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Abstract. This is the second in a series of papers that construct minimal
surfaces by gluing singly periodic Karcher–Scherk saddle towers along their

wings. This paper aims to construct singly periodic minimal surfaces with

Scherk ends. As in the first paper, we prescribe phase differences between
saddle towers, and reveal that the saddle towers must be balanced under a

subtle vertical interaction. As a consequence, we obtain many new examples

without any horizontal reflection plane. Since the construction is not very
different from previous ones, we will only provide sketched proofs.

The major technical concern of the paper is to determine the embeddedness,

for which we will provide detailed arguments. Previously, embeddedness can
not be determined in the presence of “parallel” Scherk ends, as it was not

clear if they bend towards or away from each other. Our construction provide

possibilities to detect very slight bendings of Scherk ends. This allows us to
identify new scenarios where the constructed surfaces are embedded.

1. Introduction

In [Tra01], Traizet desingularized arrangements of vertical planes into singly pe-
riodic minimal surfaces (SPMSs) using the node-opening technique1: Scherk towers
are placed at the intersection lines and are glued along their wings. However, the
construction relied on many assumptions: (1) The arrangement was assumed to
be simple in the sense that no three planes intersect in a line; (2) The minimal
surface was assumed to be symmetric in a horizontal plane; (3) For the surfaces to
be embedded, it was assumed that no two planes are parallel. The purpose of this
paper is to get rid of these assumptions as far as we can.

On the one hand, we will consider a larger family of configurations. More specif-
ically, let Γ be a “graph” which, informally speaking, consists of straight segments
and rays (edges) that intersect only at their endpoints (vertices). We will desingu-
larize Γ × R into a minimal surface by placing Karcher–Scherk saddle towers over
the vertices and glue them along their wings following the pattern of the graph. In
particular, the minimal surface has Scherk ends corresponding to the rays of the
graph.

On the other hand, we will remove the horizontal reflection plane. This is done,
as in the first paper, by prescribing phase differences between saddle towers. Our
main result (Theorem 2 below) is then analogous to that of the first paper [CT21]:
The gluing construction sketched above produces a continuous family of immersed
SPMSs only when the graph satisfies a horizontal balancing condition, and the
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phases of the saddle towers satisfy a subtle vertical balancing condition. Conse-
quently, we obtain many examples without any reflection symmetry; see Section 3.3.
They provide a negative answer to a question in [Tra96] that asks whether every
SPMS with Scherk ends has a horizontal reflection plane.

Remark 1. The first SPMSs with Scherk ends but no horizontal reflection plane
were constructed in [MRB06] with a very different technique. Our construction
demonstrates that Traizet’s node-opening technique [Tra01] can also produce non-
symmetric examples, and is in some sense more flexible and powerful.

In this short paper, we will only sketch the gluing construction, as all technical
details can be found in the first paper [CT21] or even earlier works, and we do not
want to repeat ourselves. The readers are therefore expected to have a reasonable
familiarity with the first paper.

Our main concern is the embeddedness, especially when the graph Γ has parallel
rays. In [Tra01], the embeddedness was only guaranteed in the absence of parallel
vertical planes because, otherwise, the corresponding Scherk ends risk to bend to-
wards each other after desingularization, therefore create self-intersection. In some
recent work [Mor20], the bendings of Scherk ends were completely ignored and em-
bedded SPMSs with “parallel” Scherk ends were falsely claimed. We are therefore
compelled to provide a proper technical treatment on the bendings. Indeed, our
construction allows quantitative detections of very slight bendings, thus helps to
resolve very delicate embeddedness.

Figure 1. The simple graph on the left gives rise to SPMSs with two
saddle towers that are glued either in phase or in opposite phases. If
they are in phase, the surfaces are embedded after desingularization,
as shown in the figures on the top. If they are in opposite phases, the
surfaces are not embedded, as shown in the figures in the bottom.

We identify two types of bending. The first arise from the horizontal deforma-
tions, as the saddle towers expand and the glued wings shrink. We will explicitly
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describe this deformation to the lowest order; see Theorem 4. However, in the case
of simple vertical plane arrangment [Tra01], for example, this deformation does not
help determine embeddedness.

We are then obliged to consider a very subtle type of bending, arising from the
need to balance slight variations of the horizontal forces. This bending is very
delicate. We will see that, while the expansion of saddle towers and shrinking of
the glued wings are of the order ε2, the variations of the horizontal forces, as well
as the deformations they cause, are of the order exp(−`/ε2), where ` is the shortest
edge length in the graph. It is therefore understandable that these bendings could
be easily ignored. Again we will explicitly describe this deformation to the lowest
order; see Theorem 6.

Example 1. Figure 1 shows the simplest example that demonstrates the subtle
bending. The graph appears as an arrangement of three lines, one horizontal and
two vertical. So we will glue two Scherk saddle towers along a single pair of wings.
We will see in Lemma 2 that the two saddle towers are either in phase or in opposite
phases. Contrary to what was claimed in [Mor20], the Scherk ends will not remain
parallel after desingularization. If the saddle towers are in phase, the force along
the glued wings will increase, and the Scherk ends must bend away from each
other to preserve balance, so the resulting surfaces are embedded. If they are in
opposite phases, the force will decrease, and the Scherk ends must bend towards
each other, so the resulting surfaces are not embedded. We will revisit this example
in Section 3.1. �

The paper is organized as follows. In Section 2, we set up the graph theoret-
ical language before using it to state our main results. Examples are given in 3.
Section 4 is dedicated to the constructions and proofs.

The construction of the immersed families will only be sketched, as the technical
details can be found in the first paper of this series [CT21]. Only the proof of
embeddedness (Section 4.4), especially in the case of simple vertical plane arrange-
ment (Section 4.4.4), will be given in detail, because the involved technique can not
be found in previous works.

Acknowledgement. I appreciate the quick and friendly response from Fillippo
Morabito upon learning Example 1. He has acknowledged the existence of mistake
in [Mor20].

All 3D pictures in this paper are from http://minimalsurfaces.blog, an online
repository maintained by Matthias Weber, to whom I express my gratitude. I also
thank Peter Connor who pointed me to some known examples that arise from our
construction.

2. Main result

2.1. Graph theory. We define a pseudo rotation system as a triplet (H, ι, ς) where
H is a finite set of half-edges, ι and ς are two permutations acting on H, ι is an
involution, and the group generated by ι and ς acts transitively on H. Note that
(H, ι, ς) is not a rotation system (hence “pseudo”) because we allow the involution
ι to have fixed points. We use R to denote the set of fixed points of ι.

In analogy to the rotation systems that define multigraphs, a pseudo rotation
system defines a graph-like structure (H,V,E), where the vertex set V consists of the
orbits of ς, and the edge set E consists of the orbits of ι. Edges with two half-edges
are called closed edges; they are like the edges in the traditional sense. But we also
have edges with single half-edges; they are called open edges, and are identified to
the fixed points of ι.

http://minimalsurfaces.blog
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Remark 2 (Notation). In the remaining of the paper, we will use the letters h, r,
and η to denote the half-edges in, respectively, H \ R, R, and H. For each η ∈ H,
we use v(η) and e(η) to denote the unique vertex and edge associated to η. For a
half-edge h ∈ H\R, we write −h for ι(h); this notation does not apply to half-edges
r ∈ R. The cardinality of a vertex v, seen as a set of half-edges, is the degree of the
vertex, denoted by deg(v).

