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Abstract. Boyd (1974) proposed a class of infinite ball packings that are generated by inversions.
Later, Maxwell (1983) interpreted Boyd’s construction in terms of Lorentzian Coxeter systems.
In Maxwell’s work, the simple roots form a basis of the representations space of the Coxeter

group. With a new definition for the notion of “level”, we extend Boyd–Maxwell’s results to
the case where the simple roots are positively independent. Our main theorem is that, under
the new definition, the space-like weights of a Lorentzian Coxeter system correspond to a ball

packing if and only if the Coxeter system is of level 2. We also present a partial classification of
level-2 Coxeter d-polytopes with d + 2 facets.

1. Introduction

The title refers to a paper of Boyd titled “A new class of infinite sphere packings” [Boy74], in
which he described a class of infinite ball packings that are generated by inversions, generalising
the famous Apollonian disk packing. Later, Maxwell [Max82] generalized Boyd’s construction
by interpreting the ball packing as the space-like weights associated to an infinite root system
in Lorentz space. In particular, Maxwell proved that the space-like weights correspond to a ball
packing if and only if the associated Coxeter system is of “level 2”. In this paper, we propose a
new definition for the notion of “level” and extend Maxwell’s results to the new definition.

Inspired by recent works [DHR13, HLR14] on limit roots (i.e. accumulation points of roots),
Labbé and the author [CL14] revisited Maxwell’s work. For Lorentzian Coxeter systems of level 2,
we proved that the accumulation points of the roots and of the weights coincide on the light cone in
the projective space, and that the set of limit roots is the residue set of the ball packing described
by Boyd and Maxwell. Furthermore, we gave a geometric interpretation for Maxwell’s notion of
level, described the tangency graph of the Boyd–Maxwell ball packing in terms of the Coxeter
complex, and completed the enumeration of 326 Coxeter graphs that is of level 2 in Maxwell’s
sense.

Our results in [CL14] establish a connection between [Max82] and [DHR13,HLR14], but the
latter are more general in several ways: First, the Coxeter systems considered in [DHR13,HLR14]
are not necessarily of level 2. Lorentzian Coxeter systems of level 6= 2 were also investigated
in [CL14]. It turns out that no ball appears for Coxeter systems of level 1, and balls may intersect
for Coxeter systems of level > 2. In either case, it remains true that the set of limit roots is
the residue set of the balls corresponding to the space-like weights. Second, the Coxeter systems
considered in [DHR13,HLR14] are not necessarily Lorentzian. For non-Lorentzian Coxeter systems,
we conjectured in [CL14] that accumulation points of roots still coincide with accumulation points
of the weights.

The current paper deals with a third gap between [DHR13, HLR14] and [Max82]. Maxwell
only considered the case where the simple roots form a basis of the representation space of the
Coxeter group. In this case, one can define the fundamental weights as the dual basis. However,
in [HLR14], the simple roots are only required to be positively independent, but not necessarily
linearly independent. We propose in Definition 2.2 a new definition for the fundamental weights,
which makes sense even if the simple roots are not linearly independent. Our definition uses the
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notion of facial subset adapted from [DHR13]; see Definition 2.1. Consequently, based on the
geometric interpretation of level in [CL14], we propose in Definition 2.3 a geometric definition for
the notion of “level”, to replace Maxwell’s graph theoretical definition. Many Coxeter systems of
level > 2 in Maxwell’s sense becomes of level 2 under our definition.

Our definitions are more suitable for geometric studies. In Section 3, we extend one by one the
results in [Max82] and [CL14] to the new definition. It turns out that

Main Result. All the results in [Max82] and in [CL14] remain valid under our new definitions.

However, many proofs need to be revised. Whiles Maxwell’s proofs rely on decomposition of
vectors into basis vectors (i.e. the simple roots), our proofs make heavy use of projective geometry.

In particular, the new definition includes more Lorentzian Coxeter systems of level 2, corre-
sponding to many new infinite ball packings generated by inversions. In Section 4, we provide
a partial classification of Coxeter systems of level 2 under our definition. More specifically, we
try to classify the level-2 Coxeter d-polytopes with d+ 2 facets. For this, we follow the approach
of [Kap74,Ess96,Tum04] for enumerating hyperbolic Coxeter d-polytopes with d+ 2 facets, and
take advantage of previous enumerations of Coxeter systems, such as [Lan50,Che69,CL14]. Our
enumeration makes contribution to the study of infinite-covolume hyperbolic reflection groups.

2. Geometric Coxeter systems and levels

2.1. Lorentz space. A pseudo-Euclidean space is a pair (V,B) where V is a real vector space
and B is a symmetric bilinear form on V .

Two vectors x,y ∈ V are said to be orthogonal if B(x,y) = 0. For a subspace U ⊆ V , its
orthogonal companion is the set

U⊥ = {x ∈ V | B(x,y) = 0 for all y ∈ U}

The orthogonal companion V ⊥ of the whole space V is called the radical. We say that (V,B) is
degenerate if the radical V ⊥ contains non-zero vectors. In this case, the matrix of B = (B(ei, ej))
is singular for any basis {ei} of V .

We say that (V,B) is a Euclidean space if the matrix B is positive definite, or a Lorentz space
if the matrix B is nonsingular and has exactly one negative eigenvalue. The group of linear
transformations of V that preserve the bilinear form B is called a pseudo-orthogonal group, and is
denoted by OB(V ). The pseudo-orthogonal group of an Euclidean space is called an orthogonal
group, and that of a Lorentz space is called a Lorentz group.

The set

Q = {x ∈ V | B(x,x) = 0}
is called the isotropic cone, and vectors in Q are said to be isotropic. In Lorentz space, the isotropic
cone is called the light cone, and isotropic vectors are said to be light-like. Two light-like vectors
are orthogonal if and only if one is the scalar multiple of the other. A non-isotropic vector x ∈ V
is said to be space-like (resp. time-like) if B(x,x) > 0 (resp. < 0). A subspace U ⊆ V is said to be
space-like if its non-zero vectors are all space-like, light-like if it contains some non-zero light-like
vector but no time-like vector, or time-like if it contains time-like vectors.

For a non-isotropic vector α ∈ V , the reflection in α is defined as the map

sα(x) = x− 2
B(α,x)

B(α, α)
α, for all x ∈ V.

The orthogonal companion of αR, denoted by

Hα = {x ∈ V | B(x, α) = 0},

is fixed by the reflection sα, and is called the reflecting hyperplane of α. One verifies that α is
space-like (resp. light-like, time-like) if and only if Hα is time-like (resp. light-like, space-like).

For a subset X ∈ V , its dual X∗ is the set

X∗ = {x ∈ V | B(x,y) > 0 for all y ∈ X}
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2.2. Representation of Coxeter system. An abstract Coxeter system is a pair (W,S), where S
is a finite set of generators and the Coxeter group W is generated by S with the relations (st)mst = e
where s, t ∈ S, mss = 1 and mst = mts ≥ 2 or =∞ if s 6= t. The cardinality n = |S| is the rank
of the Coxeter system (W,S). For an element w ∈W , the length of w, denoted by len(w), is the
smallest natural number k such that w = s1s2 . . . sk for si ∈ S. The readers are invited to consult
[Bou68,Hum92] for more details.

Let (V,B) be a pseudo-Euclidean space. A simple system ∆ in (V,B) is a set of vectors in V
such that

(1) B(α, α) = 1 for all α ∈ ∆;
(2) B(α, β) ∈ (−∞,−1] ∪ {− cos(π/k), k ∈ Z≥2} for all α 6= β ∈ ∆;
(3) ∆ is positively independent. That is, a linear combination of ∆ with non-negative coefficient

vanishes only if all the coefficients vanishes.

Let S = {sα | α ∈ ∆} be the set of reflections in vectors of ∆, and W be the reflection
subgroup generated by S. Then (W,S) is a Coxeter system, where the order of sαsβ is k if
B(α, β) = − cos(π/k), or ∞ if B(α, β) ≤ −1. Let Φ be the orbit of ∆ under the action of W , then
the pair (∆,Φ) is called a root system. Vectors in ∆ are called simple roots, and vectors in Φ are
called roots. The rank of a root system is the cardinality of ∆. The roots Φ are partitioned into
positive roots Φ+ = Cone(∆) ∩ Φ and negative roots Φ− = −Φ+.

Conversely, a Coxeter system may be represented with different root systems. Let (W,S) be a
Coxeter system. We associate a matrix B to (W,S) such that

Bst =

{
− cos(π/mst) if mst <∞,
−cst if mst =∞,

for s, t ∈ S, where cst are chosen arbitrarily with cst = cts ≥ 1. We now describe a representation
of (W,S) depending on the associated matrix B.

Let V be a real vector space of dimension n, equipped with a basis {es}s∈S indexed by the
elements in S. The matrix B defines a bilinear form B on V by B(es, et) = eᵀ

sBet for s, t ∈ S.
Then {es}s∈S is a simple system in (V,B). The homomorphism that maps s ∈ S to the reflection
in es is a faithful geometric representation of the Coxeter group W as a discrete reflection subgroup
of the pseudo-orthogonal group OB(V ). In the literature, this linear independent simple system
{es}s∈S is said to be “free” [HRT97], “classical” [Kra09] or “canonical” in [HLR14]. In the present
paper, we use {es}s∈S to represent (W,S) only when the associated matrix B is non-degenerate or
positive semidefinite.

