ

t u)n
+)Ωh(tn) + Δt(u0

+, (∂Θ
t u)0

+)Ωh(0)

� �� �
=:II

+
N�

n=1
(∇u, Δt∇∂Θ

t u)Qh,n

� �� �
=:III

All those terms will now be estimated seperately. We start with I :

I =
N�

n=1
((w − w̃) · ∇u, Δt∂Θ

t u)Qh,n

≤ �3

2 Δt
N�

n=1
((w − w̃) · ∇u, (w − w̃) · ∇u)Qh,n + Δt

2�3

N�

n=1
(∂Θ

t u, ∂Θ
t u)Qh,n

≤ �3

2 Δt�(w − w̃)�2
∞

N�

n=1
(∇u, ∇u)Qh,n + Δt

2�3

N�

n=1
(∂Θ

t u, ∂Θ
t u)Qh,n

Next, we continue with II :

II =
N−1�

n=1
Δt([u]n, (∂Θ

t u)n
+)Ωh(tn) + Δt(u0

+, (∂Θ
t u)0

+)Ωh(0)

≤ �1

2 ||[u]||2 + Δt2

2�1

N�

n=1
((∂Θ

t u)n−1
+ , (∂Θ

t u)n−1
+)Ωh(tn−1)

≤ �1

2 ||[u]||2 + C3.3 · Δt

2�1

�
h2

γJ

J(∂Θ
t u, ∂Θ

t u) +
N�

n=1
(∂Θ

t u, ∂Θ
t u)Qh,n

�
as ∂Θ

t u ∈ Wh

≤ �1

2 ||[u]||2 + C3.3 · Δt

2�1

�
h2

γJ

J(∂Θ
t u, ∂Θ

t u) + (∂Θ
t u, ∂Θ

t u)Qh

�

≤ �1

2 ||[u]||2 + C3.3

2�1

�
h2

γJ

C3.5

Δt
J(u, u) + h2

γJ

C3.5γ̃J · h2

Δt
�∇u�2

Qh + Δt(∂Θ
t u, ∂Θ

t u)Qh

�

46

Next, we estimate term III :

III =
N�

n=1
(∇u, Δt∇∂Θ

t u)Qh,n

≤ �2

2 (∇u, ∇u)Qh + C3.4

2�2

N�

n=1

1
γJ

jn
h (u, u) + �∇u�I(Qh,n)

≤ �2

2 (∇u, ∇u)Qh + C3.4

2�2γJ

J(u, u) + C3.4

2�2
�∇u�Qh

≤
�

C3.4(∇u, ∇u)Qh +
√

C3.4

2γJ

J(u, u),

choosing �2 =
√

C3.4.
Finally, we consider the Ghost penalty term applying Lemma 3.8:

J(u, Δt∂Θ
t u) ≤ �4

2 J(u, u) + Δt2

2�4
J(∂Θ

t u, ∂Θ
t u)

≤ �4

2 J(u, u) + C3.5

2�4
J(u, u) + C3.5γ̃J · h2

2�4
�∇u�2

Qh

=
�

C3.5J(u, u) +
√

C3.5γ̃J · h2

2 �∇u�2
Qh ,

choosing �4 =
√

C3.5.
Collecting all the subresults, we arrive at

B(u, Δt∂Θ
t u) + J(u, Δt∂Θ

t u) ≥ Δt(∂Θ
t u, ∂Θ

t u)Qh

�
1 − 1

2�3
− C3.3

2�1

�

− J(u, u)
�

C3.3

2�1

h2

γJ

C3.5

Δt
+

√
C3.4

2γJ

+
�

C3.5

�
− �1

2 ||[u]||2

− (∇u, ∇u)Qh

�
�3

2 Δt�(w − w̃)�2
∞ + C3.3

2�1

h2

γJ

C3.5γ̃J · h2

Δt
+

�
C3.4 +

√
C3.5γ̃J · h2

2

�

Picking �1 = 2C3.3 and �3 = 2 the claim follows for h sufficiently small.