We assume that the structure admits a geometric representation % that maps
vertices to distinct points in R2 ' C, closed edges to line segments, and open edges
to rays, so that the image of each edge is bounded by the images of its end vertices,
and the image of different edges are either identical or have disjoint interiors. Closed
edges with the same image are called parallel ; parallelism is an equivalence relation
on the set of closed edges. Open edges are called parallel if the corresponding rays
extend in the same direction. Around a vertex, the anticlockwise order of parallel
edges is lost in the geometric representation, but encoded by the permutation ς.

In this paper, we abuse the term graph for the data Γ = (H, ι, ς, %), and we will
also abuse the notation Γ for the image of %.

Remark 3. The structure can be modified into a graph represented in the Riemann
sphere Ĉ = C ∪ {∞}, as defined in [CT21], by adding an extra vertex at ∞ that
closes all open edges. This should help the readers to connect to the setting ups
in [CT21].

An orientation of the graph is a function σ : H→ {±1} such that σ(−h) = −σ(h)
for all h ∈ H. A graph is said to be orientable if it has an orientation σ such that
σ ◦ ς = −σ. In an orientable graph, every vertex has an even degree.

2.2. Discrete differential operators. A (simple) cycle in the graph Γ is a set
of half-edges c ⊂ H \ R that can be ordered into a sequence (h1, · · · , hn) such that
v(−hi) = v(hi+1) for 1 ≤ i < n and v(−hn) = v(h1), and v(hi) 6= v(hj) and
e(hi) 6= e(hj) whenever i 6= j. The set of cycles is denoted by C. In particular, the
orbits of ςι, if contained in H \R, are all cycles; we call these cycles face cycles, and
use F to denote the set of face cycles. As the graph is represented in the complex
plane, we have necessarily |V| − |E|+ |R|+ |F| = 1.

A cut in Γ is a set of half-edges b ⊂ H such that, for some fixed non-empty subset
V′ ⊆ V, we have v(η) ∈ V′ for all η ∈ b and v(−h) 6∈ V′ for h ∈ b \ R. The set of
cuts is denoted by B. In particular, for any vertex v, the set

b(v) = {η ∈ v : v(−h) 6= v whenever h /∈ R}
is a cut; we call these cuts vertex cuts.

Remark 4 (Notation). If v(−h) = v(h), the edge e(h) is a loop. In this paper,
graphs have no loops because they are represented in the complex plane C. So it
makes sence to abuse the notation of vertex v for the vertex cut b(v).

We use A to denote the space of real-valued functions f : H \ R → R that are
antisymmetric in the sense that f−h = −fh for all h ∈ H \R. A is a vector space of
dimension |E|−|R|. Moreover, we use R to denote the space of real-valued functions
R→ R.

For f ∈ A, we define the discrete differential operator

curlc(f) =
∑
h∈c

fh, curl(f) = (curlc(f))c∈C.

The image of curl is the cycle space of Γ, and is denoted by C. It is a vector space of
dimension |F|. The projection (xc)c∈C 7→ (xc)c∈F provides an isomorphism between
C and R|F|. In fact, the face cycles form a cycle basis; see [CT21].
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Let f ∈ A×R ' R|E| be a real-valued function on H whose restriction on H \ R
is antisymmetric. We define the operator

divb(f) =
∑
h∈b

fh, div(f) = (divb(f))b∈B.

The image of div is the cut space of Γ, and is denoted by B. It is a vector space of
dimension |V|. The projection (xb)b∈B 7→ (xv)v∈V provides an isomorphism between
B and R|V|. In fact, the vertex cuts form a cut basis; see [CT21].

For each half-edge h ∈ H \ R, let `◦h be the length of the segment %(e(h)). For
b ∈ B, define

`◦b = min
h∈b\R

`◦h and m(b) = {h ∈ b \ R | `◦h = `◦b}.

For φ ∈ A, we define the operator

mdivb(φ) =
∑

h∈m(b)

φh, mdiv(φ) = (mdivb(φ))b∈B.

The same argument as in [CT21] proves that the image of mdiv, denoted by Bm,
has the same dimension as B. In particular, there is a cut basis B∗m ⊂ B such that
the projection (xb)b∈B 7→ (xb)b∈B∗m provides an isomorphism between Bm and R|V|.

2.3. Horizontal balance and rigidity. To each h ∈ H \ R, we assign the unit

tangent vector u◦h = eiθ
◦
h of the segment %(e(h)) at %(v(h)). We denote by `◦h the

length of the segment %(e(h)) and set x◦h = `◦hu
◦
h.

For a ray r ∈ R, x◦r and `◦r are not defined. It is only assigned a unit vectors

u◦r = eiθ
◦
r in the direction of the ray %(e(r)).

Remark 5 (Notation). We distinguish the notations ϑ = (θr)r∈R and θ = (θη)η∈H.
They are both frequently used in this paper.

For χ = (x, ϑ) ∈ A2 ×R in a neighborhood of χ◦ = (x◦, ϑ◦), we define

uη(χ) =


xη
‖xη‖

, η ∈ H \ R,

exp(iθη), η ∈ R,
and u(χ) = (uη(χ))η∈H.

The horizontal periods are given by the function

P hor : A2 ×R → C2

χ = (x, ϑ) 7→ curl(x).

As the graph Γ is represented in the complex plane C, χ◦ solves the horizontal
period problem.

P hor
c (χ◦) = 0, c ∈ F.

The horizontal forces are given by the function

F hor : A2 ×R → B2

χ = (x, ϑ) 7→ div(u(χ)).

Definition 1. The graph Γ is balanced if F hor(χ◦) = 0, and is rigid if

(DF hor(χ◦), P hor) : A2 ×R → B2 × C2 ' A2 × R2

is surjective.

If the graph is balanced and rigid, then in the neighborhood of χ◦, the set of χ
that solves (F hor, P hor) = 0 form a manifold M of dimension (|R| − 2).

In an orientable and balanced graph, we say that a vertex v is degenerate if the
unit vectors u◦h, h ∈ v, are collinear; we say that v is special if deg(v) ≥ 6 and
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deg(v) − 2 of the unit vectors u◦h are collinear. We say that v is ordinary if it is
neither degenerate nor special.

We want to place a saddle tower Sv at each vertex v ∈ V with their wings along
the edges in E. This is possible only if the graph is orientable, balanced, and all
vertices are ordinary. Then the following proposition, whose proof is delayed to
the appendix, asserts that the horizontal rigidity is guaranteed in the absence of
parallel edges.

Proposition 1. If the graph Γ is orientable, balanced, has no parallel edges, and
all vertices are ordinary, then Γ is rigid.

Remark 6. A graph with parallel edges might not be rigid; see Example 11.