If B is degenerate, the dimension of the radical is n− d, where d is the rank of matrix B. If B
is not positive semidefinite, let U be the quotient space V/V ⊥, then the bilinear form B restricted
to U is non-degenerate. Let αs be the projection of es onto V for all s ∈ S. Then the vectors
∆ = {αs | s ∈ S} are positively independent [Kra09, Proposition 6.1.2] and form a simple system
in (U,B) such that B(αs, αt) = Bst. The homomorphism that maps s ∈ S to the reflection in αs is
a faithful geometric representation of the Coxeter group W as a discrete reflection subgroup of
the pseudo-orthogonal group OB(U). In the present paper, we use ∆ to represent (W,S) if the
associated matrix B is degenerate and not positive semidefinite.

Since the geometric representation we use depends on the associated matrix B, we say that the
Coxeter system (W,S) associated with B is a geometric Coxeter system, and denote it by (W,S)B .
For a fixed geometric Coxeter system, the representation described above is uniquely determined,
and is referred to as the canonical geometric representation. Correspondingly, the associated simple
system and root system are also said to be canonical. The advantage of the canonical geometric
representation is that the representation space is non-degenerate in most cases. It uses a positively
independent simple system, which has been the framework of several recent studies of infinite
Coxeter systems, including [HRT97,Kra09,DHR13,HLR14] etc. and traces back to Vinberg [Vin71].
In the following, we write w(x) for the action of w ∈W in the canonical representation.

If W is a finite group, then B is positive definite, and we say that (W,S)B is of spherical type
since W can be represented as a reflection group in spherical space. If B is positive semidefinite, we
say that (W,S)B is of Euclidean type since W can be represented as a reflection group in Euclidean
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space. We say that (W,S)B is of Lorentzian type if B has exactly one negative eigenvalue. In this
case, W is canonically represented as a reflection group in Lorentz space.

2.3. Weights and level. We pass to the projective representation space PV , i.e. the space of
1-subspaces of V . For a non-zero vector x ∈ V , we denote by x̂ ∈ PV the 1-subspace spanned by x.
The geometric representation then induces a projective representation

w · x̂ = ŵ(x), w ∈W, x ∈ V.
For a set X ⊂ V , we have the corresponding projective set

X̂ := {x̂ ∈ PV | x ∈ X}

In this sense, we have the projective simple roots ∆̂, projective roots Φ̂ and the projective isotropic

cone Q̂. We use Conv(X̂) and Aff(X̂) to denote ̂Cone(X) and ̂Span(X) respectively.
The projective space PV can be identified with an affine subspace plus a hyperplane at infinity.

We usually fix a vector t and take the affine subspace

H1
t = {x ∈ V | B(t,x) = 1},

Then for a vector x ∈ V , we represent x̂ ∈ PV by the vector x/B(t,x) ∈ H1
t if B(t,x) 6= 0, or some

point at infinity if B(t,x) = 0. If the representation space is a Lorentz space, the affine picture of
the projective light cone is projectively equivalent to a sphere. In this case, it is often convenient to

choose t as a time-like vector, so that Q̂ is closed in the affine picture. Then the subspace Ht = t⊥

is space-like and divides the space into two parts. Vectors on the same side as t are said to be
past-directed, and those on the other side are said to be future directed. It then makes sense to call
t the direction of past.

Let (W,S)B be a geometric Coxeter system and ∆ be its canonical simple system. The projective

simple roots ∆̂ are in convex position. Indeed, for a simple root α ∈ ∆, the orthogonal hyperplane
Hα separates α from other simple roots. If the direction of past t is a negative combination of the

simple roots, P = Conv(∆̂) ⊂ PV appears as a convex polytope in the affine picture. We call P
the positive polytope, since Cone(∆) is called the positive cone [Hum92].

Definition 2.1 (Facial subset [DHR13, § 4]). Let (W,S)B be a geometric Coxeter system and
∆ ⊂ (V,B) be its canonical simple system. For a subset I ⊂ S, let ∆I ⊂ ∆ be the corresponding

subset of simple root. We say that I is a k-facial subset of S if Conv(∆̂I) is a face of codimension k
of the positive polytope P . In this case, let WI be the group generated by I, we say that (WI , I)B
is a k-facial subsystem. 1-facial subsets of S are simply said to be facial.

Note that the bilinear form B may be degenerate on the subspace Span(∆I), in which case ∆I

is not the canonical simple system for (WI , I)B . However, the notion of “facial” is always defined
with respect to the canonical representation.

Definition 2.2 (Fundamental weights). Let (W,S)B be a geometric Coxeter system and ∆ ⊂ (V,B)
be its canonical simple system. For a facial subset I of S, there is a unique vector ωI such that

B(α, ωI) =

{
= 0, α ∈ ∆I

> 0, α /∈ ∆I

and
min
α/∈∆I

B(α, ωI) = 1.

We say that ωI is a fundamental weight of the geometric Coxeter system.

This definition extends the notion of fundamental weights to all simple systems, not necessarily
a basis of V . The 1 in the second condition is there for the convenience of the proofs.

Let ∆∗ = {ωI | I is facial} be the set of fundamental weights. Vectors in the orbit Ω = W (∆∗) are
called weights. The cone Cone(∆∗) spanned by the fundamental weights is called the fundamental
cone. It is dual to the positive cone Cone(∆). In other words,

Cone(∆∗) = {x ∈ V | B(x, α) > 0 for all α ∈ ∆}
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Therefore, Cone(∆∗) is a polyhedral cone supported by the reflecting hyperplanes of the simple
roots. The Coxeter group W is isomorphic to the group generated by reflections in the facets of
Cone(∆∗), and the stabilizer of a face of Cone(∆∗) is generated by reflections in the facets that
contains this face. The cone T = Cone(Ω) over all the weights is called the Tits cone. For Coxeter
systems of spherical (resp. Euclidean) type, the Tits cone is the entire representation space V (resp.
a closed half-space) [AB08, § 2.6.3].

If the direction of past t is a positive combination of the fundamental weights, the polytope

C = Conv(∆̂∗) ⊂ PV is a convex polytope in the affine picture, and we call it the Coxeter polytope.
The Coxeter polytope C is the dual polytope of the positive polytope P. We then have another

definition for k-facial subsets: A subset of simple roots I ⊆ S is k-facial if ∩α∈∆I
Ĥα is a (k−1)-face

of the Coxeter polytope C.
We now define the central notion of this paper.

Definition 2.3 (Level). A geometric Coxeter system (W,S)B is of level 0 if it is of spherical or
Euclidean type. Otherwise, the level of (W,S)B is the biggest integer ` such that (W,S)B has an
(`− 1)-facial subsystem that is not of level 0.

This definition agrees with Maxwell’s definition if B is non-degenerate or positive semi-definite.
Otherwise, the level in Maxwell’s sense is in general different from the level under Definition 2.3.
The purpose of this paper is to demonstrate that Definition 2.3 is more suitable for geometric
studies.

We can reformulate Definition 2.3 in a way similar to Maxwell’s original formulation: (W,S)B
is of level ≤ ` if the `-facial subsystems of (W,S)B are all of level 0. It is of level ` if it is of
level ≤ ` but not of level ≤ `− 1. A Coxeter system of level ` is strict if its `-facial subsystems
are all of spherical type. In this case, we also say that the Coxeter system is strictly of level `. In
the canonical geometric representation of a level-` Coxeter system, the bilinear form B is positive
semidefinite on Span(∆I) for every I that is `-facial, and indefinite for some I that is (`− 1)-facial.

If the Coxeter system (W,S)B is Lorentzian, we can reformulate Definition 2.3 in terms of its
positive polytope P and Coxeter polytope C: The level of (W,S)B is 1+the maximum codimension
of the time-like faces of P, and 2+the maximum dimension of the space-like faces of C. Here, we
use the conventions that a face of codimension 0 is the polytope itself, and a face of dimension −1
is empty and is considered to be space-like.

In the following, unless otherwise stated, the term level takes the meaning as in Definnition 2.3.

3. Extending Maxwell’s results

In this part, we extend one by one the major results of [Max82] to positively independent simple
systems. For the statement of the results, we mimic intentionally the formulations in [Max82].
However, a same word may carry different meanings. It is easy to find Coxeter systems that are
level 2 in our sense but not in Maxwell’s sense; see Figure 2 for instance. Detailed proofs are given
only if there is a significant difference from Maxwell’s proof.

First of all, the following two results are proved in [Max82] for linearly independent simple roots,
and are extended to positively independent simple roots in [HRT97]. See also [Dye13, §9.4], where
the dual of the Tits cone is called the imaginary cone.

Proposition 3.1 ([HRT97, Proposition 3.4], extending [Max82, Proposition 1.2]). For every
vector x in the dual of the Tits cone, B(x,x) ≤ 0.

Proposition 3.2 ([HRT97, Proposition 3.7], extending [Max82, Corollary 1.3]). The Tits cone of
a Lorentzian Coxeter system contains one component of the light cone Q \ {0}.