The next Lemma gives an estimate of a special function in the ||| . . . |||j norm:

Lemma 3.12 (Counterpart of P.3.8). For any u ∈ Wh,

|||Δt∂Θ
t u|||j ≤ C3.8|||u|||j

Proof. The proof of this Lemma proceeds along the same lines we exploited in the last proof.
Also compare to the proof of [9, Lemma 3.8].

47

With these Lemmata, we are able to prove the stability result:

Proposition 3.13 (Inf-sup stability, Counterpart of P.3.9). For all u ∈ Wh, there exists a
ṽ(u) ∈ Wh such that

B(u, ṽ(u)) + J(u, ṽ(u)) ≥ C3.9|||u|||j · |||ṽ(u)|||j.

Proof. Fix u ∈ Wh and consider ṽ(u) := (2C3.7 + 1)u + Δt∂Θ
t u ∈ Wh. Then, we observe

B(u, ṽ(u)) + J(u, ṽ(u))
= (2C3.7 + 1) (B(u, u) + J(u, u)) + B(u, Δt∂Θ

t u) + J(u, Δt∂Θ
t u)

≥ (2C3.7 + 1) (1
2 ||[u]||2 +

N�

n=1
(∇u, ∇u)Qh,n + 1

2

� T

0
dt

�

∂Ωh(t)
dx (Vh

n(t) − w · n)u2

+ J(u, u)) + 1
2

N�

n=1
Δt(∂Θ

t u, ∂Θ
t u)Qh,n − C3.7||[u]||2

− C3.7

N�

n=1
(∇u, ∇u)Qh,n − C3.7J(u, u)

≥ 1
2 |||u|||2j + 2C3.7 + 1

2

� T

0
dt

�

∂Ωh(t)
dx (Vh

n(t) − w · n)u2

≥ 1
2 |||u|||2j − 2C3.7 + 1

2 · Cmc(h, Δt) ·
� T

0
dt

�

∂Ωh(t)
dx u2

≥ 1
2 |||u|||2j − 2C3.7 + 1

2 · Cmc(h, Δt) · Cstra

Δt
|||u|||2j

≥ 1
4 |||u|||2j , in line with Assumption 2.14.

In addition, we note that because of 3.8. and the triangle inequality,

|||ṽ(u)|||j ≤ (2C3.7 + 1)|||u|||j + |||Δt∂Θ
t u|||

≤ (2C3.7 + C3.8 + 1)|||u|||j,

which remains unchanged in comparison to Preuß. Then, the result follows.

3.4 Continuity

Keeping the general proof structure of Preuß, we continue by proving continuity after having
obtained inf-sup stability in the last subsection. As the continuity proof exploits the alternat-
ive characterisation, we will have a new summand appearing in the proof, which fortunately
can be bounded by an appropriate lemma.

48

Proposition 3.14 (Continuity, Counterpart of P.3.10). For all u ∈ Wh + H1(Qh) and all
v ∈ Wh it holds

B(u, v) ≤ |||u|||∗ · |||v|||j
J(u, v) ≤ �u�J · �v�J

Proof. Concerning the first equation, we note that

B(u, v) = d�(u, v) + b�(u, v) + a(u, v) +
� T

0
dt

�

∂Ωh(t)
dx (w · n − Vh

n(t))uv

Following the proof of Lemma 3.10 of Preuß, we note that

d�(u, v) + b�(u, v) + a(u, v) � |||u|||∗ · |||v||| ≤ |||u|||∗ · |||v|||j.

It remains to bound the last summand accordingly. To this end, we apply the special trace
inequality 2:

� T

0
dt

�

∂Ωh(t)
dx (w · n − Vh

n(t))uv ≤ Cmc(h, Δt) ·
� T

0
dt

�

∂Ωh(t)
dx (w · n − Vh

n(t))uv

� Cmc(h, Δt)√
Δt

|||u|||∗ · |||v|||j,

Taking into account Assumption 2.14, we arrive at the bound for B(u, v). For the ghost
penalty, the proof of Preuß can be applied for our slightly changed facet set in the same
way.