The phase of a saddle tower, informally speaking, is the height of its horizontal
reflection plane; we recommend the readers to [CT21] for the formal definition. The
phase differences between saddle towers are prescribed through an antisymmetric
phase function A 3 φ◦ : H \ R → R/2πZ. We say that φ◦ is trivial if φ◦ = 0 or
π on every half-edge. Trivial phase functions give arise to SPMSs with horizontal
symmetry planes, as claimed in the following theorem.

Theorem 1 (SPMSs with horizontal symmetry plane). Given a graph Γ and a
trivial phase function φ◦. Assume that Γ is orientable, balanced, rigid, and all
vertices are ordinary. Then for sufficiently small ε, there is a continuous family
Mε of immersed singly periodic minimal surfaces of genus |F| in R3 with |R| Scherk
ends, vertical period (0, 0, 2π), and a horizontal symmetry plane, such that

(1) ε2Mε (scaling of Mε by ε2) converges to Γ× R as ε→ 0.
(2) For each vertex v ∈ V, there exists a horizontal vector Xv(ε) such that

Mε − Xv(ε) converges on compact subset of R3 to a saddle tower Sv as
ε→ 0. Moreover, ε2Xv(ε)→ %(v) as ε→ 0.

(3) For each half-edge h ∈ H× R, the phase difference of Sv(−h) over Sv(h) is
equal to φ◦h.

In fact, this family also depend continuously on χ ∈M in a neighborhood of χ◦.

2.4. Vertical balance and rigidity. In the following, we will prescribe non-trivial
phase functions φ◦. We define the vertical periods as the function

P ver : A → C
φ 7→ curl(φ).

We require that the prescribed phase function φ◦ solve the vertical period problem

P ver
c (φ◦) = 0, c ∈ F.

We now explain the vertical balancing condition. For each vertex v ∈ V, consider
a punctured Riemann sphere Cv on which the Weierstrass parameterization of Sv

is defined. Recall from [CT21] that the punctures must lie on a circle fixed by
the anti-holomorphic involution ρ corresponding to the reflection symmetries of
Sv in horizontal planes. Then for each η ∈ v, fix a local coordinate wη in a
neighborhood of the puncture pη ∈ Cv, and assume that wη is adapted, in the sense
that wη ◦ ρ = wη. Recall from [CT21] the quantities Υη are µη that describe the
shape of the wings; they are defined in terms of the Weierstrass parameterization
and the local coordinates wη.

In the following, we write D := ker(DF hor(χ◦), P hor) for the space of infinitesi-
mal deformations of the graph that preserve the balance. If the graph is rigid, then
D is a subspace of dimension |R|−2. Note that D include the rotations and scalings
of the graph.
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Let ζ̇ be the unique solution in D⊥ (with respect to the standard inner product
of A2 ×R ' R|H|+|R|) to the linear system

(1)

{
P hor
c (ζ̇) = −P hor

c (µa), c ∈ F,

DF hor
v (χ◦) · ζ̇ = 0, v ∈ V,

where µah = µh − µ−h. Then a general solution to (1) is of the form ξ + ζ̇, where

ξ ∈ D. Fix a prescribed ξ◦ ∈ D, we write ξ◦ + ζ̇ =: χ̇◦ = (ẋ◦, ϑ̇◦), and define

Kh = ΥhΥ−he
−Re(ẋ◦hu

◦
h)

for h ∈ H \ R. As in [CT21], Kh is independent of horizontal translations of the
saddle towers and the adapted local coordinates wh. It depends on ξ◦, but the
dependence is omitted for simplicity. When their concrete values matter but are
not specified in the context, it is understood that ξ◦ = 0.

We define the vertical forces as the function

F ver : A → Bm
φ 7→ mdiv

(
(Kh sinφh)h∈H\R

)
.

Definition 2. The phase function φ◦ is balanced if F ver(φ◦) = 0, and is rigid if
(DF ver(φ◦), P ver) is an isomorphism.

Remark 7. In general, the vertical forces do not depend continuously on the param-
eter χ◦ that describes the graph, but they depend continuously on the infinitesimal
deformation ξ◦.

Remark 8. The vertical balance is invariant under the transformation

(ẋ◦, ϑ̇◦) 7→ (ẋ◦ + λx◦, ϑ̇◦ + arg λ)

for λ ∈ C.

We call the pair (Γ, φ◦) a configuration and say that the configuration is balanced
(resp. rigid) if both Γ and φ◦ are balanced (resp. rigid). Our main result for SPMSs
is the following.

Theorem 2 (SPMSs). Given a configuration (Γ, φ◦) and a prescribed deformation
ξ◦ ∈ D. Assume that Γ is orientable, the configuration is balanced and rigid, and
all vertices are ordinary. Then for (ε, ξ) ∈ R+ × D in a neighborhood of (0, ξ◦),
there is a continuous family Mε,ξ of immersed singly periodic minimal surfaces of
genus |F| in R3 with |R| Scherk ends and vertical period (0, 0, 2π) such that

(1) ε2Mε,ξ (scaling of Mε,ξ by ε2) converges to Γ×R as ε→ 0. In particular,
the |R| Scherk ends of ε2Mε,ξ converge to the rays of Γ.

(2) For each vertex v ∈ V, there exists a horizontal vector Xv(ε) such that
Mε,ξ −Xv(ε) converges on compact subset of R3 to a saddle tower Sv as
ε→ 0. Moreover, ε2Xv(ε)→ %(v) as ε→ 0.

(3) For each half-edge h ∈ H \ R, the phase difference of Sv(−h) over Sv(h) is
equal to φh.

Remark 9. In view of Remarks 8, we may, up to scalings and horizontal rotations,
fix ẋh = 0 for a particular half-edge h ∈ H \ R. Then we construct families with
|R| − 3 parameters. Recall that the Karcher-Scherk saddle towers with 2k Scherk
ends form a family with 2k − 3 parameters.
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2.5. Embeddedness. We identify several scenarios where the surfaces in Theo-
rem 2 are embedded.

In the first case, we assume that the graph has no parallel rays, hence the
Scherk ends of the surfaces do not intersect for sufficiently small ε. This is the
case considered in [Tra01].

For a more formal statement, let us label the rays by integers r = 1, · · · , |R|,
in the anticlockwise order. Recall that, around the same vertex, the anticlockwise
order of parallel edges is given by the permutation ς. Up to a rotation, we may
assume that 0 = θ◦1 ≤ · · · ≤ θ◦|R| < 2π. Two rays r and r′ are then parallel if

θ◦r = θ◦r′ .

Theorem 3. The minimal surfaces Mε,ξ in Theorem 2 is embedded for (ε, ξ) suf-
ficiently close to (0, ξ◦) if θ◦r < θ◦r+1 for all 1 ≤ r < |R|.

If the graph has parallel rays, the corresponding Scherk ends tends to be parallel
in the limit ε→ 0. We call them parallel Scherk ends.

Remark 10. This terminology is certainly an abuse. As we have stressed several
times, the Scherk ends might bend from the direction of the corresponding rays,
hence might not be parallel for ε > 0!

