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Abstract. We construct minimal surfaces by gluing simply periodic Karcher–
Scherk saddle towers along their wings. Such constructions were previously

implemented assuming a horizontal reflection plane. We break this symmetry

by prescribing phase differences between the saddle towers. It turns out that,
in addition to the previously known horizontal balancing condition, the saddle

towers must also be balanced under a subtle vertical interaction. This inter-

action vanishes in the presence of a horizontal reflection plane, hence was not
perceived in previous works.

Our construction will be presented in a series of papers. In this first paper

of the series, we will explain the background of the project and establish the
graph theoretical setup that will be useful for all papers in the series. The main

task of the current paper is to glue saddle towers into triply periodic minimal

surfaces (TPMSs). Our construction expands many previously known TPMSs
into new 5-parameter families, therefore significantly advances our knowledge

on the space of TPMSs.

1. Background

In the last decades, the node-opening technique has been very successful in
gluing catenoids into minimal surfaces of finite or infinite topology in Euclidean
space forms [Tra02b, Tra02a, Tra08, MT12, CT21].

In fact, the technique was first developed to glue Karcher–Scherk saddle towers.
More specifically, the second named author desingularized arrangements of vertical
planes into minimal surfaces by replacing the intersection lines with Scherk sur-
faces (saddle towers with four wings). This was first done by solving non-linear
PDEs [Tra96] and later using the node-opening technique [Tra01]. In his the-
sis [You09], Rami Younes desingularized G × R, where G is a graph embedded in
a flat 2-torus, into triply periodic minimal surfaces by placing saddle towers over
the vertices of G. These constructions work only when all saddle towers are bal-
anced under a horizontal interaction or, equivalently, when the graph embedding is
a non-degenerate critical point of the length functional.

All these previous works assumed, however, that the surfaces have a horizontal
reflection plane. It was wondered in [Tra96] whether this symmetry is necessary for
simply periodic minimal surfaces (SPMSs) with ends of Scherk type (i.e. asymptotic
to vertical planes). A positive answer was given for SPMSs of genus 0 [PT07], but
Mart́ın and Ramos Batista constructed the Karcher–Costa towers [MRB06] that
provide examples of genus 1 without horizontal symmetry. The same question can
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be asked for triply periodic minimal surfaces (TPMSs). But the deformation fami-
lies of the Gyroid, which were recently confirmed by the first named author [Che21]
admit saddle tower limits but do not have any horizontal symmetry plane (see
Figure 1).

Figure 1. A rhombohedral (left) and a tetragonal (right) deformation
of the Gyroid near the saddle tower limits. They do not have any hori-
zontal symmetry plane.

The goal of this series of papers is to glue Karcher–Scherk saddle towers into
minimal surfaces, without the assumption of a horizontal reflection plane.

Let G be a graph in the complex plane. Formal definitions will be given in Sec-
tion 3. At the moment, it suffices to understand that G is a set of straight segments
(edges) and half-lines (rays) that intersect only at their endpoints (vertices). There
are different possible setups, depending on weather the graph G is finite, periodic
with finite quotient, or infinite aperiodic.

For sufficiently small ε > 0, we want to construct a 1-parameter family (Mε)ε>0

of embedded minimal surfaces of vertical period 2πε2 that tends to G×R as ε→ 0.
For this purpose, we place suitably scaled saddle towers over the vertices of G and
glue their wings along the edges of the graph.

Since the fluxes along the wings of a saddle tower sum up to 0, the graph G
must be balanced in the sense that for each vertex v, the sum of the unit vectors
in the directions of the outgoing edges adjacent to v is zero. We call the sum the
horizontal force.

Orientability of Mε requires the graph G to be orientable, in the sense that its
faces can be labelled with + or − signs so that adjacent faces have opposite signs.
The prototype result in the symmetric case is the following:

Theorem 1.1 (Informal statement). Let G be a balanced, rigid and orientable
graph. Then G×R can be desingularized into a family of minimal surfaces Mε that
have vertical period 2πε2 and are symmetric with respect to a horizontal plane.

Rigidity concerns the invertibility of the Jacobian of horizontal forces. Its precise
formulation depends on the setup under consideration.

Theorem 1.1 was first proved in [Tra01] when G appears as a line arrangement,
yielding a family of SPMSs with Scherk-type ends. It was then proved in [You09]
when G is a doubly-periodic graph with finite quotient, yielding a family of TPMSs.
See Theorem 4.9 for a precise statement in this case.