3.5 Strang-type analysis

The results of the previous subsections allow us now to proof a Strang-Lemma-like result.
This is of high importance as it gives us a first upper bound on the numerical error.

As the solution of the continuous problem is defined on the exact geometry, our mapping
Ψst translating between Qlin and Q becomes relevant here. Remember that it was defined
such that Ψst(Qlin) = Q, paralleling Θst

h (Qlin) = Qh. Last, also a mapping Φst : Qh → Q

was defined.
We denote by u ∈ H2(Q) the solution to the exact problem and lift it to the discrete

geometry:
ul := u ◦ Φst = u ◦ Ψst ◦ (Θst

h)−1.

49

In addition, we want to lift some functions qh in the other direction, motivating the definition

q−l
h := qh ◦ (Φst)−1 = qh ◦ Θst

h ◦ (Ψst)−1.

This allows us tomeasure the difference between u and the solution to the discrete problem
uh as follows:

Theorem 3.15 (Strang-type result). Denoting by u the solution to (2) and by uh the solution
to (3), we obtain

|||ul − uh||| � inf
vh∈Wh

|||ul − vh||| + |||ul − vh|||∗ + |||vh|||J

+ sup
qh∈Wh

|fh(qh) − f(q−l
h)|

|||qh|||J
+ sup

qh∈Wh

|Bh(ul, qh) − B(u, q−l
h)|

|||qh|||J

Proof. Fix an arbitrary vh ∈ Wh. Then, it holds by the triangle inequality

|||ul − uh||| ≤ |||ul − vh||| + |||vh − uh|||

Concerning the second summand we observe that for some qh ∈ Wh chosen as ṽ(uh − vh)
in line with Proposition 3.13

|||uh − vh||| · |||qh|||J ≤ |||uh − vh|||J · |||qh|||J � Bh(uh − vh, qh) + J(uh − vh, qh)
= Bh(uh, qh) + J(uh, qh)

� �� �
=fh(qh)

−Bh(vh, qh) − J(vh, qh)

As u was the solution to the continuous problem, we can add 0 = B(u, q−l
h) − f(q−l

h) and
0 = Bh(ul, qh) − Bh(ul, qh) to obtain

|||uh − vh||| · |||qh|||J �fh(qh) + B(u, q−l
h) − f(q−l

h) + Bh(ul, qh) − Bh(ul, qh)
− Bh(vh, qh) − J(vh, qh)

�|fh(qh) − f(q−l
h)| + Bh(ul − vh, qh)

� �� �
�|||ul−vh|||∗·|||qh|||

+ |B(u, q−l
h) − Bh(ul, qh)| −J(vh, qh)

� �� �
�|||vh|||J ·|||qh|||J

Dividing this inequality by |||qh|||J and combining it with the first triangle inequality step of
this proof, we arrive at the result.

50

3.6 Geometrical consistency analysis

In the next two Lemmata, we will derive bounds for the summands in the previous result
which are not related to interpolation.

Lemma 3.16 (Estimate on right-hand-side deviation in Strang). It holds

sup
qh∈Wh

|fh(qh) − f(q−l
h)|

|||qh|||J
� sup

qh∈Wh

�qh�Qh

|||qh|||J
�
hks+1 · �f�W 1,∞(Q) + hks · �f�Q

�
.

Proof. We start by writing out fh(qh) and f(q−l
h):

f(q−l
h) =

�

Q
fq−l

h dx =
�

Qh
|detDΦst|(f ◦ Φst) (q−l

h ◦ Φst)
� �� �

=qh

fh(qh) =
�

Qh
f eqh,

where f e denotes an extension of f to at least Qh. For the difference we obtain

|fh(qh) − f(q−l
h)| �

�

Qh

|(f e − |detDΦst|(f ◦ Φst))qh|

� |
�

Qh

(1 − detDΦst)
� �� �

�hks

f eqh| + |
�

Qh

|detDΦst|
� �� �

�1

qh(f e − f ◦ Φst)|.

