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Abstract. It is commonly considered that the frustration between the curvature energy and the

chain stretching energy plays an important role in the formation of lyotropic liquid crystals in
bicontinuous cubic phases. Theoretic and numeric calculations were performed for two extreme
cases: Parallel surfaces eliminate the variance of the chain length; constant mean curvature

surfaces eliminate the variance of the mean curvature. We have implemented a model with
Brakke’s Surface Evolver which allows a competition between the two variances. The result
shows a compromise of the two limiting geometries. With data from real systems, we are able to
recover the G–D–P phase sequence which was observed in experiments.
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1. Introduction

Liquid crystals are called lyotropic if they experience phase transitions by adding or removing a
solvent [Hil94]. Typically, the solute in a lyotropic liquid crystal (LLC) is amphiphilic, comprising
a hydrophilic head-group and a hydrophobic chain (tail). Upon varying solvent content and/or
temperature, LLC can display a rich variety of phases, including the lamellar phase, the hexagonal
phase, and the bicontinuous or micellar cubic phases. Of these, the bicontinuous cubic phases are
the most complex and interesting. They are observed in cells and organelles, and are believed to
play important role in biological processes [AKD06]. It is generally believed that the bicontinous
LLC cubic phases can be described by triply-periodic minimal surfaces (TPMS’s) [Scr76, LFK80,
LM83, Mac85].

A LLC can be treated as a packing of curved amphiphile monolayers and water layers. According
to the curvature of the monolayers (measured at the neutral interfaces [KW91, Tem95]), LLC can be
classified into two types [LTGK+68, ST95, Hyd89]: With respect to normal vectors pointing from
oil to water, the monolayers have positive mean curvature in a normal (a.k.a. type I, oil-in-water)
system, and negative mean curvature in an inverse (a.k.a. type II, water-in-oil) system. In the case
of a typical amphiphile-water binary LLC system, an inverse bicontinuous cubic phase consists of
a pair of monolayers tail-to-tail (a bilayer) draped over the TPMS [SKM+07, SCT10, STFH06],
separating two water channels; while in a normal phase, a water layer following the TPMS separates
two channels packed by the hydrophobic tails of the amphiphiles [STFH06].

It is commonly believed that LLC phases arise from the competition between two geometric
demands [Hel73, SC86, AGL88]: uniform curvature and uniform chain length in the monolayers.
Indeed, as the amphiphilic molecules in the monolayers are chemically identical, it is conceivable that
they have the same spontaneous curvature [Hyd90] and relaxed tail length. However, for most of the
LLC phases, the curvature and the chain length can not be simultaneously uniform [DTS97, AGL88].
Hence the origin of frustration, which can be quantified by the variances of mean curvature and of
chain length.

Considering both variances at the same time is difficult, hence most investigations treat them
separately. The neutral interfaces are either modeled as parallel surfaces of the TPMS (e.g. [AGL88,
TKS98, Hyd89, TSD+98, SG00b, SG01]), eliminating the variance of the chain length; then the
Helfrich energy is calculated or measured as the energy of the system. Or, alternatively, the neutral
interfaces are assumed to have constant mean curvature (CMC); then the Hooke energy is used as
the energy of the system (e.g. [AGL88, SKM+07, SCT10, TSD+98, SG00a]). The parallel surface
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model is certainly more straight forward to calculate, but the CMC model makes more sense for
the inverse hexagonal and micellar phases [AGL88, DTS97], and is arguably more successful in
explaining the phase behaviour involving bicontinuous cubic phases [SCT10].

There has been a constant and strong demand [AGL88, SKM+07] for a model that allows the
competition between the curvature energy and the chain stretching energy. Here we present a way
of modeling LLC structures in Brakke’s Surface Evolver [Bra92] that fulfills this demand. We first
demonstrate our method on the inverse hexagonal phase, then apply it to the bicontinuous cubic
phases, both inverse and normal, with the geometry of G (gyroid, Ia3d), D (diamond, Pn3m), P
(primitive, Im3m) TPMS’s. This gives, for the first time, a geometry of LLC that compromises
the two extremes: the parallel surfaces and the CMC surfaces.