We want to resolve these parallel Scherk ends. That is, as ε increases, we want the
Scherk ends to bend away from each other. Recall that the lowest order deformation
of the graph is prescribed by χ̇◦ = (ẋ◦, ϑ̇◦).

Theorem 4. The minimal surfaces Mε,ξ in Theorem 2 is embedded for (ε, ξ) suf-

ficiently close to (0, ξ◦) if θ̇◦r < θ̇◦r+1 whenever θ◦r = θ◦r+1, 1 ≤ r < |R|.

If parallel Scherk ends are not resolved by the lowest order deformation of the
graph, it might still be resolved by higher order terms in the Taylor expansion of
χ in ε. Eventually, we may use the entire Taylor series of χ. More formally, fix a
smooth function ξ(ε) ∈ D such that ξ(0) = ξ◦. Since the graph is balanced and
rigid, the non-linear system

(2)

{
P hor(ζ̃(ε)) = −ε2P hor(µa),

F hor(χ̃(ε)) = 0,

where χ̃(ε) = ε2ξ(ε) + ζ̃(ε) = (x̃(ε), ϑ̃(ε)) is the limit of the Taylor series of χ, has

a unique solution ζ̃(ε) ∈ D⊥ for ε sufficiently small.

Theorem 5. The 1-parameter family of minimal surfaces Mε,ξ(ε) as constructed

in Theorem 2 is embedded for sufficiently small ε if θ̃r(ε) < θ̃r+1(ε) for sufficiently
small ε whenever θ◦r = θ◦r+1, 1 ≤ r < |R|.

Interestingly, if the graph appears as a simple line arrangement, as considered
in [Tra01], then even the Taylor series χ̃ is not enough to resolve parallel Scherk
ends; see Lemma 6. In this case, we must consider deformations that are not
analytic but flat in ε. As ε increases, the horizontal forces will slightly deviate from
unit vectors. For the force along the half-edge h, the deviation is in the order of
exp(−`h/ε2). The surface must deform to balance the horizontal forces, and this
deformation might resolve parallel Scherk ends. See, for instance, Example 1.

More formally, define

m(H) = {h ∈ H \ R | `◦h ≤ `◦h′ ∀h′ ∈ H \ R}.
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Let ζ̂ be the unique solution in D⊥ to the linear system

(3)


P hor
c (ζ̂) = −

∑
h∈c∩m(H)

xhKh cosφ◦h, c ∈ F,

DF hor
v (χ◦) · ζ̂ = −

∑
h∈v∩m(H)

uhKh cosφ◦h, v ∈ V,

and write ζ̂ = (x̂, ϑ̂).

Theorem 6. If the graph Γ appears as a simple line arrangement, then the 1-
parameter family of minimal surfaces Mε,ξ(ε) as constructed in Theorem 2 is embed-

ded for sufficiently small ε if θ̃r(ε) = θ̃r+1(ε) for sufficiently small ε and θ̂r < θ̂r+1

whenever θ◦r = θ◦r+1.

There are certainly situations where even Theorem 6 can not determine embed-
dedness; see Example 2 below. If this is the case, parallel Scherk ends might still
be resolved by looking at even higher orders, but we do not plan to continue.

3. Examples

3.1. Trees. We say that Γ is a tree if it has no cycle of length > 2. Note that we
allow cycles or length 2 in the trees; edges in such a cycle must be parallel closed
edges.

Lemma 2. If Γ is a tree, then the only balanced phase functions on Γ are the trivial
ones.

Proof. Recall that parallelism is an equivalence relation on the set of closed edges.
For edges in a parallelism class, φ◦ must take the same value on their half-edges
from the same vertex, so that the vertical period problem is solved. If Γ is a tree,
then these half-edges forms a cut. So φ◦ must be 0 or π on every half-edge. �

Then by Theorem 1, trees give rise to symmetric SPMSs. We see here that
the symmetry is induced by the structure. If the tree has no cycle of length 2, it
gives rise to a SPMS with genus zero and Scherk ends. In this case, it was proved
in [PT07] that the symmetry is imposed by the structure.

Example 1 (revisit). The graph in Figure 1 is a tree, so the phase difference
φ◦ between the two saddle towers is either 0 (in phase) or π (in opposite phase).
Assume that ξ(ε) ≡ 0. If φ◦ = 0, then the parallel Scherk ends bend away from
each other after desingularisation, and the surfaces are embedded by Theorem 6.
Otherwise, if φ◦ = π, then the Scherk ends will bend towards each other and the
surfaces are not embedded. In no case do the Scherk ends remain vertical. This
example contradicts a main result in [Mor20]. �

Figure 2. A configuration whose embeddedness can not be determined
even by Theorem 6.
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Example 2. [Limit of Theorem 6] Figure 2 shows an example that only adds two
more vertical lines (dashed) to Example 1. Assume that φ◦ = 0 on all half-edges,
and that ξ(ε) ≡ 0. This is a situation that even Theorem 6 can not determine
embeddedness. To see this, note that the horizontal forces increase, to the lowest
order, by the same amount on all closed edges. As a consequence, the Scherk ends
corresponding to solid vertical rays can not remain vertical as claimed in [Mor20],
but must bend outwards to balance the horizontal forces. However, the Scherk ends
corresponding to dashed vertical rays must stay vertical. We can not tell how the
middle Scherk ends bend, or if they bend at all, without looking at higher-order
terms. But we do not plan to do this. �

Figure 3. A tree with parallel edges.

Example 3. Figure 3 shows an example with parallel edges. It does not appear
as a line arrangement, but suffers the same problem regarding embeddedness: The
parallel Scherk ends can not be resolved by the analytic deformation χ̃. To study
the embeddedness of the SPMSs, we need to analyse the bending that arise from
the variations of the horizontal forces, as we did in Theorem 6. For instance, if
ξ(ε) ≡ 0 and the phase function φ◦ is 0 on all half-edges, then the Scherk ends
that were parallel in the limit ε→ 0 will bend away from each other as ε increases,
hence the SPMSs are embedded. �

3.2. Previously known examples. The phase function φ◦ can be recovered from
a phase function ϕ◦ : V → R/2πZ, unique up to the addition of a constant, such
that φ◦h = ϕv(−h) −ϕv(h) (mod 2π). In this paper, the phase functions are marked
in the figures by labelling ϕ◦v on the vertices.

In this part, we show some classical examples that may arise from our construc-
tion.

Example 4 (Karcher–Scherk saddle tower with handle). Figure 4 shows symmetric
Karcher–Scherk saddle towers with a vertical tunnel in the middle. They were first
mentioned in Karcher’s “Tokyo Note” [Kar89]. In the framework of our construc-
tion, the one with 6 ends arises from three lines forming an equiangular triangle,
the one with 8 ends arises from four lines forming a square.