For the expression (f e − f ◦ Φst), we can derive an estimate as follows

�f e − f ◦ Φst�∞,Qh � �f e�W 1,∞(Qh) · �Id − Φst�∞,Qh

� �� �
�hks+1

In total, we arrive at

|fh(qh) − f(q−l
h)| � hks�f e�Qh · �qh�Qh + hks+1�f e�W 1,∞�qh�Qh

Factoring out the ratio between �qh�Qh and �qh�J , we arrive at the result.

51

Lemma 3.17 (Estimate on left-hand-side deviation in Strang). It holds

sup
qh∈Wh

|Bh(ul, qh) − B(u, q−l
h)|

|||qh|||J

� S∗hks ·
�

�∂u

∂t
�Q + (h + h2

Δt
+ 1 + h�w�W 1,∞ + �w�∞,Q)�∇u�Q + �u0�Ωh(t0)

�

where S∗ = max
�

1, sup
qh∈Wh

�qh�Qh

|||qh|||J

�
.

Proof. We start by writing out the expressions for Bh(ul, qh) and B(u, q−l
h). Note that the

solution u is continuous so that we can neglect the jump terms:

Bh(ul, qh) =
�

Qh
∂t(ul)qh

� �� �
Ia

+
�

Qh
w∇(ul)qh

� �� �
IIa

+
�

Qh
∇(ul)∇qh

� �� �
IIIa

+
�

Ωh(t0)
(ul)0

+q0
h

� �� �
IV a

B(u, q−l
h) =

�

Qh
| det DΦst|(∂tu ◦ Φst)qh

� �� �
Ib

+
�

Qh
| det DΦst|(w∇u ◦ Φst)qh

� �� �
IIb

+
�

Qh
| det DΦst|(∇u ◦ Φst)(∇(q−l

h) ◦ Φst)
� �� �

IIIb

+
�

Ωh(t0)
| det DxΦst(. . . , t0)|(u0

+ ◦ Φ)q0
h

� �� �
IV b

In order to estimate the respective differences, we start with a series of basically just applic-
ations of the chain rule:

∂ul

∂t
= ∂

∂t
(u ◦ Φst) = ∂u

∂t
◦ Φst + (∇u ◦ Φst)∂Φst

∂t

∇(ul) = Dx(Φst)T (∇u ◦ Φst)
∇(q−l) = Dx(Φst)−T (∇q ◦ (Φst)−1)

Then we can estimate the differences of the respective terms

Ia − Ib =
�

Qh

qh

�
∂tu ◦ Φst + (∇u ◦ Φst)∂Φst

∂t
− | det DΦst|(∂tu ◦ Φst)

�

|Ia − Ib| ≤
�

Qh

qh(∇u ◦ Φst)∂Φst

∂t
qh − |1 − det DΦst|

� �� �
�...�∞�hk

(∂tu ◦ Φst)qh

52

In addition, we observe �∂Φst

∂t
�∞ � hks(h + h2/Δt) leading to

|Ia − Ib| � hks�qh�Qh

�
�∂u

∂t
�Q + (h + h2

Δt
)�∇u�Q

�

Next, we continue with the second term

IIa − IIb =
�

Qh

�
wDx(Φst)T − (w ◦ Φst)| det DΦst|

�
(∇u ◦ Φst)qh

We observe that for the inner term

|wDx(Φst)T − (w ◦ Φst)| det DΦst||
≤ wDx(Φst)T − (w ◦ Φst) + (w ◦ Φst)|1 − det DΦst|
≤ |w − (w ◦ Φst)|

� �� �
�hks+1�w�H1,∞

+ |(I − Dx(Φst)T)|
� �� �

�hks

|w| + (w ◦ Φst) |1 − det DΦst|
� �� �

�hks

.

In total we arrive at

|IIa − IIb| �
�
hks+1�w�W 1,∞ + hks�w�∞,Q

�
�∇u�Q�qh�Qh .