To break the horizontal symmetry, we must move the saddle towers vertically
so that they have different reflection planes. The “height differences” between the
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reflection planes, known as the phase differences, are prescribed on the edges of the
graph.

Technically, the phase differences correspond to the complex arguments of the
node-opening parameters; see Section 8.1 for details. Complex node-opening pa-
rameters were considered in previous works [Tra08], but never did the complex
argument play such an important role.

This paper reveals that the phase differences must satisfy a balancing condition,
known as vertical balancing, which is more subtle and delicate than horizontal
balancing of the graph G. The formulation of vertical balancing requires quite a lot
of preliminaries, but we can give an idea of what it looks like.

Assume that two saddle towers S and S ′ are glued along their wings. Let ` be
the length of the corresponding edge in the graph, and φ be the prescribed phase
difference of S ′ over S . Then, as ε→ 0, the vertical force exerted by S ′ on S is
asymptotically of the form

K sin(φ) exp(−`/ε2).

where the coefficient K is a positive real number that depends on the undulation of
the saddle towers and a first-order deformation of the graph. Because of the factor
sin(φ), the force vanishes whenever φ = 0 or π. This explains why this interaction
was not perceived in previous works that assumed a reflection symmetry.

The vertical balancing condition requires, for every set of saddle towers, that the
forces sum up to 0 over the edges that separate the set from other saddle towers.
Because of the exponential factor, the interaction dominates on shorter edges of
the graph for small ε. So in the limit ε→ 0, it suffices to take the sum of K sin(φ)
over the shortest separating edges.

The prototype result in the non-symmetric case is the following:

Theorem 1.2 (Informal statement). Let G be a balanced, rigid and orientable
graph with phase differences φ prescribed on the edges. Assume that φ is balanced
and rigid. Then G×R can be desingularized into a family of minimal surfaces Mε

which have vertical period 2πε2. Moreover, for each vertex v, ε−2Mε converges
after suitable horizontal translation to a saddle tower Sv, and the phase differences
between adjacent saddle towers are given by φ.

Rigidity of φ concerns the invertibility of the Jacobian of vertical forces. Again,
its precise formulation depends on the given setup.

The goal of this first paper in the series is to prove Theorem 1.2 when G is a
doubly-periodic graph with finite quotient, resulting in TPMSs. See Theorem 6.7
for the precise formulation of our main result. TPMSs are given the privilege
because many known families of TPMSs admit saddle tower limits, but most of
them are symmetric in a horizontal plane; see Figure 2. So we expect to find many
interesting new examples after breaking this symmetry.

The paper is organized as follows.
In Section 2, we recall some basic facts about Karcher–Scherk saddle towers

and give a geometric definition of phases. Section 3 sets up the graph theoretical
foundation, which is crucial for formal statements of the main results. Then in
Section 4, we define horizontal balance and rigidity, and recall Younes’ result about
symmetric TPMSs.

Section 5 is dedicated to an in-depth investigation on the shapes of the wings.
We will define new quantities in terms of Weierstrass data. They will be useful in
Section 6 for defining vertical balance and rigidity, and for announcing our main
Theorem 6.7 about non-symmetric TPMSs. Then we present in Section 7 examples



4 HAO CHEN AND MARTIN TRAIZET

(a) oPa (b) oPb (c) oCLP

(d) H (e) oH (f) H’–T

(g) S’–S” (h) T’–R’ (i) H”-R

Figure 2. A gallery of known examples of saddle tower limits of triply
periodic minimal surfaces (Source: Matthias Weber). Generalizations
of them will be constructed in this paper.

of TPMSs that can be produced from our construction, including many new TPMSs
of genus 3. The construction is finally proved in Section 8.

Note that the sections 2, 3, 5 are preparatory, meant to be relevant not only for
the current manuscript but also for future papers.

Acknowledgement. The authors thank Matthias Weber for an unbelievable video
of triply periodic minimal surfaces that motivated this project.

2. First look on Karcher–Scherk saddle towers

Recall that a saddle tower is an embedded SPMS with n Scherk-type ends,
where n ≥ 4 is an even integer. Saddle towers with n = 4 were discovered by
Scherk [Sch35] in the 19th century. All other saddle towers were constructed by
Karcher [Kar88]. Saddle towers are classified in [PT07] as the only embedded SPMS
with n Scherk-type ends and genus zero in the quotient by the period.