3.1. Lorentzian Coxeter systems of level 2. Two vectors x,y in (V,B) are said to be disjoint
if B(x,y) ≤ 0 and B is not positive definite on the subspace Span({x,y}).

The proofs of the following results are apparently very different from Maxwell’s argument [Max82].
Indeed, while Maxwell’s proofs make heavy use of basis, our proofs rely primarily on projective
geometry. However, the basic idea is the same. In the case where the simple roots form a basis of
the representation space, our proofs are just geometric interpretations of Maxwell’s proofs.
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Proposition 3.3 (extending [Max82, Proposition 1.4]). Coxeter systems of level 1 are Lorentzian.
All fundamental weights are pairwise disjoint and none are space-like.

Proof. Let (W,S)B be a level-1 Coxeter system and (∆,Φ) be its canonical root system in (V,B).
For a vector x such that B(x,x) ≤ 0, we claim that x̂ ∈ P. If it is not the case, we can

find in PV a line passing through x̂ and intersect the boundary of P at two points, say x̂+

and x̂−, such that x̂+ ∈ Conv(∆̂I) and x̂− ∈ Conv(∆̂J) for two disjoint facial subset I, J ⊂ S.
View in the representation space V , this means that there are two vectors x+ ∈ Cone(∆I) and
x− ∈ Cone(∆J ) such that x = x+−x−. Since B(x,x) = B(x+,x+) +B(x−,x−)− 2B(x+,x−) ≤ 0
and B(x+,x−) < 0 (because I and J are disjoint), we have either B(x+,x+) < 0 or B(x−,x−) < 0,
both contradict the fact that (W,S)B is of level 1. Our claim is then proved. If B(x,x) < 0, since B
is positive semidefinite on the facets, x̂ must be in the interior of P. If B(x,x) = 0, it is possible
that x̂ is in the interior of a facet of P.

Now assume that the representation space V is not a Lorentz space. Then it contains a pair of
orthogonal vectors u and v such that B(u,u) < 0 and B(v,v) = 0. For any linear combination
x = λu + µv we have B(x,x) < 0 as long as λ 6= 0. In the projective space, Aff({û, v̂}) is a line

passing through û and v̂. This line intersects with Aff(∆̂I) for every facial subset I ⊂ S. For every
intersection point x, we have B(x,x) < 0, with at most one exception (namely v̂). This contradicts
the fact that (W,S)B is of level 1. We then proved that (W,S)B is Lorentzian.

Let I be any facial subset of S. Since (W,S) is of level 1, the subspace Span(∆I) is not time-like,
so its orthogonal companion ωIR is not space-like. This proves that no fundamental weight is
space-like.

It is clear that any two fundamental weights span a Lorentz space. For the disjointness, we only
needs to prove that B(ωI , ωJ) ≤ 0 for any two facial subset I 6= J ⊂ S. Since ωI is not space-like,
we have seen that ω̂I ∈ P, so B(ωI , ωJ) has the same sign (possibly 0) for all facial J ⊂ S, which
is ≤ 0 if ωI is time-like. If ωI is light-like, notice that ωI can be written as a linear combination
of the simple roots in ∆I with coefficients of the same sign (possibly 0). For any s /∈ I, we have
B(ωI , αs) > 0 and B(αs, αt) ≤ 0 for any t ∈ ∆, so ωI must be a negative combination of the simple
roots. We then conclude that B(ωI , ωJ) ≤ 0. �

As a consequence, the Tits cone of a level-1 Coxeter systems equals the set of non-space-like
vectors.

Proposition 3.4 (extending [Max82, Proposition 1.6]). Coxeter systems of level 2 are Lorentzian.
The fundamental weights are pairwise disjoint. A fundamental weight ωI is space-like if and only if
the facial subsystem (WI , I)B is of level 1, in which case we have B(ωI , ωI) ≤ 1.

Proof. Let (W,S)B be a level-2 Coxeter system and (∆,Φ) be its canonical root system in (V,B).
If V is of dimension 3, it is immediate that (W,S)B is Lorentzian. So we assume that the dimension

of V is ≥ 4, and the positive polytope P = Conv(∆̂) is of dimension ≥ 3.
For a vector x such that B(x,x) ≤ 0, assume that x̂ /∈ P . As in the previous proof, we can write

x = x+−x− where x+ ∈ Cone(∆I) and x− ∈ Cone(∆J ) and I and J are two disjoint facial subset
of S. Again, since B(x+,x−) < 0, we have either B(x+,x+) or B(x−,x−) < 0. Since (W,S)B is of
level 2, we must have either x+ or x− in the interior of a facet of P . Therefore, for any line in PV
that passes through x̂ and intersects two disjoint faces of P, one intersection point must be in the

interior of a facet. We then conclude that there is only one facial subset K ⊂ S such that Aff(∆̂K)
separates x̂ from the interior of P. Otherwise, as P is of dimension ≥ 3, it would be possible that
x+ and x− are both on faces of codimension ≥ 2, so neither B(x+,x+) nor B(x−,x−) is negative.

Take the case where x̂ ∈ P into consideration, we conclude that the sign of B(x, ωI) are the
same for all the fundamental weights ωI except for at most one exception. If B(x,x) = 0, it is
possible that x̂ lies on a codimension-2 face of P.

If the representation space V is not a Lorentz space, it contains a pair of orthogonal vectors u
and v such that B(u,u) < 0 and B(v,v) = 0. Then, for any linear combination x = λu + µv, we
have B(x,x) < 0 as long as λ 6= 0. The subspace Span(u,v) appears in the projective space as a

line L passing through û and v̂. The line L intersects with Aff(∆̂I) for every facial subset I ⊂ S.
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By the conclusion of the previous paragraph, the intersection points must be on the boundary of
P, and are in the interior of the facets of P with at most one exception. Then the only possibility
is that P being a pyramid, in which case L pass through the apex p̂ and a point in the base. But
the apex p̂ is a projective simple root, so B(p,p) > 0 and p̂ /∈ L. This contradiction proves that V
is a Lorentz space.

We have seen that a time-like vector is separated from P by at most one defining hyperplane.
Consequently, the intersection Span(∆I) ∩ Span(∆J) is not time-like for any two facial subsets
I 6= J ⊂ S. The orthogonal companion of the intersection is the subspace Span(ωI , ωJ), which is
not space-like. For proving the disjointness, one still needs to prove that B(ωI , ωJ) ≤ 0.

Assume that ωI is not space-like. A similar argument as in the proof of Proposition 3.3 shows
that B(ωI , ωJ ) ≤ 0 for all J 6= I with at most one exception. Let K 6= I be this exception, we have

seen that Aff(∆̂K) is the only defining hyperplane of P that separates ω̂I from the interior of P.
Pick a generator s ∈ I \K, we can write ωI = λαs − ω′I , where ω′I is a linear combination of ∆K

with coefficients of same sign, which is also the sign of λ. We have B(αs, ωI) = 0 by definition, but
this is not the case since B(αs, αt) ≤ 0 for t ∈ K while B(αs, αs) = 1. Therefore, the exception K
does not exist.

If ωI is space-like, then the subspace Span(∆I) is time-like, so (Span(∆I),B) is a (non-degenerate)
Lorentz space. This proves that (WI , I)B is of level 1. Then, for a simple root α /∈ ∆I , let

α′ = α− B(α, ωI)

B(ωI , ωI)
ωI

be the projection of α on Span(∆I). Since B(α′, β) ≤ 0 for all β ∈ ∆I , α̂
′ is in the Coxeter polytope

of ∆I . Since (WI , I)B is of level 1, α′ is time-like by Proposition 3.3, i.e.

B(α′, α′) = B(α, α)− B(α, ωI)
2

B(ωI , ωI)
= 1− B(α, ωI)

2

B(ωI , ωI)
≤ 0,

which proves that

(1) B(ωI , ωI) ≤ min
α/∈∆I

B(α, ωI)
2 = 1.

Let J be a facial subset such that α ∈ ∆J , and

ω′J = ωJ −
B(ωJ , ωI)

B(ωI , ωI)
ωI

be the projection of ωJ on Span(∆I). Then, since α′ ∈ P,

B(α′, ω′J) = B(α, ωJ)− B(α, ωI)B(ωJ , ωI)

B(ωI , ωI)
= −B(α, ωI)B(ωJ , ωI)

B(ωI , ωI)
= B(α′, ωJ) ≥ 0,

which proves that B(ωI , ωJ ) ≤ 0. Since J can be chosen as any facial subset J 6= I ⊂ S, this finish
the proof of disjointness. �

The following is an interesting corollary.

Corollary 3.5. Let ∆ be a simple system of level 2 and ∆∗r be the set of space-like fundamental
weights, then the set

∆ ∪ {−ω/
√
B(ω, ω) | ω ∈ ∆∗r}

is a simple system of level 1.

The following proposition is proved for linearly independent simple systems in, for instance,
[Bou68, Ch. V, § 4.4, Theorem 1; AB08, Lemma 2.58]. An extension for positively independent
simple systems can be found in [Kra09, Theorem 1.2.2(b)], who refers to [Vin71] for proof. Note
that Cone(∆∗) is closed in the present paper, so the inequalities are not strict.