Next, we estimate the third difference

IIIa − IIIb =
�

Qh
(Dx(Φst)T (∇u ◦ Φst))∇qh

− | det DΦst|(∇u ◦ Φst)(Dx(Φst)−T ◦ Φst)∇qh

=
�

Qh
(∇u ◦ Φst)∇qh

�
Dx(Φst)T − | det DΦst|(Dx(Φst)−T ◦ Φst)

�

Concerning the inner term, we find

Dx(Φst)T − | det DΦst|(Dx(Φst)−T ◦ Φst)
= (Dx(Φst)T (Dx(Φst)T ◦ Φst) − I + I (1 − | det DΦst|)

� �� �
�hks

) (Dx(Φst)−T ◦ Φst)
� �� �

�...�∞�1

53

In turn,

Dx(Φst)T (Dx(Φst)T ◦ Φst) − I =(Dx(Φst)T − I)((Dx(Φst)T ◦ Φst) + I)
+ ((Dx(Φst)T ◦ Φst) − I) − (Dx(Φst)T − I)

��(Dx(Φst)T − I)�∞ � hks .

In total, this allows us to conclude

|IIIa − IIIb| � hks�∇u�Q · |||qh|||.

For the last pair of summands, we note

|IV a − IV b| �
�

Ωh(t0)
|1 − det DxΦst(. . . , t0)|� �� �

�hks

(u0
+ ◦ Φ)q0

h

� hks�u0�Ωh(t0)|||qh|||

Collecting all the subresults and applying the triangle inequality, we arrive at the result.

3.7 A priori error bounds

Our final step in the analysis consists of combining the upper bounds on two summands in
Theorem 3.15 with bounds on the first terms. Fortunately, bounds of the latter kind, also
called interpolation estimates, are already derived by [9]. We directly combine the results of
his Propositions 3.23, 3.24, 3.26 in the following

Proposition 3.18 (Interpolation estimate). Choosing u and uh as in Theorem 3.15, it holds
with kmax := max(ks, kt)

inf
vh∈Wh

|||ul − vh||| + |||ul − vh|||∗ + |||vh|||J �

Δtkt+1/2 +

�

1 + Δt

h
hks

 �u�Hkmax+2(Q)

Proposition 3.19 (A priori error bound). Choosing u and uh as in Theorem 3.15, it holds with

54

kmax := max(ks, kt)

|||ul − uh||| �

Δtkt+1/2 +

�

1 + Δt

h
hks

 �u�Hkmax+2(Q)

+ S∗hks ·
�

�∂u

∂t
�Q + (h + h2

Δt
+ 1 + h�w�W 1,∞ + �w�∞,Q)�∇u�Q + �u0�Ωh(t0)

�

+ sup
qh∈Wh

�qh�Qh

|||qh|||J
�
hks+1 · �f�W 1,∞(Q) + hks · �f�Q

�

4 Numerical investigations

In this section, we want to complement the theoretical findings of the previous section with
some numerical examples. To this end, we will use the Finite Element library ngsolve
and its extension ngsxfem. By and large, we will not discuss implementational aspects
and refer the interested reader to either the sections of [9] or the report [3] for this.

4.1 Space-time DG

We want to start with an investigation of the Space-time DG method introduced in the pre-
vious section. We directly implement the higher-order variant exploiting the isoparametric
mapping. In the following, we focus on combinations of equal polynomial order in space and
time k = ks = kt, although it would be an interesting direction for further investigations to
also consider other combinations. (See also [9, Chapter 6])

The first example is that of moving circle geometry in two spatial dimensions. The follow-
ing levelset function is used for this purpose:

ρ = 1
π

sin 2πt, φ =
�

x2 + (y − ρ)2 − r0, r0 = 1
2 .