Acknowledgement. The authors appreciate discussions with Karsten Große-Brauckmann and
Ken Brakke, and thank Gerd Schröder-Turk and Lu Han for feedbacks. Jin acknowledges the
support of Corinna C. Maaß and Stephan Herminghaus.

2. Model

Following [SCT10], the surface averaged free energy per hydrophobic chain, denoted by µ,
comprises two parts:

(1) µ = µC + µL,

where
µC = A(2κH〈(H −H0)2〉+ κG〈K〉)

is the Hilfrich energy or curvature energy [Hel73, FHL91], and

µL = κL〈(L− L0)2〉
is the Hooke energy or chain stretching energy. Here, A denotes the cross-sectional area of a
hydrophobic chain, L denotes the chain length, H is the interfacial mean curvature, K is the
interfacial Gaussian curvature, H0 is the spontaneous mean curvature, L0 denotes the relaxed chain
length, and κH , κG and κL denote the moduli for the energetic contributions from, respectively,
the mean curvature, Gaussian curvature, and hydrophobic chain stretching. All these quantities
should be measured on or from the neutral interface, which is the location within the monolayer
where the area is invariant upon isothermal bending [KW91, Tem95]. The average is over the
whole surface, that is 〈x〉 =

∫
S
xdS/

∫
S
dS.

The contribution from the mean curvature can be rewritten as

(2) 2AκH
〈
(H −H0)2

〉
= 2AκH

[
(〈H2〉 − 〈H〉2) + (〈H〉 −H0)2

]
= 2AκHσ

2
H + µ̄H

where σx = 〈x2〉 − 〈x〉2 denotes the squared variance. Similarly, the contribution from the chain
stretch can be decomposed into

(3) µL = κL
[
(〈L2〉 − 〈L〉2) + (〈L〉 − L0)2

]
= κLσ

2
L + µ̄L.

The frustration of the system is measured as a weighted sum of the squared variances

2AκHσ
2
H + κLσ

2
L,

which is the quantity to minimize in our model.
This model is certainly a simplification. In particular, we ignore the contribution of the tilt

energy (which will be justified later), the higher order contributions of the curvatures, as well as
the non-local interactions of the monolayers, such as van der Waals interaction and hydration
repulsion. Nevertheless, it is hoped that the important physical features are retained.

Brakke’s Surface Evolver [Bra92] is a software that minimizes energies of triangulated surfaces
subject to constraints and boundary conditions. Apart from the usual surface tension energy, or
the area functional, Surface Evolver is able to calculate many other quantities on a surface. Many
of these quantities can be included in the energy to minimize. A quantity can be calculated on a
particular set of geometric elements (vertices, edges, faces, bodies), allowing the users to control
which elements contribute to the total energy. Moreover, each quantity has a modulus to specify
its weight in the total energy. The moduli are adjustable in real time on each geometric element.
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In particular, Surface Evolver has implemented the Willmore energy (h− h0)2 (see [HKS92])
evaluated on vertices, and the Hooke energy (`− `0)2 evaluated on edges. Here, we use lower case
letters to distinguish dimensionless quantities in Surface Evolver from physical quantities. More
specifically, our computations in Surface Evolver assume unit lattice parameter (edge length of the
conventional cubic cell of the TPMS). If the physical system has lattice parameter a, we have the
relations h = Ha, k = Ka2 and l = L/a. Then the surface averaged energy per hydrophobic chain
takes the following form

(4) µ = Aa−2
[
2κH〈(h− h0)2〉+ κG〈k〉

]
+ κLa

2〈(`− `0)2〉.

The parameters h0 and `0 in Surface Evolver are supposed to mean the dimensionless spontaneous
mean curvature and relaxed chain length. However, we keep updating these parameters to the
average values 〈h〉 and 〈`〉, so that the averaged Willmore energy gives the squared variance of
mean curvature, and the averaged Hooke energy gives the squared variance of chain length. Hence
the minimized quantity is the frustration

2AκHa
−2σ2

h + κLa
2σ2

`

or, for convenience,

σ2
h + λσ2

`

where λ = κLa
4/2AκH . After sufficiently evolving the surface, it is easy to transform the minimized

frustration into the energy using Eqs. (2) and (3).
Our procedure of modeling bicontinuous LLC cubic phases in Surface Evolver can be outlined

in the following five steps.