Proposition 3.6 (extending [Max82, Corollary 1.8]). For x ∈ Cone(∆∗), w ∈ W and αs ∈ ∆,
either B(w(x), αs) ≥ 0 and len(sw) > len(w), or B(w(x), αs) ≤ 0 and len(sw) < len(w).

Theorem 3.7 (extending [Max82, Theorem 1.9]). The followings are equivalent:

(a) (W,S)B is of level 1 or 2;
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(b) (W,S)B is Lorentzian and any two weights are disjoint.

Proof. Maxwell’s proof applies with slight modification.
(a)⇒(b): We only need to prove the disjointness. We first prove, for any fundamental weights

ωI and ωJ , that

(2) B(ωI , w(ωJ)) ≤ 0.

by induction on the length of w ∈W . The case of w = e is already known. One may assume that
len(tw) > len(w) for all t ∈ I, otherwise one may replace w by tw in (2). So w = sw′ for some
s /∈ I and len(w) > len(w′). We then have

B(ωI , w(ωJ)) = (s(ωI), w
′(ωJ)) = B(ωI , w

′(ωJ))− 2B(αs, ωI)B(αs, w
′(ωJ)).

If ωI 6= w′(ωJ), (2) is proved since B(ωI , w
′(ωJ)) ≤ 0 by inductive hypothesis, B(αs, ωI) > 0

by definition of fundamental weights, and B(αs, w
′(ωJ)) ≥ 0 by Proposition 3.6. Otherwise, if

ωI = w′(ωJ), we have

B(ωI , w(ωJ)) = B(ωI , ωI)− 2B(αs, ωI)
2 ≤ 0

by (1).
It remains to prove that B is not positive definite on the subspace Span(ωI , w(ωJ)). If this is

not the case, then (WI , I)B is of level 1. Let v be the projection of w(ωJ) on ω⊥I = Span(∆I).
The subspace v⊥ orthogonal to v in ω⊥I is in the time-like intersection of ω⊥I and w(ωJ)⊥, so v
must be space-like. On the other hand, for all t ∈ I, B(αt, w(ωJ)) ≥ 0 because len(tw) ≥ len(w).
We then conclude that v is in the Coxeter polytope of (WI , I)B, so v must be time-like. This
contradiction finishes the proof of disjointness.

(b)⇒(a): Since B is not positive definite on the subspace spanned by any two fundamental
weights, the orthogonal companion of these intersections, including the codimension-2 faces of
P, are not time-like. So B is positive semidefinite on all codimension-2 faces, which proves that
(W,S)B is of level 1 or 2 (not level-0 because (W,S)B is Lorentzian). �

3.2. Infinite ball packings. For a space-like vector x in the Lorentz space (V,B), the normalized
vector x of x is given by

x = x/
√
B(x,x).

It lies on the one-sheet hyperboloid H = {x ∈ V | B(x,x) = 1}. Note that x̂ = −̂x is the same
point in PV , but x and −x are two different vectors in opposite directions in V . One verifies that
two space-like vectors x,y are disjoint if and only if B(x,y) ≤ −1.

A correspondence between space-like directions in (d+ 2)-dimensional Lorentz space (V,B) and
d-dimensional balls is introduced in [Max82, §2], see also [HJ03, § 1.1; Cec08, § 2.2]. Fix a time-like

direction of past t so that the projective light cone Q̂ appears as a closed sphere on H1
t . Then

in the affine picture, given a space-like vector x ∈ V , the intersection of Q̂ with the half-space

Ĥ−x = {x′ ∈ H1
t | B(x,x′) ≤ 0} is a closed ball (spherical cap) on Q̂. We denote this ball by Ball(x).

After a stereographic projection, Ball(x) becomes an d-dimensional ball in Euclidean space. Here,
we also regard closed half-spaces as closed balls of curvature 0, and complement of open balls as
closed balls of negative curvature. For two past-directed space-like vectors x and y, we have

• Ball(x) and Ball(y) are disjoint if B(x,y) < −1;
• Ball(x) is tangent to Ball(y) if B(x,y) = −1;
• Ball(x) and Ball(y) overlap (i.e. their interiors intersect) if B(x,y) > −1;
• Ball(x) and Ball(y) heavily overlap (i.e. their boundary intersect transversally at an obtuse

angle, or one is contained in the other) if B(x,y) > 0.

If one of the vectors is future-directed and B(x,y) ≤ −1, then either the interiors or the exteriors
of Ball(x) and Ball(y) are disjoint.

A ball packing is a collection balls with disjoint interiors. It is then clear that a ball packing
correspond to a set of space-like vectors X ∈ V such that any two vectors are disjoint and at most
one vector is future-directed. Conversely, Maxwell proved that every such set of space-like vectors
correspond to a ball packing [Max82, Proposition 3.1]. So the following theorem follows directly
from Theorem 3.7.
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Theorem 3.8 (extending [Max82, Theorem 3.2]). Let Ωr be the set of space-like weights, then
{Ball(ω) | ω ∈ Ωr} is a ball packing if and only if the associated Coxeter system is of level 2.

We say that the ball packing in Theorem 3.8 is generated by the corresponding Coxeter system. A
ball packing is maximal if one can not add any additional ball into the packing without overlapping
other balls.

Theorem 3.9. The ball packing generated by a level-2 Lorentzian root system is maximal.

Proof. It follows from an extension of [Max82, Theorem 3.3], whose proof applies directly for
positively independent simple systems. To verify the condition of the extended [Max82, Theorem
3.3], one still needs to extend [Max89, Theorem 6.1]: Let Ωr denotes the set of space-like weights,
then we have Cone(Ωr) = Cone(Ω) if (W,S)B is irreducible, Lorentzian and of level ≥ 2.

For this, one may pick a basis ∆̃∗ of V from the fundamental weights ∆∗, in which some space-
like weights ∆̃∗r are included. They are the fundamental weights of a linear independent simple

subsystem ∆̃ ∈ ∆. Let W̃ be the Coxeter group associated to ∆̃, Ω̃r = W̃ (∆̃∗r) and Ω̃ = W̃ (∆̃∗),
then

Cone(Ωr) ⊃ Cone(Ω̃r) = Cone(Ω̃) ⊃ Q
So every non-space-like weight is included in Cone(Ωr), which finishes the extension of [Max89,
Theorem 6.1]. �

We have extended most of the major results of [Max82] to positively independent simple systems.
We now continue to extend results from [CL14].

The limit roots are the accumulation points of Φ̂ ⊂ PV . In [HLR14], it was proved that the

limit roots lies on Q̂. A key notion in the studies of limit roots is the height h(x) of a vector x ∈ V ,
which is defined as the sum of the coordinates when the simple roots ∆ form a basis of V . In the
case where ∆ is positively independent, let t be a time-like negative combination of ∆ and take it
as the direction of past. Then the affine hyperplane H1

t is transverse to Φ+, and we can define
h(x) = B(t,x), see [HLR14, § 5.2]. Furthermore, we can always find a basis for V such that all the
positive roots have only positive coordinates, so h(x) is a L1-norm on Φ+.

The residual set of a collection of balls is the complement of the interiors of the balls. With the
necessary adaptions mentioned above, the proofs in [CL14] applies to the following extensions.

Theorem 3.10 (extending [CL14, Theorem 3.6]). The set of limit roots of a level-2 Lorentzian
Coxeter system is equal to the residual set of the ball packing generated by the Coxeter system.

Theorem 3.11 (extending [CL14, Theorem 1.1; §3.4]). For a Lorentzian Coxeter system of
level ≥ 3, {Ball(ω) | ω ∈ Ωr} is a maximal collection of balls with no heavily overlapping balls. In
this case, the set of limit roots is again the residual set of the ball cluster.

The polytopes in the orbit W · C of the Coxeter polytope C are called chambers. Analogous to
the situation when C is a simplex [AB08], the chambers form a cell decomposition of the projective

Tits cone T̂ , whose vertices correspond to projective weights. We call it the Coxeter complex, and
denote it by C . It is a pure polyhedral cell complex of dimension d− 1 (dimension of PV ). The
1-cells of C are called edges, and (d− 2)-cells are called panels.

The tangency graph of a ball packing takes the balls as vertices and the tangent pairs as edges.

Since C is the fundamental domain for the action of W on the projective Tits cone T̂ , the orbit of
two different fundamental weights are disjoint. So the vertices of the Coxeter complex admits a
coloring by ∆∗, i.e. a vertex u is colored by ω ∈ ∆∗ if u ∈ W · ω̂. Panels are orbits of the facets
of ∆∗, therefore they can be colored by the simple roots, i.e. a panel is colored by α ∈ ∆ if it is
the orbit of the facet of ∆∗ corresponding to α. Vertices with time- or light-like colors are called
imaginary vertices; vertices with space-like colors are called real vertices because they correspond
to balls in the packing, and are therefore vertices in the tangency graph. An edge of the Coxeter
complex connecting two real vertices of color ω and ω′ is said to be real if B(ω, ω′) = −1. Real
edges correspond to tangent pairs in the packing, and are therefore edges in the tangency graph.
For a Lorentzian Coxeter systems of level 2, vertices colored by ω ∈ ∆∗ such that B(ω, ω) = 1 are
said to be surreal. Two distinct surreal vertices of the same color ω are said to be adjacent if they
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are vertices of two chambers sharing a panel of color α such that B(ω, α) = 1. One verifies that
pairs of adjacent surreal vertices are also edges in the tangency graph.