The background domain is chosen to be Ω̃ = [−0.6, 0.6] × [−1, 1], such that the moving
circle is fully contained in the mesh at all points in time. The spatial mesh is chosen to be
an unstructured mesh with maximal mesh size h = (1

2)is+2 for appropriate choices of the
parameter is. Accordingly, the time interval [0, T] = [0, 0.5] is subdivided into 2it steps for a
parameter it. An example of the circle geometry in an example mesh can be seen in Fig. 10
on the left hand side.

To assess the convergence behaviour of the numerical method, we perform a series of
refinements in space and time respectively. In each case, the other discretisation parameter

55

Figure 10: Snapshot of the circle and sphere geometry in the mesh (including deformation)

(is or it) is chosen sufficiently large such that the error is dominated by the discretisation
under investigation. In order to calculate the numerical error from an exact solution, we
pick a solution first and insert an according right-hand side f of the problem. In this case,

u = cos(Qr) · sin(πt), Q = π

r0
,

f =
�

Q

r
· sin(Qr) + Q2 · cos(Qr)

�
· sin(πt) + π · cos(Qr) · cos(πt).

The results for the two refinements studies for this case are shown in Fig. 11.
We observe numerically that the error decays with

�u − uh�Q � hk+1 + Δtk+1.

To compare these findings with the results of the analysis of Section 3, we note that the
error is measured in different norms respectively, as the ||| . . . |||-norm does not contain a
contribution � . . . �Q. However, the approximation error measured in the � . . . �Q-norm is
known to scale with hk+1 +Δtk+1 (compare with [9, Tab. 6.21]). Hence, we conclude that the
numerical investigations confirm our theoretical results. However, it would be interesting to
extend the analysis of section 3 towards an priori error bound measured in the � . . . �Q norm
in order to compare the results directly.

In addition to the moving circle case, we also test our method with a more complex geo-
metry, where the circle deforms over time into a kite shape. This behaviour is depicted in

56

0 1 2 3 4 5
10−6

10−5

10−4

10−3

10−2

10−1

100

it

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

0 1 2 3 4 5

10−7

10−5

10−3

10−1

is

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

Figure 11: Convergence plots of the higher order DG method for the moving circle case. On
the left-hand side, time refinements are performed for a sufficiently high is. On
the right-hand side, space refinements are performed for a high it respectively. In
each case, kt = ks = k.

Fig. 12 and can be described in terms of the following levelset function

ρ(t, y) = (1 − y2) · t, φ =
�

(x − ρ)2 + y2 − r0, r0 = 1.

Again, the convection field is calculated as

w = (∂ρ

∂t
, 0),

and we calculate a manufactured right hand side to our solution u = cos(Qr) · sin(πt),
where the radius is defined in terms of the new ρ(t, y) as above in the levelset function.
The numerical results are presented in Fig. 13. We observe the same experimental orders of
convergence as with the moving circle case and hence conclude that our method can also be
applied directly to more challenging geometries.

Because of implementational work described elsewhere [3], it is relatively straightforward
to apply the methods of investigation in this text also to three-dimensional problem in space.
To this end, we generalise themoving circle test case to amoving sphere test case and perform
one exemplary refinement study in time. (See Fig.) Although it is computationally more
expensive to generate results in three spatial dimensions, all generated data support our
findings made in the context of two spatial dimensions.

57

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0.1

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0.2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0.3

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0.4

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

t = 0.5

Figure 12: Kite geometry at different times.

58

0 1 2 3 4 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

it

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

0 1 2 3 4 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

is

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

Figure 13: Convergence plots of the higher order DG method for the kite case. Presentation
style as in Fig. 11.

0 0.5 1 1.5 2 2.5 3

10−2

10−1

it

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4)

Figure 14: Convergence plots of the higher order DG method for the sphere case. Presenta-
tion style as in Fig. 11.

59

0 1 2 3 4 5
10−6

10−5

10−4

10−3

10−2

10−1

100

it

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

0 1 2 3 4 5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

is

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 O(h2) k = 2 O(h3)
k = 3 O(h4) k = 4 O(h5)

Figure 15: Convergence plots of the higher order CG method for the moving circle case. On
the left-hand side, time refinements are performed for a sufficiently high is. On
the right-hand side, space refinements are performed for a high it respectively. In
each case, kt = ks = k.