(1) Prepare a triangulation of the D, P or G surface, or any other surface of interest.
(2) Make two copies of the triangulation, modeling the neutral interfaces. Assign Willmore

energy to these copies.
(3) Create edges modeling the hydrocarbon chains, and assign Hooke energy to these edges.
(4) Impose a volume constraint to the space between the neutral interfaces in correspondance

with the desired water fraction.
(5) Evolve the surface towards the minimum of the total energy, while keep updating the

average values h0 = 〈h〉 and `0 = 〈`〉.
In step (3), the edges modeling the hydrophobic chains depend on the system and the model.

For inverse LLC phases, we are aware of several ways of modeling the chains:

(a) Connect edges between the corresponding vertices on the triangulated neutral interfaces.
(b) Connect edges from the vertices on the neutral interfaces to the corresponding vertices on

the TPMS.
(c) Subtending normal vectors from the TPMS until the neutral interfaces (used in [SKM+07]).
(d) Subtending normal vectors from the neutral interfaces until the TPMS.

In order to consider the curvature and the chain length at the same time, we need to keep the
chains up to date at every step of surface evolution. The models (c) and (d) require computing the
intersection point of a line and a triangulated surface, which is very time consuming. We will use
the models (a) and (b). The chains are established once at the beginning, and will be used during
the entire computation.

However, only the model (d) forces the chains to be perpendicular to the neutral interfaces.
This may raise concerns on the legitimacy of ignoring tilt energy (see [HK00]) in other models. We
address to this concern by measuring the amount of tilting. It turns out that the chains do not tilt
much, at least in the inverse bicontinuous cubic phases, thanks to the normal motion mode of the
Surface Evolver.

An edge in the model (a) corresponds to two chains. One advantage of this model is that it
is independent of the TPMS: the TPMS is present only for reference, and does not participate
in the calculation. Our program is robust in the sense that, if one starts from a periodic CMC
surface instead of a TPMS (which the author did, accidentally), the bilayer will correctly evolve to
the TPMS. Hence our program confirms, under the current theory, that bicontinuous LLC cubic
phases do follow the geometry of TPMS.
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For normal LLC phases, we subtend normal vectors from vertices of the triangulated TPMS to
find intersection points on the medial surface, then model the hydrophobic chains by edges from
these intersection points to the corresponding vertices on the neutral interfaces. This model follows
the idea of [SRCH03]. See Figure 1 for an illustration of our models.

The readers are free to use other chain models in their own calculations. The technical details
are postponed to Section 5.

3. Result

3.1. Inverse hexagonal phase. In the inverse hexagonal LLC phase, water is contained in
the tubes formed by amphiphiles arranged in a hexagonal lattice. Due to its simplicity, the
inverse hexagonal phase has been a standard example (e.g. [DTS97, AGL88]) to illustrate the
incompatibility between uniform curvature and uniform chain length, and to demonstrate the
calculation of chain frustration within the CMC model.

We also choose the hexagonal phase to explain our method, since the model can be built up
in dimension 2. More specifically, the hexagonal lattice graph plays the role of TPMS, and a
“triangulation” is nothing but a subdivision of the edges. The neutral interfaces are modeled by
cycles within the hexagonal cells. In practice, such a cycle is initially created as a copy of the
hexagon. Vertices of the cycles are connected to the corresponding points on the hexagonal lattice
graph, modelling the hydrophobic chains of the amphiphiles (model (b)). The area between the
cycle and the hexagon corresponds to half of the volume between the neutral interfaces.

Surface Evolver is able to apply squared curvature energy on the cycle, and Hooke energy on
the hydrophobic chains. We can choose to minimize either energy alone, or minimize a weighted
sum of the two. At each iteration, we update the parameter `0 to the average chain length, so that
the averaged Hooke energy actually gives the dimensionless squared variance of chain length. Note
that the average curvature is a constant here.

In Figure 2, we show the result of Surface Evolver under three different situations. Minimizing
curvature energy alone results in a circle1, and minimizing chain stretching energy alone results in
a star-like shape. If both are present in the total energy, a competition arise. The cycle evolves to
a closed curve, which is neither a circle nor a star, but an intermediate shape.