With the definitions above (compare [CL14, §3.3]), the following theorem follows by modifying
the proof of (2) in the same way as in the proof of [CL14, Theorem 3.7].

Theorem 3.12 (extending [CL14, Theorem 3.7]). The tangency graph of the ball packing generated
by a Lorentzian root system of level 2 takes the real vertices of the Coxeter complex as vertices.
Two vertices u and v are connected in the tangency graph if and only if one of the following is
fulfilled:

• uv is a real edge of the Coxeter complex, in which case u and v are of different colors,
• u and v are adjacent surreal vertices, in which case u and v are of the same color.

Corollary 3.13 (extending [CL14, Corollary 3.8]). The projective Tits cone of a Lorentzian
Coxeter system of level 2 is an edge-tangent infinite polytope, i.e. its edges are all tangent to the
projective light cone. Furthermore, the 1-skeleton of the projective Tits cone is the tangency graph
of the ball packing generated by the root system.

4. Partial classification of level-2 Coxeter polytopes

To provide examples of new infinite ball packings, we devote this section to a partial enumeration
of Coxeter polytopes of level 2. Recall that a Coxeter polytope C is of level 2 if every edge (1-face)
of C is time-like or light-like while some vertex (0-face) of C is space-like. The enumeration is
implemented by computer programs. In this paper, we only present the main ideas and sketch the
procedures.

4.1. Preparation. It is convenient to represent a simple system ∆ in (V,B) by the Coxeter graph G.
Simple roots are represented by vertices of G. If two simple roots α, β ∈ ∆ are not orthogonal,
they are connected by an edge, which is solid with label 3 ≤ m < ∞, if B(α, β) = − cos(π/m);
with label ∞ if B(α, β) = −1; or dashed with label −c if B(α, β) = −c < −1. The label 3 on solid
edges are omitted. If we consider the Coxeter polytope C, then vertices of the Coxeter graph G
correspond to facets of C. A solid edge of G with integer label means that the intersection of two
facets is time-like; a solid edge with label ∞ means that the intersection is light-like; and a dashed
edge means that the intersection is space-like. The level of a Coxeter graph is the level of the
corresponding Coxeter system.

Let G be a Coxeter graph, G1 and G2 be two subgraphs of G. In the following, we use G1 +G2

to denote the subgraph induced by the vertices of G1 and G2, use G1 −G2 to denote the subgraph
induced by the vertices of G1 that are not in G2. A subgraph with only one vertex is denoted by
the vertex.

For a geometric Coxeter system (W,S)B, the corank of it’s Coxeter polytope C is defined as
the nullity of the matrix B. The same notion is also used for the corresponding Coxeter graphs.
A Coxeter polytope of dimension d and corank k has d + k + 1 facets. In particular, a Coxeter
polytope of corank 0 is a simplex. In this case, our definition of level agrees with the definition
in [Max82]: a Coxeter graph of corank 0 is of level ` if deletion of any ` vertices leaves a graph
of level 0 while deletion of certain `− 1 vertices leaves a graph of level > 0. For convenience, a
Coxeter graph of level ` and corank k is said to be a (`, k)-graph, or (`s, k)-graph if the level is
strict. Same abbreviation is used for Coxeter polytopes.

The time-like part of the d-dimensional projective Lorentz space is the Kleinian model of the
d-dimensional hyperbolic space. For a Lorentzian Coxeter system, the part of the Coxeter polytope
C in the hyperbolic space is a hyperbolic polytope named Vinberg polytope. It is the fundamental
domain of the hyperbolic reflection group generated by the reflections in its facets [Vin85]. By
Proposition 3.3, Coxeter polytopes of level 1 (resp. strictly of level 1) correspond to finite-volume
(resp. compact) Vinberg polytopes, while Coxeter polytopes of level > 2 correspond to infinite-
volume Vinberg polytopes.

Vinberg [Vin84] proved that there is no strict level-1 Coxeter polytopes of dimension 30 or higher,
and Prokhorov [Pro86] proved that there is no level-1 Coxeter polytopes in hyperbolic spaces of
dimension 996 or higher. On the other hand, Allcock [All06] proved that there are infinitely many
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level-1 (resp. strictly level-1) Coxeter polytopes in every hyperbolic space of dimension 19 (resp.
6) or lower, which suggests that a complete enumeration of level-1 Coxeter polytopes is hopeless.
Nevertheless, there are many interesting partial enumerations. The (1, 0)-polytopes have been
completely enumerated by Chein [Che69]. They are hyperbolic simplices of finite volume. The list
of Chein also comprises (1s, 0)-polytopes, which was first enumerated by Lannér [Lan50]. The (1, 1)-
polytopes have been enumerated by Kaplinskaja [Kap74] for simplicial prisms, Esselmann [Ess96]
for compact polytopes and Tumarkin [Tum04] for finite-volume polytopes. Tumarkin also studied
(1s, 2)- and (1s, 3)-polytopes [Tum07, TF08]. Mcleod [Mcl13] finished the classification of all
pyramids of level 1.

In this section, we study Coxeter polytopes of level 2. In view of Corollary 3.5, we deduce
immediately from the result of [Pro86] that there is no level-2 Coxeter polytopes in hyperbolic
spaces of dimension 996 or higher. However, in the shadow of [All06], there might be infinitely many
level-2 Vinberg polytopes in lower dimensions, so a complete classification may be hopeless. A
(2, 0)-graph is either a connected graph, or a disjoint union of an isolated vertex and a (1, 0)-graph.
The enumeration of connected (2, 0)-graphs was initiated in [Max82] and completed in [CL14]. In
this section, we would like to enumerate (2, 1)-graphs.

A k-face of a d-polytope is said to be simple if it is the intersection of d− k facets, or almost
simple if every face containing it is simple. A polytope is said to be k-simple (resp. almost k-simple)
if all its k-faces are simple (resp. almost simple). For a Coxeter polytope, the stabilizer of a
time-like (resp. light-like) face is of spherical (resp. Euclidean type). Therefore, every time-like
(resp. light-like) face is simple (resp. almost simple). We then conclude the following proposition
from the definition of level.

Proposition 4.1. A Coxeter polytope of level ` (resp. strictly of level `) is almost `-simple (resp.
`-simple).

From the Gale diagram [Grü03, §6.3; Tum04, §2] and by Proposition 4.1, we know that there
are three possibilities for the combinatorial type of a (2, 1)-polytope:

• a product of two simplices, abbreviated as 4×4;
• the pyramid over a product of two simplices, abbreviated as Pyr(4×4);
• the 2-fold pyramid over a product of two simplices, abbreviated as Pyr2(4×4).

We now analyse the three types separately.

4.2. C has the type of 4×4. In this case, vertices of C are all simple. The Coxeter graph G
consists of two parts, say G1 and G2, corresponding to the two simplices. A k-face of C correspond
to a subgraph of G obtained by deleting k + 2 vertices, including at least one vertex from both G1

and G2.
For a (1, 0)-graph, a vertex is said to be ideal if its removal leaves an Euclidean Coxeter graph.

For a (2, 0)-graph, a vertex is said to be real if its removal leaves a (1, 0)-graph. If the (2, 0)-graph
is not connected, then the isolated vertex is the only real vertex.

Lemma 4.2. If a (2, 1)-polytope has the type of 4×4, then

(i) Its Coxeter graph G consists of two (1, 0)-graphs G1 and G2 and they are connected to each
other.

(ii) For any v1 ∈ G1 and v2 ∈ G2, the graphs G1 + v2 and G2 + v1 are (2, 0)-graphs.
(iii) If one of the simplices, say the one represented by G2, is of dimension > 1, then the level

of G1 and G1 + v2 are strict, and v2 is the only real vertex of G1 + v2.

Proof. The two simplices are represented by Coxeter graphs G1 and G2 respectively. By [Vin85,
Theorem 3.1], a subgraph of G correspond to a time-like face of C if and only if it is spherical. By
a slight extension of [Vin85, Theorem 3.2], a subgraph of G correspond to a light-like face of C if
and only if it is of corank 1 and Euclidean. Since G1 and G2 are of corank 0 and do not correspond
to any face of C, they are not of level 0.

For any vertex v1 of G1, the graph G1 − v1 is obtained from G by removing at least 3 vertices.
Therefore, it corresponds to a simple face of C of dimension ≥ 1. We then conclude that G1 is a
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(1, 0)-graph. Same argument applies to G2. G1 and G2 must be connected, otherwise the bilinear
form B has two negative eigenvalues, and the Coxeter system is not Lorentzian.

For any v2 ∈ G2, the graph G1 + v2 is not of level 1 because G1 is. It is of corank 0 since its
positive polytope is a simplex. It is of level 2 because further deletion of any two vertices leaves
a level-0 Coxeter graph corresponding to a simple face of C of dimension ≥ 1. Same argument
applies to G2 + v1.