4.2 Space-time CG

Next, we also want to investigate the Petrov-Galerkin variant of our method and compare
it to the DG method numerically. To this end, we use the same moving circle setting as
before. In particular, we generate the meshes by the same functions and also use the same
notation for space and time refinement levels, is and it. In Fig. 15, results for spatial and
time refinements for the method are displayed. By and large, the numerical errors are very
similar and differ only slightly. Also, the general convergence behaviour for all investigated
polynomial degrees remains the same. This is expected as there are only small differences
concerning the Ghost penalty and the (dis)-continuity of the numerical solution along time
slice boundaries. To stress this point, we also give a direct side-by-side comparison between
the CG and the DG method for spatial refinements in Fig. 16.

Another interesting “norm” for comparing the CG and the DG method apart from numer-
ical error is that of computational effort, or more specifically the number of non-zero entries
of the matrix. That is why we also calculate these numbers for the numerical test cases of
Fig. 16 and present it in Fig. 17.

The resulting numbers confirm the general expectation that the matrix size of the CG
method would correspond to the matrix of the DG method of one polynomial order less
in time. Accordingly, we see a considerable benefit from going to CG for low polynomial
orders. However, for higher polynomial orders, the relative difference of “saving one order

60

0 1 2 3 4 5

10−7

10−5

10−3

10−1

is

�u
h

−
u
� L

2 (
L

2 (
Ω

(t
))

,0
,T

)

k = 1 CG k = 1 DG k = 2 CG k = 2 DG
k = 3 CG k = 3 DG k = 4 CG k = 4 DG

Figure 16: Direct comparison of the results for the CG and the DG method for the moving
circle in terms of numerical error for space refinements.

0 1 2 3 4 5

102

103

104

105

106

107

is

nz
e

k = 1 CG k = 1 DG k = 2 CG k = 2 DG
k = 3 CG k = 3 DG k = 4 CG k = 4 DG

Figure 17: Direct comparison of the results for the CG and the DG method for the moving
circle in terms of non-zero entries in the system matrix for space refinements.

61

in time” becomes less significant. We conclude that the CG method is interesting from a
computational point of view in particular for low and moderate order application szenarios.
One could also investigate non-matching pairs ks, kt in that regard in future research.

5 Conclusion and Outlook

We end this thesis by giving a summary and suggesting some directions for future research.

5.1 Summary

In this thesis, we extended results for Unfitted space-time Finite Element methods for the
convection-diffusion problem in different directions. The first major analytical goal con-
sisted in relaxing the assumption of an exact handling of the geometry in the analysis of [9].
In order to prepare for this analysis, we introduced the basic DGmethod of [9] and its variant
under a weakened assumption on the handling of geometries carefully in Section 2. After-
wards, we presented a modified variant of the analysis in Section 3. In general, many proof
techniques could be transfered to our case and most changes concern smaller Lemmata. We
derived error bounds in a specific ||| . . . |||-norm which take the form of a sum of the terms in
[9] and some new summands stemming from a Strang-type result. Numerical investigations
confirm our theoretical results concerning the DGmethod. A second direction of generalisa-
tion was the introduction of a continuous Galerkin (CG) variant of the method. Its analysis
remains work for future research, but we introduced the method and demonstrated its func-
tionality numerically. In particular, the numerical errors differ only slightly from those of
the DGmethod and the effect of a reduction of the systemmatrix size for small and moderate
polynomial order was shown.

5.2 Directions for future research

The results of this thesis suggest several directions for future investigations:

Analysis

• The Continuous Galerkin method suggested in this thesis could be analysed along po-
tentially similar lines as the DG methods presented in [9] and this text. Note that
however, in the stability proof the issue appears that the time derivative is not in gen-
eral contained in the according discrete space. As of now, we have not yet found a fix
for this and leave it as a question for future research.