3.2. Inverse LLC phases. We now repeat the calculation of Shearman et al. [SKM+07] to verify
the feasibility of our method. More specifically, we measure the chain frustration in inverse LLC
phases assuming CMC neutral interfaces. The hydrophobic chains are modeled by edges connecting
corresponding vertices on the triangulated neutral interfaces; recall that they are copies of the
same triangulation. The chain lengths are then half of the edge lengths. The volume fraction φn
of the space between the neutral interfaces ranges from 0.01 to 0.50. The squared variance σ2

` of
dimensionless chain length is measured as the frustration of the system.

The result is plotted in the top-left panel of Figure 3. We use 1− φn on the x-axis to facilitate
the comparison with Figure 5 in [SKM+07].2 The two plots are very similar: The frustration is the
lowest in the G phase, and the highest in the P phase when the water fraction is low, or in the D
phase when the water fraction is high. In particular, we also observe a crossover between the P and
D phases around φn = 0.29 (≈ 0.25 in [SKM+07]). There is only a slight numerical disagreement,
which can be explained by the minor differences in our models. In particular, the hydrophobic
chains in [SKM+07] is perpendicular to the TPMS3, while we allow slight tilting for the chains.

Now that we have confirmed the validity of our algorithm, we turn on the Hooke energy in
Surface Evolver, and minimize the weighted sum of the two dimensionless squared variances.
We fix the weight of σ2

h to be 1, and vary the weight of σ2
l . In other words, we are minimizing

σ2
h + λσ2

` , corresponding to the frustration divided by 2AκHa
−2. In view of parameter values

provided in [SCT10], we choose λ = 103, 104, 105 in our computations; see context of Figure 8.
The result surface is neither parallel nor constant mean curvature, but a compromise of the two.

1This is related to a quite challenging mathematical problem; see [FKN16].
2The “φw” in [SKM+07] should be 1 − φn. The relation between φn and φw is φn = (1 − φw)νn/ν, where ν is

the molecular volume and νn is the volume between the neutral interface to the chain ends.
3To be rigorous, the chains should be perpendicular to the CMCs
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The measured frustrations, together with the contribution of chain length frustration, is plotted in
Figure 3. Histograms in Figure 5 show tilt angles less than 10 degrees, justifying our practice of
ignoring the tilt energy.

The mean curvature and the chain length compete to be uniform, and a higher weight is an
advantage in this competition, hence the value of σ2

` is lower comparing to the CMC model.
Moreover, the contribution of λσ2

` in the total frustration is decreasing as λ increases. This trend
is more significant in the D and P phases than in the G phase. As a consequence, the frustration
in the G phase eventually surpasses the D and P phases when λ = 105.

As an example, the evolved P and D neutral interfaces with φn = 0.3 or 0.5 and λ = 104 are
shown in Figure 6. The difference of the resulting neutral interfaces from the CMC interfaces with
the same volume fraction φn is not visible with human eyes. This is also observed in Figure 4 where
plots of average chain length and average mean curvature are overlapped to show the similarity.
We then use CloudCompare [GM+16] to measure the deviation from the CMC interfaces, and
color the surface accordingly for visualization. Roughly speaking, comparing to the CMC model,
the neutral interfaces tend to move away from the TPMS around the flat points (where Gaussian
curvature vanishes) of the TPMS, and towards the TPMS at other places. This is compatible
with the observation in the CMC model that the chains are compressed around the flat points
of the TPMS, and extended other where; see Figure 8 of [SKM+07], or Figure 7 for a colorful
reproduction.

If the water fraction decreases further, the neutral interfaces in the CMC model tends to spheres
(positive Gaussian curvature) connected by small necks (negative Gaussian curvature) [ADNS87,
GB12]. Eventually, there will be a pinch-off point due to certain physical threshold, e.g., molecular
size, and the bicontinuous phases are substituted by micellar phases. For the P phase, the pinch-off
is supposed to occur at φn = 0.5 [SKM+07]. This can be observed in the top-left panel in Figure 3,
as the curve for the P phase becomes very sloped near φn = 0.5. However, water fraction in
experiment can be much smaller [SCT10]. This inconsistency is a weak point of the CMC model.
In our model, the plot curve becomes less sloped, implying that the pinch-off point is moving
towards lower water fraction. Indeed, we see in Figure 6 that the competition causes expansions in
the necks, therefore delays the pinching off. Hence our model is able to cover highly dehydrated
LLCs observed in experiment, which can not be explained by the CMC model [SCT10, TKS98].