Note that the one with 8 ends has parallel ends, but they do not correspond
to the parallel rays in the graph. In fact, we have ξ(ε) = 0 and the Scherk ends
bend from vertical and horizontal directions in the limit ε → 0 all the way to the
diagonal directions as ε increases, forming new parallel pairs. If ε increase further,
the Scherk ends will intersect. �

Example 5 (Costa–Scherk surfaces). In Figure 5 is a family that arise again from
three lines forming an equiangular triangle. But this time we use a different trivial
phase function. The SPMSs looks like a tower of Costa surfaces, hence the name.

�
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Figure 4. Karcher–Scherk saddle towers with handles.

Figure 5. The Costa–Scherk surfaces.

Figure 6. The da Silva–Batista surface.

Example 6 (Da Silva–Batista surfaces). In Figure 5 is a family that arise from
an arrangement of four lines. As we have 8 ends, the family is described by 5-
parameters up to scalings and Euclidean motions. In particular, it includes the
saddle tower limit of the 2-parameter family constructed in [dSRB10], for which
vertical reflection planes were assumed. �
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3.3. Singly periodic gyroids.

Example 7 (Singly periodic rGL). In view of Lemma 2, a SPMS with Scherk
ends and no horizontal symmetry plane must arise from a graph with a cycle of
length at least three. The configuration on the left of Figure 7, where three lines
form a equiangular triangle, is therefore the smallest non-symmetric, balanced, and
rigid example. It can be seen as the singly periodic analogue of the rGL family of
triply periodic minimal surfaces; see [Che21] and [CT21]. Note that, if the triangle
was not equiangular, then the only possible balanced phase functions are the trivial
ones, and we obtain a deformation of the saddle tower with handle (see Example 4).
One sees here that the vertical balance does not depend continuously on the graph;
see Remark 7. �

Example 8 (Singly periodic tG, inconclusive). In the same spirit, the configuration
on the right of Figure 7, where four lines form a square, can be seen as the singly
periodic analogue of the tG family of triply periodic minimal surfaces; see [Che21]
and [CT21]. This configuration is balanced, but not vertically rigid: It seems that
one may vertically slide two non-adjacent saddle towers with respect to the others
without any horizontal deformation of the graph. Hence our construction is not
conclusive on this configuration. Even if this configuration does give rise to SPMSs
with Scherk ends, it would still be challenging to determine their embeddedness, as
Theorem 6 does not apply here. �

Figure 7. Singly periodic analogues of rGL and tG surfaces.

3.4. Miscellaneous examples.

Example 9 (Polygrams). Non-symmetric examples can be produced from the
graph that appears as a simple arrangement of k lines, k > 4, that form a regular
polygram. More specifically, such a graph contains a clockwise cycle whose edges are
all of the shortest length. We choose φ◦ that takes the same value on all half-edges
in this cycle, and its value on other half-edges can be determined (not necessarily
unique!) by solving the period and balance problems. Figure 8 shows two examples
with k = 5 and k = 8. These configurations all appear as line arrangements. If k
is even, the embeddedness follows from Theorem 3. If k is odd, and ξ(ε) ≡ 0, the
embeddedness can be determined by Theorem 6. �

Example 10. Figure 9 shows a graph with two vertices of degree 4 and one vertex
of degree 6. Let c be the unique anticlockwise cycle in the graph. Using the explicit
values of µh computed in [CT21], one verifies that P hor

c (µa) = 0. So we have, very

conveniently, ζ̇ = 0 and χ̇◦ = ξ◦ ∈ D.
Label four rays as shown in the Figure. One verifies that ξ = (ẋ, ϑ̇) with ẋ = 0,

2θ̇1 = −θ̇2 = θ̇3 = −2θ̇1 > 0,
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Figure 8. Non-symmetric examples from polygrams.

and θ̇r = 0 for other rays, is a vector in D. This deformation is illustrated by
dashed lines in the figure. If we choose this deformation as ξ◦, then the Scherk
ends corresponding to rays 1 and 4 bend away from the parallel Scherk ends, and
the embeddedness follows from Theorem 4. �

Figure 9. An infinitesimal deformation ξ◦ that resolve parallel Scherk
ends.

Example 11 (Benzene, inconclusive). It is tempting to construct SPMSs from the
Benzene-like graph in Figure 10 with 12 rays. However, Mathematica report that
the space D of balance-preserving deformations is of dimension 11 > 12− 2, so the
graph is not rigid. To explicitly count the dimension of D, note that the rotation
contributes one dimension. Up to the rotation, all the infinitesimal deformations in
D must preserve the directions of closed edges; such deformations for the hexagon
contribute four dimensions (including the scaling). Finally, the deformations that
open up parallel rays also preserve the balance to the first order; they contribute six
dimensions, one for each pair. Our main theorem is therefore inconclusive here. �

4. Construction

This section is dedicated to the proof of Theorem 2 and the embeddedness state-
ments. As we have explained, the construction of the SPMSs will only be sketched.
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Figure 10. This graph is not rigid.

The readers are referred to the first paper of this series [CT21] for omitted techni-
cal details. Only the embeddedness Theorem 6 will receive an elaborated proof in
Section 4.4.4 because it is our major technical concern, and the involved argument
was not detailed before.

4.1. Weierstrass parameterization. We construct a conformal minimal immer-
sion using the Weierstrass parameterization

Σ 3 z 7→ Re

∫ z

(Φ1,Φ2,Φ3),

where Σ is a Riemann sphere and Φi are meromorphic 1-forms on Σ satisfying the
conformality equation

(4) Q = Φ2
1 + Φ2

2 + Φ2
3 = 0.

4.1.1. Riemann surface. To each vertex v ∈ V, we associate a Riemann sphere Ĉv.
To each half-edge η ∈ v, we associate a complex number p◦η ∈ Ĉv, so that Ĉv
punctured at p◦η provides a conformal model for the saddle tower Sv. Then for
every h ∈ H \ R, we identify p◦h and p◦−h. The resulting singular Riemann surface
with nodes is denoted Σ0.

As ε increases, we open nodes into necks in the standard way:
For each η ∈ H, let pη ∈ Ĉv(η) be a complex parameter in the neighborhood of

p◦η, and consider an adepated local coordinate wh in a neighborhood of pη ∈ Ĉv(η)
such that wη(pη) = 0. Since the graph is finite, it is possible to fix a small number
δ > 0 independent of v such that, for p sufficiently close to p◦, the disks |wη| < 2δ
are disjoint.

Consider t = (th)h∈H\R in the neighborhood of 0. Then for every h ∈ H \ R, we
remove the disk

|wh| < |th|/δ,

and identify the annuli

|th|/δ ≤ |wh| ≤ δ and |t−h|/δ ≤ |w−h| ≤ δ

by

whw−h = th.

This produces a Riemann surface, possibly with nodes, denoted by Σt, depending
on the parameters t and p.
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4.1.2. Weierstrass data. Let Ah denote the anticlockwise circle wh = δ. We need
to solve the A-period problem

Re

∫
Aη

(Φ1,Φ2,Φ3) = (0, 0, 2πση), ∀η ∈ H.