If the simplex represented by G2 is of dimension > 1, then G2 has more than two vertices. In
this case, the dimensions of the faces mentioned above are all strictly > 1, so the levels are all
strict. Furthermore, for any vertex v1 ∈ G1, the graph G1 + v2− v1 is of level 0 since it corresponds
to a face of C of dimension ≥ 1. So v2 is the only real vertex of G1 + v2. �

Remark. The same type of argument applies for many other lemmas in this section, and we will
not repeat them in detail.

We now sketch the procedure for enumerating Coxeter polytopes of this type. We need to
distinguish two sub-cases.

4.2.1. One of the simplices is of dimension 1. In this case, C has the combinatorial type of a
simplicial prism. In the Coxeter graph, we may assume that vertices of G2 correspond to the base
facets of C, while vertices of G1 correspond to lateral facets. By Lemma 4.2(i), G2 is a (1, 0)-graph,
so the vertices of G2 are connected by a dashed edge, meaning that the two base facets do not
intersect inside the light cone.

A prism is orthogonally based if one of the base facets is orthogonal to all the lateral facets.
Any prism of level-2 can be cut into two orthogonally based prisms, and two orthogonally based
prisms can be spliced into one prism if they share a same base. Therefore, we only need to
consider orthogonally based prisms, as also argued by Kaplinskaja [Kap74]. In the Coxeter graph
of an orthogonally based prism, one vertex of G2 is not connected to any vertex of G1. By
Lemma 4.2(ii), deletion of this vertex leaves a (2, 0)-graph. Therefore, we construct a candidate
graph for (2, 1)-simplicial prism by attaching a vertex to a real vertex of a (2, 0)-graph with a
dashed edge.

Any candidate graph obtained in this way represents a Coxeter polytope of level 1 or 2. In
fact, by attaching a vertex u to a real vertex v with a dashed edge, we are truncating the Coxeter
simplex at a space-like vertex. The truncating facet intersects all the lateral faces orthogonally. In
the Coxeter graph G, the two vertices u and v belong to G2, and the other vertices belong to G1.
Vertices of the truncating facet correspond to graphs of the form G1 + u− v1 where v1 ∈ G1 and
u is an isolated vertex. Such a graph is of level 0 because G1 is of level 1. Consequently, if the
truncated vertex is the only space-like vertex, the Coxeter polytope we obtain has no space-like
vertex, and its level is 1. Otherwise, the polytope is of level 2.

However, for each candidate graph, we still need calculate the label for the dashed edge. For
this, we make use of the fact that the determinant of the matrix B is 0. The Coxeter polytope has
the combinatorial type of a orthogonally based simplicial prism if this label is < −1. Otherwise, if
the label = −1, the dashed edge should be replaced by a solid edge with label ∞. In this case, the
truncating facet truncates “too much” and meets another vertex, so the Coxeter polytope has the
combinatorial type of a pyramid over a simplicial prism, which will be classified later.

The list of (2, 0)-graphs with at least five vertices can be found in [CL14], where real vertices
are colored in white or grey. By attaching a vertex to each of these real vertices, we obtain 655
candidate Coxeter graphs. Among them, 129 graphs correspond to pyramids over simplicial prisms;
17 graphs correspond to simplicial prisms of level 1, as also enumerated in [Kap74]; the remaining
509 graphs correspond to orthogonally based prisms of level 2. Due to the large number of graphs,
we do not give the list in this paper.

A Coxeter graph with three vertices is always of level ≤ 2, and the number of real vertices equals

the number of dashed edges. We then obtain level-2 Coxeter graphs in the form of .

It corresponds to a two dimensional square. A Coxeter graph with four vertices is of level ≤ 2
as long as there is no dashed edge, and the number of real vertices equals the number triangles
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representing hyperbolic triangle subgroups. This completes the classification of orthogonally based
simplicial prisms of level 1 or 2.

The complete list of prisms of level 1 or 2 is obtained by splicing two orthogonally based prisms
of level 1 or 2 if they share a same orthogonal base. In other words, if two Coxeter graphs of
orthogonally based prism of level 1 or 2 share the same subgraph G1, we can identify this subgraph,
and merge the dashed edge into one, as shown below.

G1 + G1 = G1

The result is of level 1 if the two orthogonally based prisms are both (1, 1)-polytopes, or of level 2
otherwise.

4.2.2. The two simplices are both of dimension > 1. A vertex u of a (1, 0)-graph H is a port of H
if there is a (2, 0)-graph in the form of H + v in which v is the only real vertex and u is a neighbor
of v.

We construct a candidate (2, 1)-graph by connecting the ports of two (1s, 0)-graphs in all possible
ways that satisfy Lemma 4.2. For each candidate, we calculate its corank, and verify its level of G
by checking the level of G− v1 − v2 for each v1 ∈ G1 and v2 ∈ G2. Recall that G is of level 2 if the
level of G− v1 − v2 is always ≤ 1 but not always 0.

In practice, ports are detected with the help of the following lemma.

Lemma 4.3 (Extending [Ess96, Lemma 4.2]). If u is a port of H, then there is a (2, 0)-graph in
the form of H + v in which v is the only real vertex and is only connected to u by a solid edge with
label 3.

For each port u of H, we find all the (2s, 0)-graphs in the form of H + v in which v is the only
real vertex and u is a neighbor of v. These (2s, 0) graphs indicate the possible ways for connecting
H to other (1, 0)-graphs.

Some (1s, 0)-graphs with ports are listed in Figure 3, where ports are colored in white and
marked with numbers. We exclude hyperbolic triangle groups with label 7, 9 or ≥ 11. By the same
technique as in [Ess96, § 4.1, Step 3) 4)], we verified by computer that these triangle groups can
not be used to form any Coxeter graph of positive corank. In Table 1, we list all the 28 Coxeter
polytopes of the type 4×4, with both simplices of dimension > 1. For each polytope, we give
the position of G1 and G2 in Figure 3, and the edges connecting G1 and G2 in the format of (port
in G1, port in G2, label).

4.3. C has the type of Pyr(4×4). In this case, the Coxeter graph G consists of three parts: a
vertex corresponding to the base facet, and two subgraphs G1 and G2 corresponding to the two
simplices. The base facet has the type of 4×4. Vertices on the base facet are all simple. Except
for the apex vertex, every other k-face of C corresponds to a subgraph of G obtained by deleting
k + 2 vertices, including at least one vertex from both G1 and G2. The stabilizer of the apex is
represented by the graph G1 +G2. The corank of G1 +G2 is 1, and its level may be 0 if the apex
is light-like, or 1 if the apex is space-like. We now study these two sub-cases separately.

4.3.1. The apex is light-like. In this case, G1 +G2 is a Euclidean graph.
If a (1, 0)-graph has a unique ideal vertex, we call this vertex the hinge of the graph.

Lemma 4.4. If G1 +G2 is a (0, 1)-graph, then

(i) G1 and G2 are both Euclidean and are not connected to each other;
(ii) G1 + v and G2 + v are both (1, 0)-graphs;
(iii) If one of the simplices, say the one represented by G2, is of dimension > 1, then v is the

hinge of G1 + v;
(iv) Let v2 ∈ G2 be a neighbor of v, then G1 + v + v2 is a (2, 0)-graph.

For a proof, the first point follows from the same argument as in the proof of [Tum04, Lemma 4],
and other points follows from the same type of argument as in the proof of Lemma 4.2. We now
sketch the procedure for enumerating Coxeter polytopes of this type.
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If one of the simplices is of dimension 1, we construct a candidate (2, 1)-graph as follows. For an
ideal vertex v of a non-strict (1, 0)-graph H, we extend H to a (2, 0)-graph by attaching a vertex
u to v with a solid edge of label a. We allow a to be 2, meaning that u and v are actually not
connected. We attach a second vertex u′ to v in a second (possibly the same) way with label a′.
Then we connect u and u′ by a solid edge with label ∞. In the graph we obtain, v correspond
to the base facet of C, H − v correspond to G1 and u + u′ correspond to G2. Since v + u + u′

is a (1, 0)-graph, a and a′ can not be both 2. One then verifies Lemma 4.4 on H + u + u′, and
conversely that any graph obtained in this way is of level 1 or 2. Furthermore, H + u+ u′ has a
positive corank [Tum04, Lemma 3]1 which necessarily equals 1 because H + u is of corank 0. With
the same argument as in Section 4.2.1, we see that the graph is of level 2 as long as u and u′ are
not both the only real vertex of H + u and H + u′ respectively.

The list of non-strict (1, 0)-graph with ≥ 4 vertices can be found in [Che69]. The procedure
above then gives, up to graph isomorphism, 358 graphs of level 1 or 2. Among them, 89 are of
level 1 as also enumerated in [Tum04]. The remaining 269 graphs correspond to pyramids of level
2, and 129 of them were discovered earlier in Section 4.2.1 when enumerating orthogonally based
simplicial prisms. Due to the large number of graphs, we do not give the list in this paper.