Calculations shown in Figure 3 assume constant modulus, thus do not correspond to any
experimental systems. To connect to the real systems, we need to know the lattice parameter
a. Recall that the surface averaged energy per hydrophobic chain divided by κH , expressed with
dimensionless quantities, is

µ

κH
=
A

a2

[
2
〈
(h− h0)2

〉
+
κG
κH
〈k〉
]

+
κLa

2

κH

〈
(`− `0)2

〉
.

The total Gaussian curvature
∫
S
kdS is a topological constant 2πχ, where χ is the Euler character-

istic of the TPMS in the conventional cubic unit. The value of χ is −4 for the P surface, −2 for
the D surface and −8 for the G surface. A relation between a and φn, as well as typical ranges

for other parameters, are available in [SCT10]. We take the values A = 33Å
2
, κG/κH = −0.75,

κL/κH = 0.00035Å
−2

, H0 = 1/62.8Å
−1

. As for the relaxed chain length, we take for the moment
L0 = 8.8Å, which is the measured distance from the chain ends to the neutral interface in the G
phase [CC94] of 1-monoolein/water system. These allow us to plot µ/κH in Figure 8 as a function
of 1− φn. The phases of lowest energy gives a G–D–P sequence with increasing water fraction,
which is a widely observed phase sequence in experiments [TKR98, TMS06] (see also [QC00]). The
energy compositions of different phases are plotted in Figure 9.

However, the readers should be warned that the relation between a and φn, as well as some
parameter values we use in this calculation, is derived under the CMC model. Our result is indeed
very close to the CMC model. For instance, there is no visible difference in the dimensionless
average chain length; see Figure 4. However, the difference may become significant with low water
fraction. In the right panel of Figure 4, the plots of average mean curvature divert near φn = 0.5.
When φn = 0.5, the deviation of the evolved neutral interfaces from CMC interfaces is comparable
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with the chain length; see bottom of Figure 6. Hence the usability of these parameter values is
subject to further verification.

3.3. Normal LLC phases. LLC in normal bicontinuous cubic phases seem to be less common.
The authors are not aware of any reports other than normal bicontinuous G phase [SS97, AOL98].
Meanwhile, in mesophased silica system, which can be seen as LLC systems with water replaced by
silica, various normal phases have been reported, including the bicontinuous G [MSH+93, And97,
AET+05], P [JTH+05] and D [GSS+06] phases.

Despite of our limited understanding, we repeat the same calculations to the normal bicontinuous
LLC cubic phases, with the volume fraction φn of the space between the neutral interfaces
(containing water) ranging from 0.01 to 0.50. Following Schröder-Turk et al. [SRCH03, STFH06],
the hydrophobic chains are modeled by edges from vertices on the triangulated neutral interfaces
along the normal vectors to the nearest point on the medial surface of the TPMS.

Because of the way that Surface Evolver calculates the volume, the measurements near φn = 0
are not physically meaningful; see Section 5. The tilt angles are much larger than in the inverse
phases, hence the tilt energy is not really ignorable; see histograms in Figure 12. Hence we do not
attempt to connect our calculation with real system. For these reasons, and also due to lack of
CPU power, we only compare the CMC model with the case λ = 104.

The measured frustrations for the P, D and G phases, as well as the contribution of chain
stretching energy when λ = 104, are plotted in Figure 10. In both CMC model and our model, the
frustration is the highest in the P phase and the lowest in the G phase. This could explain the
difficulty of observing the normal bicontinuous P and D phases in experiment. As in the inverse
phases, we see that the value of σ2

` , as well as the contribution of λσ2
` , declines as λ increases. The

effect is again more significant in the D and P phases than in the G phases.
Plots of average chain length and average mean curvature are overlapped in Figure 11, showing

the geometric similarity between CMC model and our model. Evolved D and P bilayers with
φn = 0.3 are shown in Figure 13, to compare with Figure 6. Again, the neutral interfaces tend to
move away from the TPMS around the flat points, and towards the TPMS at other places. Indeed,
the flat points of the TPMS are most distant from the medial surface [SRCH03]. As a consequence,
the pinching off necks gets expanded. Comparing to the inverse phases, the deviation is much
larger (> 3% of the lattice parameter).