For this purpose, we define Φ1, Φ2, and Φ3 as the unique regular 1-forms on Σt
with simple poles at pr, r ∈ R, possibly also at ∞v, v ∈ V, and the A-periods∫

Aη

(Φ1,Φ2,Φ3) = 2πi(αη, βη, γη − iση), ∀η ∈ H,

where (α, β, γ) ∈ (A×R)3. Then the A-period problems are solved by definition.
We choose the following central value for the parameters:

α◦η = − cos(θ◦η), β◦η = − sin(θ◦η), γ◦η = 0.

Then at ε = 0 and the central values of all parameters, (Φ◦1,Φ
◦
2,Φ

◦
3) is precisely the

Weierstrass data of the saddle tower Sv.

4.1.3. Balance and period problems. We want∞v to be regular points for all v ∈ V.
For this purpose, we need to solve the balance equations

(5) Fv(α, β, γ) =
∑
η∈v

(αη, βη, γη) = 0, for all v ∈ V.

A half-edge r ∈ R corresponds to a Scherk end, so we require that

(6) γr ≡ 0 and |αr + iβr| = α2
r + β2

r ≡ 1

no matter the value of other parameters.
Recall from [CT21] that, for every vertex v, we fix an origin Ov ∈ Cv bounded

away from all punctures ph, and a path Bh from Ov(h) to Ov(−h) through the neck
corresponding to h; see [CT21] for the rigorous descriptions. Then for a cycle
c = (h1, · · · , hn), we define Bc as the concatenation Bh1

∗ · · · ∗Bhn . For each c ∈ F,
we need to solve the following B-period problems

ε2
(

Re

∫
Bc

Φ1 + i Re

∫
Bc

Φ2

)
= 0,(7)

Re

∫
Bc

Φ3 = 0 (mod 2π).(8)

4.2. Using the Implicit Function Theorem.

4.2.1. Solving conformality problems. At ε = 0 and the central value of all param-
eters, Φ◦1 has deg(v)− 2 zeros denoted z◦v,j for 1 ≤ j ≤ deg(v)− 2. We may assume
that these zeros are simple and not at ∞v. When the parameters are close to their
central values, Φ1 has a simple zero zv,j close to z◦v,j in Ĉv. The same argument
as in [CT21] proves that the conformality condition (4) is satisfied if (5) and the
following equations are solved:∫

Aη

Q

Φ1
= 0, η ∈ H,(9)

Res

(
Q

Φ1
, zv,j

)
= 0, 1 ≤ j ≤ deg(v)− 3, v ∈ V.(10)

We make the change of parameters

αη + iβη = −ρη exp(iθη)

for η ∈ H. The central value of θη is θ◦η given by the graph. Recall that we write
θ = (θη)η∈H.
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Proposition 3. For (t, θ) in a neighborhood of (0, θ◦), there exist unique values
for pη, ρη, and γη, depending real-analytically on (t, θ), such that the equations (9)
and (10) are solved under the condition (6). At ε = 0 and the central values of the
parameters, we have

pη = p◦η, ρη = 1, γη = 0

for η ∈ H no matter the values of other parameters. Moreover, at (t, θ) = (0, θ◦),
we have the Wirtinger derivatives

(11)
∂ρh
∂th

= −1

2
ΥhΥ−h and

∂γh
∂th

= − i

2
σhΥhΥ−h

for each h ∈ H \ R.

The proof in [CT21] applies here almost word for word, so we omit the proof.
From now on, we assume that p, ρ and γ are given by Proposition 3.

4.2.2. Solving horizontal balance and period problems. For h ∈ H \ R, we make the
change of parameters

th = − exp
(
− `hε−2 − iσhφh

)
.

Note that th is a flat function in ε in the sense that all derivatives of th in ε vanish.
The central value of `h is `◦h, the length of the segment %(e(h)). The central value
of φh is the prescribed phase function φ◦h. We combine ` and θ into

xh = `he
iθh ,

whose central value is x◦h as given by the graph. Recall that we write ϑ = (θr)r∈R,
and χ = (x, ϑ). For χ in an neighborhood of χ◦, we change to the variable χ =
χ◦ + ε2ξ + ζ where ξ ∈ D and ζ ∈ D⊥.

Proposition 4. Assume that the graph Γ is balanced and rigid. For (ε, ξ, φ)
in a neighborhood of (0, ξ◦, φ◦), there exist unique values for ζ, depending real-
analytically on (ε, ξ, φ), such that the B-period equations (7) as well as the α and
β components of the balance equations (5) are solved. Moreover, ζ is an even func-

tion of ε and, at ε = 0, we have ζ(0, ξ, φ) = 0 and
1

2

∂2ζ

dε2
(0, ξ, φ) = ζ̇ is the unique

solution to (1) in D⊥ no matter the values of ξ and φ.

The proof in [CT21] applies here with some modification. We sketch a proof
here because some computations will be useful later for the embeddedness proofs.

Sketched proof. Define for (ε, ξ, φ) in a neighborhood of (0, ξ◦, φ◦) and h ∈ H \ R

Phor
h (ε, ξ, φ) = ε2

(
Re

∫
Bh

Φ1 + i Re

∫
Bh

Φ2

)
,

for c ∈ F

Phor
c (ε, ξ, φ) = ε2

(
Re

∫
Bc

Φ1 + i Re

∫
Bc

Φ2

)
=
∑
h∈c

Phor
h (ε, ξ, φ),

and for v ∈ V

(12) Fhor
v (ε, ξ, φ) = −divv(α+ iβ) =

∑
h∈v

ρhe
iθh .

In [CT21] we have computed that

(13) Phor
h (ε, ξ, φ) = ρhxh + ε2λh(ε, ξ, φ)
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where λh is analytic in th and λh(0, ξ, φ) = µh − µ−h =: µah no matter the values
of ξ and φ. So λh is flat in ε. We have also computed that

(14)

{
Phor(ε, ξ, φ) = P hor(χ) + ε2P hor(µa) + flat terms,

Fhor(ε, ξ, φ) = F hor(χ) + flat terms.

Write Fhor = (Fhor
v )v∈V and Phor = (Phor

c )c∈F. We want to solve

(15) (Fhor,Phor)(ε, ξ, φ) = 0.

If Γ is balanced, the system is solved at ε = 0 with ζ = 0 no matter the values
of ξ and φ. If Γ is rigid, then by the Implicit Function Theorem, the system has
a unique solution ζ(ε, ξ, φ), depending smoothly on (ε, ξ, φ) in a neighborhood of
(0, ξ◦, φ◦).

The system (15) is even in ε, so must be the solution ζ. Taking the second
derivative of (15) with respect to ε at ε = 0 gives the linear system

2P hor
c (µa) + P hor

c

(∂2ζ
∂ε2

)
= 0, c ∈ F,

DF hor
v (χ◦) ·

(∂2ζ
∂ε2

)
= 0, v ∈ V,

which proves that
1

2

∂2ζ

∂ε2
must be the unique solution ζ̇ ∈ D⊥ to the linear system (1)

in D⊥. �

4.2.3. Solving vertical balance and period problems.

Proposition 5. Assume that the phase function φ◦ is balanced and rigid with
respect to the prescribed deformation ξ◦ ∈ D. For (ε, ξ) in a neighborhood of (0, ξ◦),
there exist unique values for (φh)h∈H\R, depending smoothly on ε and ξ, such that
φh(0, ξ◦) = φ◦h, and the vertical B-period problems (8) as well as the γ component
of (5) are solved.