62

• The analysis of the DGmethod presented could be extended in the direction of an error
bound in the “normal” Q-norm. That would be a measure of the error relating more
naturally to applications of the numerical methods compared to the somewhat special
||| . . . |||-norm.

• Concerning the isoparametric mapping, one could go one step further than our ana-
lysis and consider the discretisation in time in line with the presentation of 2.4.2.
Roughly, we would expect terms involving the time discretisation in addition to the
difference terms of our analysis here.

• Further work can be also done in an accurate definition and investigation of the tech-
nical aspects of the definition of the space-time version of the isoparametric mapping.
To some extent, we circumvented such investigations by appropriate assumptions.

• In our estimates of the new Strang-type result, a factor supqh∈Wh

�qh�Qh

|||qh|||J appeared. It
would be desirable to bound this expression by an appropriate constant. We conjecture
that doing so would be possible by e.g. imposing boundary conditions by a Nitsche-
type approach or including a mass term in the problem.

• An analysis could be extended in the direction of the projection operator representing
the shifted_evaluate function, c.f. the remark on Page 31.

Implementation

• Concerning implementation, one relatively straightforward next step would consist of
investigating non-matching pair of polynomial orders for space and time, ks �= kt.

• In addition, the error could be measured in more norms than just the � . . . �Q-norm.

• Future investigations could also be made in the direction of three dimensional spatial
problems. As of now, only very few results could be generated because of highmemory
consumption of the applied direct solvers. It might be interesting to try out iterative
solvers to circumvent this issue.

Analysis and Implementation

• Finally, the methods of this thesis could be transfered to more complicated physical
problems, such as a two phase flow problem. This concerns both analysis and imple-
mentation. For some first investigations in that direction see [9, Chapters 7,8].

63

References

[1] Erik Burman. Ghost penalty. Comptes Rendus Mathematique, 348(21-22):1217–1220,
2010.

[2] Erik Burman, Susanne Claus, Peter Hansbo, Mats G Larson, and André Massing. Cut-
fem: discretizing geometry and partial differential equations. International Journal for
Numerical Methods in Engineering, 104(7):472–501, 2015.

[3] Fabian Heimann. Implementing cut space-time quadrature rules for three dimensions.
report on the programming practial. April 12, 2019.

[4] Christoph Lehrenfeld. High order unfitted finite element methods on level set domains
using isoparametric mappings. Computer Methods in Applied Mechanics and Engineer-
ing, 300:716 – 733, 2016.

[5] Christoph Lehrenfeld. Advanced finite element methods: Lecture notes (winter
semester 2016/17). January 17, 2017.

[6] Christoph Lehrenfeld. Numerics of partial differential equations: Lecture notes (winter
semester 2019/20 and summer semester 2020). July 10, 2020.

[7] Christoph Lehrenfeld and Maxim A. Olshanskii. An Eulerian finite element method for
PDEs in time-dependent domains. ESAIM: M2AN, 53:585–614, 2019.

[8] Christoph Lehrenfeld and Arnold Reusken. Analysis of a high order unfitted finite
element method for an elliptic interface problem. IMA J. Numer. Anal., 38:1351–1387,
2018.

[9] Janosch Preuß. Higher order unfitted isoparametric space-time fem onmoving domains.
Master’s thesis, University of Gottingen, 2018.

[10] Arnold Reusken. Analysis of an extended pressure finite element space for two-phase
incompressible flows. Computing and Visualization in Science, 11(4):293–305, 2008.

64

Acknowledgements

First and foremost, I thank Christoph Lehrenfeld for his great support throughout the years,
but also in particular within the supervision of this thesis. The very detailed and helpful
discussions significantly shaped the structure of this thesis on a big scale, but also many
technical aspects of the proofs.

Furthermore, I thank Prof. Gert Lube for agreeing to be the second assessor for this thesis.
Lastly, thanks to Alexander Osterkorn for providing some language improvement sugges-

tions.

65