4. Conclusion

We have demonstrated that modeling the competition between the curvature energy and the
chain stretching energy in LLC systems is possible with Surface Evolver. More specifically, we
applied Willmore energy to triangulated surfaces modeling the neutral interfaces, and Hooke
energy to edges modeling the hydrophobic chains. A weighted sum of the two is used as the total
frustration of the system, and is minimized by Surface Evolver. The resulting surfaces are neither
parallel surfaces nor CMC surfaces, but a compromise of the two. A detailed procedure is described
and tested for LLCs in bicontinuous cubic phases.

We compare our results on inverse cubic LLC phases to similar calculations with the CMC
model [SKM+07]. The squared variance of chain length, as well as its contribution of the total
frustration, is reduced as the modulus of chain stretching energy increases. This effect is more
significant in the P and D phases than in the G phase. The frustration of the inverse G phase
eventually exceeds the inverse D and P phases. A closer look reveals that the pinching off necks in
the CMC model, which was the main obstacle to achieve a high dehydration [SCT10, TKS98], get
expanded in our model. These observations prove the validity and usefulness of our model. When
real data is applied, our calculation yields a G–D–P phase sequence with increasing water fraction,
which has been observed in experiments. We also performed same calculations on normal cubic
LLC phases. Similar observations are made, but the deviation from the CMC model is much more
significant than in the inverse phases.
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5. Technical details

In the opinion of the authors, the modelling capacity of Surface Evolver is underestimated. One
purpose of this paper is to present a non-trivial application of Surface Evolver in the study of
interfaces. In this section, we provide details of our calculation on bicontinuous LLC cubic phases,
as a reference for readers who are interested in carrying out similar computations.

5.1. Surface preparation. The cubical periodic minimal surfaces considered in this paper, namely
Schwarz’ G, D and P surfaces, can be generated from a small “fundamental patch” (Flächenstück)
by Euclidean motions like translations, reflections, rotations and rotoreflections. However, only
translations and reflections apply to the accompanied neutral interfaces that are of physical interests.
Reflectional symmetries are related to free boundary conditions, and translational symmetries to
periodic boundary conditions. Rotational symmetries are often related to fixed boundary conditions,
but the neutral interfaces do not subject to any fixed boundary condition. Hence we only consider
the fundamental unit of the translational and reflectional symmetries.

For the P and D surfaces, the .fe datafiles are available on Brakke’s website (http://facstaff.
susqu.edu/brakke/evolver/examples/periodic/periodic.html). The P patch in the datafile
is directly usable. We have to apply a rotation to the D patch to obtain the desired unit. For the
G surface, we use a 96-facets datafile kindly provided by Große-Brauckmann; see [GB97]. The G
surface has no reflectional symmetry, hence the fundamental unit is a translational unit cell. In
Surface Evolver, the torus model is used for the G surface to impose periodic boundary condition.

After loading the datafile into Surface Evolver, we use the command r (refine) to subdivide
each triangle into four and, after each refinement, evolve the surface towards the minimum of the
area functional. A translational unit cell is not a minimizer of the area functional, unless a volume
constraint is imposed [GBW96], which we did for the G surface. Apart from the command g that
performs one iteration of gradient descent, the command hessian seek applies Newton–Raphson
method to the gradient of energy. It is more efficient, yet safer than the more radical hessian
command.

As in [SCT10], the P patch is refined four times, yielding 1024 faces per patch; and the D patch
is refined five times, yielding 2048 faces per patch. Due to lack of CPU power, we only refine the
G surface three times, yielding 6144 faces per unit cell4. Surface Evolver provides commands to
eliminate elongated triangles (K) and extreme edges (l and t), as well as commands for vertex
averaging (V) and equitriangulation (u). They are frequently employed to keep the triangulation in
good shape.

Surface Evolver is very good at preparing triangulations. But if an exact formula is known for
the surface of interest, one could also use a mesh generator to produce a triangulation of high
quality; see for instance [SRCH03].

5.2. Setting up the bilayer. Now that we are in possession of a triangulation of high quality, we
make two copies of it to model the neutral interfaces. The commands new vertex, new edge and
new facet are useful in this step. We also use element attributes to remember the correspondence
between the elements in the original triangulations and in the copies.