The proof in [CT21] applies here with only slight modification, but we still sketch
a proof for completeness.

Sketched proof. Define for (ε, ξ) in a neighborhood of (0, ξ◦) and c ∈ F

Pver
c (ε, ξ, φ) = Re

∫
Bc

Φ3,

and for ε > 0 and b ∈ B∗m,

Fver
b (ε, φ) := − exp(`◦bε

−2) divb(γ(ε, ξ, φ)).

By the same computation as in [CT21], we have

Pver
c (0, ξ, φ) = P ver

c (φ) (mod 2π)

no matter the value of ξ, and that Fver
b extends smoothly at ε = 0 to

Fver
b (0, ξ, φ) =

∑
h∈m(b)

ΥhΥ−h sin(φh) exp (−Re(ẋh exp(−iθ◦h))) ,

where ξ + ζ̇ = (ẋ, ϑ̇). In particular,

Fver
b (0, ξ◦, φ) = F ver

b (φ).

Write Fver = (Fver
b )b∈B∗m and Pver = (Pver

c )c∈F. We want to solve

(Fver,Pver)(ε, ξ, φ) = 0.
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If the phase function φ◦ is balanced with respect to ξ◦, the system is solved at
(ε, ξ) = (0, ξ◦) by φ = φ◦. If φ◦ is rigid, then by the Implicit Function Theo-
rem, the system has a unique solution φ(ε, ξ), depending smoothly on (ε, ξ) in a
neighborhood of (0, ξ◦), such that φ(0, ξ◦) = φ◦. �

The same argument as in [CT21] shows that the immersion is regular. This
finishes the proof of Theorem 2.

4.3. Symmetric SPMSs. A trivial phase function is trivially balanced, but not
necessarily rigid. So Theorem 1 is not contained in our main Theorem 2. But its
proof is very similar, only much easier, hence we only give a brief sketch here. The
readers are referred to [You09] and [Tra01] for technical details.

The reflection in the horizontal symmetry plane correspond to an involution ρ of
Σt that restricts to ρ(z) = z on Ĉv for every vertex v. We restrict to the parameters
ph to real values, and set γ ≡ 0 so that the vertical balance problem is trivially
solved. This ensures that ρ∗Φ1,2 = Φ1,2 and ρ∗Φ3 = −Φ3, so the surface carries
the desired symmetry; see [You09].

Since φ ≡ φ◦ is trivial, we have th ∈ R, negative if φh = 0, positive if φh = π.
For each c ∈ F, we choose the integral path Bc as the concatenation of B′h where

• if φh = 0, B′h consists of the real segment wh = −th/δ > 0 to wς(h) = −δ <
0.
• if φh = π, B′h consists of an clockwise half-circle around ph from wh =
−th/δ < 0 to wh = th/δ > 0, followed by the real segment to wς(h) = −δ.

This careful choice of path makes it convenient to compute that Re
∫
Bc

Φ3 = 0

(mod 2π); see [You09]. So the vertical period problem is automatically solved.
We then use the Implicit Function Theorem to solve the conformality problem

and horizontal balance and period problems, as we did above for the general case.
The result is a continuous family of symmetric SPMSs depending on |R|−1 param-
eters. One of them is ε. The other parameters correspond to the local deformations
χ ∈M; cf. [Tra01]. This finished the construction of symmetric SPMSs.

4.4. Embeddedness. We now prove the scenarios where the surfaces Mε,ξ in The-
orem 2 are embedded, at least for some (ε, ξ) in a neighborhood of (0, ξ◦). In fact,
the same proof as in [CT21] proves the embeddedness except for the Scherk ends.
In fact, it also proves the embeddedness of each Scherk end. The only problem is
that the Scherk ends might intersect each other. We then omit this part of the
proof, and focus on the bendings of the Scherk ends.

4.4.1. If the graph has no parallel rays, then the Scherk ends would not intersect
for (ε, ξ) sufficiently close to (0, ξ◦). This proves the scenario in Theorem 3, and
has been considered in [Tra01].

4.4.2. Otherwise, we must analyse how the Scherk ends bend. For this purpose,
let us consider a 1-parameter family Mε,ξ(ε) where ξ(ε) is a fixed smooth function
such that ξ(0) = ξ◦. All other parameters have been solved as a smooth function
of ε. Write

ζ(ε) = ζ̃(ε) + ζ(ε).

Here and in the remaining of the paper, for any smooth function f(x), we use f̃(x)
to denote the analytic function given by the Taylor series of f in x, and use f(x)
to denote the non-analytic remainder.

By Proposition 4, the first term of ζ̃(ε) is ε2ζ̇. Hence the lowest-order defor-

mation of the graph is χ̇◦ = ξ◦ + ζ̇. If the parallel Scherk ends bend away from
each other under this deformation, the Scherk ends would not intersect for (ε, ξ)
sufficiently close to (0, ξ◦). This proves the scenario in Theorem 4.



GLUING SADDLE TOWERS II: SPMS 19

4.4.3. If the lowest-order deformation does not help, we may look into higher
order deformations, and eventually use the entire Taylor series. In view of (14),

ζ̃(ε) solves the non-linear system{
P̃hor
c = P hor

c (ζ̃) + ε2P hor
c (µah) = 0 c ∈ F,

F̃hor
v = F hor

v (χ̃) v ∈ V = 0,

where χ̃ = ε2ξ(ε) + ζ̃. This is exactly the system (2). Moreover, since the graph

is balanced and rigid, there is a unique solution ζ̃(ε) for ε sufficiently small. If the
parallel Scherk ends bend away from each other under the deformation χ̃(ε) for
sufficiently small ε, then the Scherk ends would not intersect for sufficiently small
ε. This proves the scenario described in Theorem 5.

4.4.4. The remaining of the paper is dedicated to the proof of Theorem 6. This is
the only part of the paper that contains detailed arguments, because the technical
details here were never written down before.

Interestingly, if the graph appears as a simple line arrangement, the analytic
part χ̃(ε) does not resolve parallel Scherk ends no matter how many terms are
used. This follows from the following lemma.

Lemma 6. Write χ̃(ε) = (x̃(ε), ϑ̃(ε)). If the graph appears as a simple line ar-

rangement, then we have θ̃r = θ̃r′ + π (mod 2π) whenever the rays r and r′ belong
to the same line.

Proof. Explicitly, we have the Taylor series

F̃hor
v = F hor

v (χ̃) = −
∑
η∈v

eiθ̃η .

Since the graph appears as a simple line arrangement, every vertex is of degree

four. Consequently, F̃hor = 0 if and only if

θ̃ς2(η) = θ̃η + π (mod 2π).

So, if two Scherk ends correspond to rays from the same line, their directions θ̃
must remain opposite. �

Remark 11. There are certainly other situations that χ̃ can not resolve parallel
Scherk ends; see Example 3. But we have no plan to classify all such situations.