If both simplices are of dimension 1, then the Coxeter graph is in the form of
a1∞a2

b1∞
b2 . It

corresponds to a square pyramid. Its level is at most 2, and equals 2 if 1/ai + 1/bj < 1/2 for some
i, j ∈ {1, 2}.

If both simplices are of dimension > 1, we construct a candidate (2, 1)-graph by taking two
non-strict (1, 0)-graphs with hinges and identifying their hinges. For any graph G constructed in
this way, one easily verifies Lemma 4.4. The corank of G is positive by [Tum04, Lemma 3]1, and
necessarily equals 1 by applying [Vin84, Proposition 12] on G− v for any v different from the hinge.
Finally, we verify the level of G by checking the level of G− v1 − v2 for each v1 ∈ G1 and v2 ∈ G2.
Recall that G is of level 2 if the level of G− v1 − v2 is always ≤ 1 but not always 0.

All non-strict (1, 0)-graphs with a hinge and ≥ 4 vertices are listed in Figure 4. In Table 2,
we list all the 65 polytopes of this class by giving the position of G1 + v and G2 + v in Figure 4
respectively.

4.3.2. The apex is space-like. In this case, G1 +G2 is a (1, 1)-graph.
For a (3, 0)-graph G, a vertex is said to be surreal if its removal leaves a (2, 0)-graph.

Lemma 4.5. If G1 +G2 is a (1, 1)-graph, then

(i) G1 and G2 are both (1s, 0)-graphs, and they are connected;
(ii) G1 + v and G2 + v are (2s, 0)-graphs in which v is the only real vertex;

and for any v2 ∈ G2,

(iii) the graph G1 + v2 is a (2s, 0)-graph in which v2 is the only real vertex;
(iv) the graph G1 + v + v2 is a (3s, 0)-graph for which v and v2 are the only surreal vertices.

For a proof, the first point is [Tum04, Lemma 2(I)], and other points follows from the same type
of argument as in the proof of Lemma 4.2. We now sketch the procedure for enumerating Coxeter
polytopes of this type.

If one of the simplices is of dimension 1, G1 +G2 represents a (1, 1)-prism. Coxeter graphs for
(1, 1)-prisms are classified in [Kap74], where a list of orthogonally based (1, 1)-prisms is given. Each
graph in the list is obtained by attaching a dashed edge to the unique real vertex of a (2s, 0)-graph,
see also [Vin85, § 5.4]. Therefore, if we ignore the dashed edges, the list in [Kap74] essentially
classified all connected (2s, 0)-graphs with a unique real vertex.

Given a (1s, 0)-graph H, we construct a candidate (2, 1)-graph as follows. We extend H to three
(2s, 0)-graphs (possibly same) H + u, H + v and H + w, in which u, v and w are respectively the
unique real vertex, therefore H + u+ v + w satisfies Lemma 4.5(iii). We now choose u as the base
facet. We combine the three graphs by by identifying H, then connect v and w by a dashed edge,
such that G1 + v + w represent a (1, 1) prism. We also connect u, v and u,w respectively by a

0 This lemma follows from Proposition 12 of [Vin84], instead of [Vin67].
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solid edge, and give it all possible labels (necessarily between 2 and 6) such that H + u+ v and
H + u+ w are (3s, 0)-graphs. One verifies that u, v and u,w are respectively the only two surreal
vertices, so H + u+ v + w satisfies Lemma 4.5(iv). Finally, we verify the corank and the level of
the candidate graph.

In order to satisfy Lemma 4.5(i), v and w can not be both disjoint from H. But the vertex u
can be an isolated vertex, in which case H + u+ v + w is indeed a (2, 1)-pyramid. Otherwise, we
list in Figure 1 all the 18 connected (2, 1)-pyramid in dimension ≥ 5. For 4-dimensional pyramids

Figure 1. The 18 connected (2, 1)-graphs of rank ≥ 7 whose Coxeter polytope
has the type of a pyramid over a prism with space-like apex.

over triangular prisms, we obtain 266 connected (2, 1)-graphs from triangle graphs with labels at
most 6. Because of the large number of graphs, we do not list them in this paper. For triangle

graphs with a label k ≥ 7, the Coxeter graph is necessarily in the form of k −c . The

unlabeled edges can not have label ≥ 7, so for a given k, there are only finitely many possibilities
for the labels. For each of them, the value of −c is determined by k using the fact that G1 +G2 is
a (1, 1)-graph. We then use Sage to find the expressions of the determinant in terms of k, and find
no integer root that is ≥ 7 for these expressions. So we believe that the labels on solid edges are at
most 6 for this type of (2, 1)-graphs. However, the author thinks that this is the point to question
the reliability of computer enumeration, and an analytic explanation is welcomed.

For 3-dimensional pyramids over squares, both simplices are of dimension 1, and the Coxeter

graph is necessarily in the form of . To be a (2, 1)-graph, the dashed edges need to bear

correct labels and the corank should be 1. We do not have a complete characterisation for this
case.

If both simplices are of dimension > 1, G1 +G2 falls in the list in [Ess96] and [Tum04]. The list
contains eight graphs. Each graph G in the list is obtained by connecting two (1s, 0)-graphs G1

and G2. We extend G1 and G2 to two (2s, 0) graphs G1 + u1 and G2 + u2 in which u1 and u2 are
respectively the unique real vertices (possibly isolated). We then obtain a candidate (2, 1)-graph G
by identifying u1 and u2 as a single vertex u. Finally, we calculate the corank, and verify the level
of the candidate by checking the level of G− v1 − v2 for v1 ∈ G1 and v2 ∈ G2. This time, we only
need the level of G − v1 − v2 to be always ≤ 1. If u is an isolated vertex, the result is clearly a
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(2, 1)-graph. Otherwise, there are three connected (2, 1)-graph. They are listed in Figure 2, where
the white vertex correspond to the base facet.

4 4 4

4 4

44

4 4

44

4 4

44

Figure 2. The three connected (2, 1)-graphs whose Coxeter polytope has the
type of Pyr(4×4) with space-like apex.

4.4. C has the type of Pyr2(4×4). In this case, C can be viewed as a pyramid in two different
ways with different apexes and bases. The two base facets are of the type Pyr(4×4), and are
represented by two vertices u and v in the Coxeter graph. The rest of the graph consists of two
parts, say G1 and G2, representing the two simplices. The intersection of the two base facets is a
ridge of C with the combinatorial type 4×4. Vertices on this base ridge are all simple. Except
for the two apexes and the edge connecting them, every k-face of C corresponds to a subgraph of
G obtained by deleting k + 2 vertices, including at least one vertex from both G1 and G2. The
stabilizer of the edge connecting the two apexes is represented by G1 +G2. Its level is 0 since it
corresponds to an edge of C.

If a (2, 0)-graph H has only two real vertices u and v, and H − u− v is of Euclidean type, then
we say that u+ v is the hinge of H.

Lemma 4.6. If C has the combinatorial type of a 2-fold pyramid over a product of two simplices,
then

(i) G1 and G2 are both Euclidean and are not connected to each other;
(ii) G1 + u+ v and G2 + u+ v are both (2, 0)-graphs with hinge u+ v;
(iii) for any v2 ∈ G2, the subgraph G1 + u+ v + v2 is a (3, 0)-graph, in which v2 is a surreal

vertex, while no vertex of G1 is surreal.

The proof use the same type of arguments as before, and use the fact that G1 + G2 + u
and G1 +G2 + v are (1, 1)-pyramids enumerated in [Tum04]. We now sketch the procedure for
enumerating Coxeter polytopes of this type.

If one of the simplices is of dimension 1, we construct a candidate (2, 1)-graph as follows. Let
H be an Euclidean graph and H + u+ v be a (2, 0)-graph with hinge u+ v. We extend H to a
(3, 0)-graph H + w such that w is a surreal vertex but no vertex in H is surreal. We extend H to
another (3, 0)-graph H + w′ in a second (possibly the same) way, and connect w and w′ by a solid
edge with label ∞. We require further that u+ v+w and u+ v+w′ are of level 0, and u+w+w′

and v + w + w′ are connected. This guarantees that u+ v + w + w′ is a (2, 0)-graph and u+ v is
the hinge. What we obtain is then a candidate (2, 1)-graph.

All (2, 0)-graphs with a hinge and ≥ 5 vertices are listed in Figure 5. Based on this list, the
procedure above gives 221 candidate (2, 1)-graphs. After verification of corank and level, 49 of
them are confirmed as (2, 1)-graphs. They are listed in table 3, in which we give the position of
the (2, 0)-graph H + u+ v in Figure 5, and the four labels on the edges connecting w and w′ to u
and v.

If both simplices are of dimension 1, the Coxeter graph of the 4-dimensional 2-fold pyramid over

a square is in the form of ∞ ∞ . To be a (2, 1)-graph, each of the four unlabeled triangles

should be of level 0, either triangle on the left and either triangle on the right should form a graph
of level ≤ 1, and the corank should be 1. We do not have a complete characterisation for this case.