To model an inverse phase, we only need to create edges between the corresponding vertices in
the copied triangulations (model (a) as illustrated on the left of Figure 1). The edge length is thus
twice the length of the chain we intend to model. This practice aims to eliminate the interference
of the original TPMS in our calculation. After creation of the chains, The TPMS is fixed, and
serves only as a reference. This procedure also works on unbalanced TPMS, such as the I-WP
surface.

To model a normal LLC phase, we need to find, for each vertex in the triangulated TPMS, the
nearest point on the medial surface along the normal vector. Efficient algorithms for this purpose
based on Voronoi diagram was proposed by Amenta et al. [ACK01] and Schröder et al. [SRCH03].
In particular, [SRCH03] contains an extremely detailed description of the medial surfaces of the
D, P and G surfaces, accompanied by fantastic figures. The medial surface of the P surface is

4Shearman et al. also claim to have refined three times in [SKM+07], but report 24576 facets. Their program

provided as supplemental material shows four refinements.

http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html
http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html
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very simple: they are contained in the reflection planes. Hence we simply attach one end of the
edge to a vertex v on the P surface, extend the edge along the normal vector at v (available in
the vertex normal attribute), and attach the other end to the first point we encounter on the
reflection plane. The same practice also yields a good approximation for the medial surface of the
D surface.

For the G surface, we implement with Scipy a slightly simplified version of the algorithm
in [ACK01]. For a vertex of the triangulated G surface, we choose from its Voronoi cell the vertex
with the largest inner product with its normal vector. This is a good approximation of the “pole”
in [ACK01], which is defined as the furthest vertex of the Voronoi cell. Scipy computes Voronoi
diagrams using the Qhull library [BDH96].

Setting up for the inverse phases is automated with the script language of Surface Evolver.
Automation for the normal phases is possible with exterior programs.

5.3. Minimization and measurement. In Surface Evolver, The Hooke energy (`− `0)2 is impl-
mented as hooke energy. The quantity star perp sq mean curvature is a robust implementation
of the Willmore energy (h− h0)2; see [HKS92]. The Willmore energy is internally weighted by the
effective area of each vertex, which is 1/3 of the total area of facets containing the vertex. The
parameters h0 and `0 are meant to be the spontaneous mean curvature and the relaxed length.
We keep updating them to the average values 〈h〉 and 〈`〉 so that the energies measure the squared
variances. The surface tension energy is turned off (set facet tension 0).

The moduli of the energies are also used for taking averages and normalizations. Let κL and
κH be the experimental moduli for the chain stretching and mean curvature energy, respectively.
Then in Surface Evolver, the modulus for the chain stretching energy is kLa

2Av/a
2
0A at vertex

v, and the modulus for the curvature energy is kHa
2
0/Aa

2 for the dimensionless squared variance.
Here, A is the total area; Av is the effective local area of the vertex v; a is the experimental lattice
parammeter; a0 is the lattice parameter in Surface Evolver model, which is 2 for the P and D
surfaces, and 8 for the G surface. Recall that the Willmore energy is internally weighted by effective
area, hence a factor 1/A suffices for normalization.

Let φn be the desired fraction of the space between the neutral interfaces. We impose a volume
constraint of value φnV to the body bounded by the neutral interfaces. Here V is the volume of
the fundamental unit, which is 1/6 for P, 2/3 for D and 256 for G surface. For normal phases, the
neutral interfaces may intersect when φn is close to 0. This is physically impossible, but not a
numerical mistake. Surface Evolver computes volume by vector integration on the bounding faces.
In our situation, the integrations on the two neutral interfaces have opposite signs, and they cancel
to the imposed small volume. As φn increases, the neutral interfaces will be separated very soon.

In practice, the volume fraction φn is changed gradually in steps of 0.01. The small changes not
only ensure a precise measurement, but also avoid brutal changes in the surface that could destroy
the surface. After each step, the surface is evolved (by commands g and hessian seek) towards
the minimum of the total energy. To measure the dimensionless squared variances, the parameters
h0 and `0 are updated after each iteration to the area weighted average values 〈h〉 and 〈`〉. After
the surface stabilizes, the values of the energies are printed on screen by the command Q, or output
to an exterior file for future record.