Now assume that the line arrangement contains a pair of parallel rays. If they
bend away from each other under the deformation χ̃, then by the Lemma, the
other rays on the same lines must bend towards each other, creating an unwanted
intersection. The only way to avoid this is to let the parallel rays remain parallel

under the deformations χ̃, i.e. θ̃r(ε) = θ̃r+1(ε) for sufficiently small ε whenever
θ◦r = θ◦r+1. This is assumed in Theorem 6.

Then we proceed to investigate the non-analytic part ζ(ε). Let `◦min be the length
of the shortest edges in the graph, and write τ(ε) = exp(−`◦min/ε

2). Recall that
m(H) = {h ∈ H \ R : `◦h = `◦min}.

Proposition 7.

ζ ∼ ζ̂τ

where ζ̂ is the unique solution in D⊥ to (3).
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Proof. We first prove that ζ ∈ O(τ). Assume instead that ζ ∼ κf(ε) for some
κ ∈ D⊥ and f(ε) ∈ ω(τ(ε)) (f dominates τ) as ε → 0. In [CT21], we have
computed from (11) that

γh ∼ −Kh sinφ◦he
−`◦h/ε

2

.

A similar computation yields

ρh ∼ Kh cosφ◦he
−`◦h/ε

2

.

Moreover, we have seen that λh(ε) is analytic in th, so λh ∈ O(e−`
◦
h/ε

2

). As
`◦h ≥ `◦min, the functions ρ and λ are all in O(τ), hence all dominated by f as ε→ 0.
Then a routine computation from (12) and (13) yields, as ε→ 0, that{

f(ε)−1Phor(ε)→ P hor
c (κ) = 0, c ∈ F,

f(ε)−1Fhor(ε)→ DF hor
v (χ◦) · κ = 0, v ∈ V,

hence κ = 0.
Then we compute the coefficient ζ̂ ∈ D⊥ of τ . Note that ρh ∈ o(τ) as ε → 0

if and only if `◦h > `◦min, i.e. h 6∈ m(H). Using this fact, a routine computation
from (12) and (13) yields, as ε→ 0, that

τ(ε)−1Phor(ε)→ P hor
c (ζ̂) +

∑
h∈c∩m(H)

xhKh cosφ◦h = 0, c ∈ F,

τ(ε)−1Fhor(ε)→ DF hor
v (χ◦) · ζ̂ +

∑
h∈v∩m(H)

uhKh cosφ◦h = 0, v ∈ V,

so ζ̂ must be the unique solution in D⊥ to (3).

Finally, we prove that ζ̂ 6= 0. This follows from the existence of a vertex v such
that the summation

(16)
∑

h∈v∩m(H)

uhKh cosφh

is not zero.
Assume the opposite, i.e. that the summation vanishes for every vertex. Define

Vm = {v ∈ V : ∃h ∈ v such that `◦h = `◦min andKh cosφ◦h 6= 0}.

Clearly, if Vm is not empty, it must contain at least two vertices. Note that v ∩
m(H) = m(v) if v ∈ Vm.

Take the convex hull of {%(v) : v ∈ Vm}, and consider an arbitrary vertex v at
a corner of the convex hull. Since every vertex is of degree four, m(v) consists of
either a single half-edge, or two half-edges whose corresponding unit vectors are
linearly independent. In either case, the summation (16) vanishes if and only if
Kh cosφ◦h = 0 for all h ∈ m(v). This contradicts our assumption that v ∈ Vm.

So Vm is empty, meaning thatKh cosφ◦h = 0 for all h ∈ m(H). Recall from [CT21]
that Kh > 0, so cosφ◦h = 0 for all h ∈ m(H). Recall that the vertical force along
h is Kh sinφ◦h. So Kh cosφ◦h is nothing but the derivative of the vertical force with
respect to φh at φ◦h. Hence for a cut b ∈ Bm such that `◦b = `◦min, the derivative of
F ver
b with respect to φ at φ◦ is 0. This contradicts the assumption of Theorem 2

that the phase function is rigid.
This finishes the proof that the summation (16) must be non-zero for some

vertex. We then conclude that ζ̂ 6= 0. �

If the graph appears as a simple line arrangement, and the deformation χ̃ does
not create any self-intersection, then parallel Scherk ends are resolved if they bend

away from each other under the deformation ζ̂. This finises the proof for Theorem 6.
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Appendix A. Rigidity for simple graphs

We now prove Proposition 1. For this purpose, let us restate [PT07, Lemma 5.1]
in the following form.

Lemma 8. Under the conditions of Proposition 1, let v be an arbitrary vertex and
L be a straight line though ρ(v) that does not contain the geometric representation
of any edge adjacent to v, then each side of L contains the geometric representations
of at least two edges adjacent to v.

This lemma allows us to adapt the argument in [Tra01] that proves the rigidity
when the graph appears as a line arrangement.

Sketched proof of Proposition 1. Up to a rotation, we may assume that the vectors
xh ∈ C, h ∈ H, all have non-zero real-parts. As a consequence, the geometric
representations of the vertices all have distinct real parts. We then order the vertices
by the real parts of ρ(v), and order the faces by their left-most vertices.

For each vertex v ∈ V, we choose two half-edges in v whose corresponding vectors,
say x◦v,1 = `◦v,1e

iθ◦v,1 and x◦v,2 = `◦v,2e
iθ◦v,2 , point to the left side; their existence follows

from the lemma above. Then DF hor restricted to the variables ˙̀
v,1 and ˙̀

v,2 is a
real square matrix with |V| × |V| blocks of size 2× 2. All block above the diagonal
are 0. To see this, note that if v′ < v, then F hor

v is independent of xv′,1 and xv′,2.
The diagonal blocks are invertible because xv,1 and xv,2 are linearly independent;
see [Tra01]. This proves that DF hor is surjective.

For each face c ∈ F, we choose two half-edges in c whose edges are adjacent to the
left-most vertex of c. Let θ◦c,1 and θ◦c,2 be their directions. Then DP hor restricted

to the variables θ̇c,1 and θ̇c,2 is a real square matrix with |F| × |F| blocks of size
2 × 2. All block above the diagonal are 0. To see this, note that if c′ < c, then
P hor
c is independent of xc′,1 and xc′,2. The diagonal blocks are invertible because

the unit vectors eiθ
◦
c,1 and eiθ

◦
c,2 are linearly independent; see [Tra01]. This proves

that DP hor is surjective.
Finally, (DF hor, DP hor) restricted to the variables ẋv,1, ẋv,2, ẋc,1, ẋc,2, where

v ∈ V and c ∈ F, is a real square matrix. It can be partitioned into four blocks. The
two diagonal blocks, of size |V| × |V| and |F| × |F| respectively, are invertible by the
argument above. Clearly, F hor does not depend on θ, hence one off-diagonal block
is zero. The matrix is therefore invertible; see [Tra01]. This proves the rigidity of
the graph. �

Remark 12. In the presence of parallel edges, the proof fails because the vectors of
chosen half-edges might be linearly dependent, hence the diagonal blocks might be
singular.
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