If both simplices are of dimension > 1, we construct a candidate (2, 1)-graph by taking two
(2, 0)-graphs with hinges and identifying their hinges (possibly in two different ways). We then
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verify the corank and the level of each candidate. The latter is done by checking the level of
G− v1 − v2 for each v1 ∈ G1 and v2 ∈ G2. Recall that G is of level 2, if the level of G− v1 − v2 is
always ≤ 1 but not always 0. In Table 4, we list all the 36 polytopes of this class by giving the
position of G1 + u+ v and G2 + u+ v in Figure 5 respectively. It turns out that, for every pair in
the table, there is a unique way to identify the hinges up to graph isomorphism.

4.5. Remark and discussion. We have seen a lot of level-2 Coxeter graphs. The algorithms
for classification are implemented in the computer algebra system Sage [S+14]. For some cases
of low rank, because of the large number (even infinite) of graphs, we gave characterisations and
construction methods instead of explicit lists. For pyramid (space-like apex) and 2-fold pyramids
over squares, our characterisation is not satisfactory. For pyramids over triangular prisms with
space-like apex, we ruled out labels of large value by computer program, but the reliability of
computer can be questioned.

All these graphs correspond to infinite ball packings that are generated by inversions. For explicit
images of ball packings, the readers are referred to the artworks of Leys’ [Ley05]. The 3-dimensional
ball packings in Leys’ paper (and also on his website) are inspired from [BH04]. Similar idea was
also proposed by Bullett and Mantica [BM92,MB95], who also noticed generalizations in higher
dimensions.

However, the packings considered in these literatures are very limited. In our language, the
Coxeter polytopes associated to these packings only have the combinatorial type of pyramid over
regular polytopes. In [BM92], the authors were aware of Maxwell’s work, but explained that:

Our approach via limit sets of Kleinian groups is more naive, replacing arguments
about weight vectors in Minkowsky N-space by elementary geometric arguments
involving polygonal tiles on the Poincare disc: it mirrors the algorithm we use
to construct the circle-packings and seems well adapted to computation of the
exponent of the packing and other scaling constants.

On the contrary, weight vectors are very useful for investigations. In fact, weight vectors only make
the computation of the exponent (the growth rate of the curvatures) much easier. One easily verifies
that the height of a weights is asymptotically equivalent to the curvature of the corresponding ball.

Remark. The Hausdorff dimension of the residual set of infinite ball packings are usually approxi-
mated by computing the exponent. In the literature, Boyd’s works (e.g. [Boy74]) are often cited
to support this numeric estimate. However, this was not fully justified until recently by Oh and
Shah [OS12].

Allcock [All06] proved that there are infinitely many Coxeter polytopes in lower dimensional
hyperbolic space. However, we would like to point out that the situation is not completely dark.
We notice that the “doubling trick” used in Allcock’s construction produces Coxeter subgroups
of finite index, so the infinitely many hyperbolic Coxeter groups constructed in [All06] are all
commensurable. It has been noticed in [Max82, § 4] that commensurable Coxeter groups of level-2
correspond to the same ball packing. Indeed, if two Coxeter groups are commensurable, their
Coxeter complex is the subdivision of the same coarser Coxeter complex.

Therefore, it makes more sense to enumerate commensurable classes of Coxeter groups, as
Maxwell did in [Max82, Table II]. For Coxeter systems of corank 0, the commensurable classes and
subgroup relations have been studied for level 1 and 2 in [Max98], and are completely determined
for level 1 by Johnson et al. [JKRT02]. Despite of Allcock’s result, we may still ask: Are there
infinitely many commensurable classes for level-` Coxeter groups acting on lower dimensional
hyperbolic spaces? For level 1 Coxeter groups, the answer is “yes” in dimension 2 (triangle groups),
3 [MR03, § 4.7.3], 4 and 5 [Mak68; Vin85, § 5.4]. The constructions in dimension 3–5 made use of
level-1 polytopes of low corank.

Acknowledgement

The author is grateful to Pavel Tumarkin for inspiring discussions and interesting references
during my one-day visit at Durham university, which helped improving the paper and the program.



18 HAO CHEN
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G1 G2 Edges between G1 and G2 G1 G2 Edges between G1 and G2

2 13 (1,0,3), (2,2,3) 4 19 (0,0,3), (3,1,3)

6 11 (0,1,3) 6 13 (0,0,3), (0,2,3)

10 17 (0,1,3), (3,1,3) 10 22 (0,0,3), (3,1,3)
11 14 (1,0,3) 11 22 (1,2,3)

12 12 (0,1,3) 12 12 (2,2,3)

12 15 (0,0,3), (0,2,3) 12 15 (2,1,3)
12 19 (0,0,3), (0,1,3) 12 19 (1,2,3)

12 24 (2,0,3), (2,1,3) 12 27 (0,0,3), (2,1,3)

13 14 (0,0,3), (2,0,3) 13 22 (0,0,3), (2,1,3)
13 26 (0,0,3), (2,2,3) 15 15 (0,0,3), (2,2,3)

15 15 (1,1,3) 15 19 (0,0,3), (2,1,3)

16 30 (0,0,3), (2,1,3) 17 22 (0,0,3), (2,1,3)
17 26 (0,0,3), (2,2,3) 18 18 (0,1,3), (1,0,3)

24 24 (0,0,3), (1,1,3), (2,2,3) 25 25 (0,0,3), (0,0,4), (1,1,3), (1,1,4)

Table 1. The first two columns are the positions of G1 and G2 in Figure 3, and
the third columns are the edges connecting G1 and G2. The ports in Figure 3
are numbered, so the edges are represented in the format of (port in G1, port
in G2, label). By connecting G1 and G2 by the indicated edges, we obtain the
(2, 1)-graphs for the products of two simplices (both of dimension > 1).

1–2 1–5 1–9 1–12 1–15 1–16 1–19 1–22 1–24 1–27
2–3 2–7 2–8 2–23 3–5 3–13 3–15 3–16 3–20 3–28

4–9 4–12 4–19 4–22 4–24 4–27 5–7 5–8 5–23 7–9

7–12 7–15 7–16 7–19 7–22 7–24 7–27 8–9 8–12 8–15
8–16 8–19 8–22 8–24 8–27 9–26 10–12 10–19 10–27 11–12

11–19 11–27 12–18 12–26 13–23 15–23 16–23 18–19 18–27 19–26

20–23 22–26 23–28 24–26 26–27

Table 2. For each pair i–j in the list, by identifying the white vertices of the i-th
and the j-th graph in Figure 4, we obtain the (2, 1)-graph of a pyramid over the
product of two simplices (both of dimension > 1).

4:(2,3)(3,2) 4:(2,4)(4,2) 5:(2,3)(3,2) 6:(2,3)(3,2) 15:(2,2)(3,3)

15:(2,3)(3,2) 15:(2,4)(4,2) 15:(3,3)(3,3) 15:(3,4)(4,3) 24:(2,3)(4,3)

28:(2,2)(3,3) 28:(2,3)(3,2) 28:(3,3)(3,3) 32:(2,2)(3,3) 32:(2,3)(3,2)
32:(2,4)(4,2) 32:(3,3)(3,3) 37:(2,3)(3,2) 38:(2,2)(3,3) 38:(2,3)(3,2)

38:(3,3)(3,3) 39:(2,3)(3,2) 40:(2,2)(3,3) 40:(2,3)(3,2) 40:(3,3)(3,3)

41:(2,2)(3,3) 41:(3,3)(3,3) 42:(2,2)(3,3) 42:(3,3)(3,3) 48:(3,2)(3,3)
49:(2,2)(4,3) 49:(2,3)(4,2) 49:(3,2)(3,4) 49:(4,3)(4,3) 57:(2,3)(4,3)

59:(2,2)(3,3) 59:(3,3)(3,3) 61:(2,2)(3,3) 61:(2,3)(3,2) 61:(2,4)(4,2)

61:(3,3)(3,3) 65:(2,3)(3,2) 66:(2,2)(3,3) 66:(2,3)(3,2) 66:(3,3)(3,3)
67:(2,3)(3,2) 68:(2,2)(3,3) 68:(2,3)(3,2) 68:(3,3)(3,3)

Table 3. For each entry i:(a, b)(c, d) in the list, take the i-th graph H + u+ v
in Figure 5, where u is the gray vertex and v is the white vertex. Introduce two
new vertices w and w′, and connect them to H such that wu has label a, wv has
label b, w′u has label c, w′v has label d, and finally label the edge ww′ by ∞. The
result is the (2, 1)-graph of a 2-fold pyramid over a prism.

4–4 8–15 8–22 8–56 8–62 13–13
13–49 15–15 15–22 15–32 15–35 15–54
15–56 15–61 15–62 22–22 22–32 22–35

22–54 22–56 22–61 22–62 32–56 32–62
35–56 35–62 38–56 49–49 54–56 54–62

56–56 56–61 56–62 56–66 61–62 62–62

Table 4. For each pair i–j in the list, by identifying the white/light-gray vertices
of the i-th and the j-th graph in Figure 5, we obtain the (2, 1)-graph of a 2-fold
pyramid over the product of two simplices (both of dimension > 1).
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Figure 3. (1s, 0)-graphs of ≥ 3 vertices with ports (numbered white vertices)
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Figure 5. (2, 0)-graphs of ≥ 5 vertices with a hinge (the white and the light-gray vertices)
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