To measure the chain stretching frustration in the CMC setting, we could simply change the
quantity hooke energy from energy to info only. Then the Hooke energy is calculated, but
excluded from the energy to minimize. For the G phase, however, lack of free boundary condition
allows the surface to shift away in the absence of hooke energy. This would increase the variance
of chain length. To avoid this, it is recommended to start with non-zero modulus of hooke energy,
change the modulus to 0 after several iterations, and change it back for measurements after obtaining
a CMC. In practice, we are usually able to reduce the squared variance of mean curvature down to
the order of 10−26 or lower, hence the obtained surface is indeed of constant mean curvature.

5.4. Performance. The program is very robust. The author once accidentally applied the program
to a CMC gyroid, then the neutral interfaces evolved away from the original position, and correctly
stabilized beside the minimal gyroid. In practice, this means that one only needs a general idea
of the surface to carry out our method. Meanwhile, brutal changes are still to be avoided: on
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higher dimensional problems, gradient descent method often suffer from saddle points and local
minimums. Hence we recommend incremental change of φn at small steps.

Tilt of the chains are allowed, but is minimized by the normal motion and hessian normal

modes, which forces the vertices to move along the normal directions of the surface. This practice
is very successful for inverse phases, but does not work as well in normal phases. With some more
work, it is possible to include the tilt into the energy to minimize. This is however not our current
focus.

Distortion of the triangulation is the main source of inaccuracy. Elongated triangles and edges of
extreme lengths would cause problems to Surface Evolver. An initial triangulation of high quality
is recommended for this reason. But the problem is unavoidable when the bilayer becomes very
thick. In our calculations, the measurement suffers from slowness and imprecision as φn approaches
0.50. Surface Evolver provides commands to modify the triangulation and improve the quality. But
most of these commands involve vertex deletion, which would destroy elastic edges. Our options
are limited to two commands: V for averaging vertices, and u for equitriangulation.

The measurement can be automated, but human supervision is recommended to achieve a good
precision. The dump command saves intermediate status of the surface, allowing the user to check
for problems and perform additional iterations to improve the precision. A full measurement of G
phase would take a few hours on a personal laptop.
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Figure 1. Our Surface Evolver models illustrated for the P phase. A triangula-
tion of the P patch (light grey) is copied twice. The copies (red and dark grey)
model the neutral interfaces. The black bold segments are the edges modeling
the hydrophobic chains. Left: model (a) for the inverse LLC P phase, with
hydrophobic chains connecting corresponding vertices on the neutral interfaces.
Right: model for the normal LLC P phase, with hydrophobic chains connecting
the neutral interfaces to the medial surface (grey area).

Figure 2. Evolved results of our model applied to the inverse hexagonal phase
by minimizing only the curvature energy (left), only the chain stretching energy
(right), and the frustration as a weighted sum of the two (middle). The cycles in
red model the neutral interfaces, and the segments in grey model the hydrophobic
chains (model (b)).
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Figure 6. Evolved neutral interfaces in the inverse D (left) and P (right) phases
with λ = 104, and the space between the neutral surfaces, which is completely
occupied by hydrophobic chains, has a volume fraction φn = 0.3 (top) or φn = 0.5
(bottom). The color shows the difference from the CMC surface with the same φn:
red indicates a deviation away from the TPMS, and blue indicates a deviation
towards the TPMS. The color bar below each figure shows maximum deviations,
normalized with unit lattice parameter. Clearly, the competition causes expansions
in the necks.
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Figure 7. The D(left), P(middle) and G(right) TPMS color by its distance
to the CMC neutral surfaces with φn = 0.3. The color bar shows the minimum
and maximum distance, normalized with unit lattice parameter. This plot is a
reproduction of Figure 8 of [SKM+07].
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Figure 13. Evolved neutral interfaces in the normal D (left) and P (right)
phases with λ = 104, and the space between the neutral surfaces, which contains
the water, has a volume fraction φn = 0.3. The color shows the difference from the
CMC surface with the same φn: red indicates a deviation away from the TPMS,
and blue indicates a deviation towards the TPMS. The color bar below each figure
shows maximum deviations, normalized with unit lattice parameter. Clearly, the
competition causes expansions in the necks.
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