We sketch Karcher’s construction as follows: Let P be a convex polygon with n
sides of length one, where n ≥ 4 is even. We allow P to be non-strictly convex but
exclude the degenerate case where P appears as a line segment of length n/2, and
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Figure 3. A four-wing saddle tower seen from a distance (left), then
scaled at the “axis” (middle). The shape of a wing is illustrated on the
right, featuring the undulation.

the special case where n ≥ 6 and P appears as a parallelogram with 2 sides of length
one [PT07]. Then the Jenkins–Serrin theorem [JS66] guarantees the existence of a
minimal graph over the interior of P that takes the values ±∞, alternately, on the
edges of P , unique up to vertical translation. This graph is bounded by vertical
lines over the vertices of P . Its conjugate minimal surface is bounded by n curvature
lines that lie, alternately, in two horizontal planes at distance 1 from each other.
Reflections in these planes extend the conjugate surface into an SPMS called a
saddle tower, which we denote by S .

The edges of P are n unit vectors that sum up to 0. To be consistent with later
notations, we label the edges by H = {0, · · · , n− 1} in the counterclockwise order,
and define ς : H→ H by ς(h) = h+ 1 (mod n). Let the corresponding unit vectors
be uh = exp(iθh) ∈ C ' R2, h ∈ H. The corresponding ends of S are called wings.
Each wing is asymptotic to a vertical half-plane that is parallel to the corresponding
edge. Wings extending in the same direction (same θh) are called parallel.

We now make a distinction between the two horizontal reflection planes. Fix an
orientation of S . It is known that the conjugate minimal surface of the Jenkins–
Serrin graph is a graph over an unbounded concave domain Ω. The complement
of Ω has n unbounded convex components, each bounded by the projection of a
curvature line (see [Kar88]). We say that a curvature line γ is a 0-arc if the Gauss
map on γ points into the corresponding convex component. All 0-arcs lie on the
same horizontal symmetry plane, which we call the 0-plane. We scale all our saddle
towers so that their vertical period is 2π.

Definition 2.1 (Phase). Let S be an oriented saddle tower of vertical period 2π.
We say that the phase of S is φ ∈ R/2πZ if the horizontal plane x3 = φ is a 0-plane
of S .

Remark 2.2. Seen from a distance, S looks like n vertical half-planes sharing a
vertical boundary; see Figure 3 (left). But a closer look reveals that the asymptotic
planes of the wings do not intersect at a single vertical line; see Figure 3 (middle)
for an illustration and Section 5.3.1 for a detailed analysis.

3. Graphs

Graph theory plays a central role in our construction. Combinatorially, we use
a graph to describe how saddle towers (vertices) are glued along wings (edges) into
a minimal surface. Geometrically, the degenerate limit of our surface projects to a
horizontal plane as a geometric “representation” of the graph.
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Figure 4. Two saddle towers with six and ten wings; see Section 5.3.
The one on the right has five pairs of parallel wings. (Source: Matthias
Weber)

In this paper, a “graph” actually refers to a multigraph, possibly with multiple
edges and loops. This maximizes the generality of our construction. Such a multi-
graph is best described in terms of rotation systems. The standard references for
this section are [GR01, MT01, Die17].

3.1. Intuitive picture. For readers not familiar with rotation systems, we give
here an intuitive picture which, although informal, should suffice for understanding
our construction.

A graph G in a flat 2-torus T2 can be understood as a set V of points (vertices) and
a set E of straight segments (edges) whose endpoints are (not necessarily distinct)
vertices and whose interiors are disjoint. The connected components of T2 \ G are
called faces. The set of faces is denoted F. By Euler formula,

|V| − |E|+ |F| = 0.

Each edge has two possible orientations, i.e. a choice of “initial vertex”. The set of
oriented edges of G is denoted H, so |H| = 2|E|. For h ∈ H, we denote e(h) ∈ E the
corresponding unoriented edge and −h the same edge with opposite orientation.
The initial vertex of an oriented edge is denoted v(h), so its terminal vertex is
v(−h).

Remark 3.1. To agree with the language of rotation systems, we call elements of
H half-edges and the adjacency relation is denoted h ∈ v. This terminology is
preferred because vertices correspond to saddle towers and half-edges correspond
to wings of saddle towers.

The number of half-edges adjacent to a vertex v is called the degree of v and
denoted deg(v). The wings of a saddle tower are naturally ordered by a cyclic
permutation. Accordingly, we define a permutation ς on H as follows: if h ∈ v,
ς(h) ∈ v is the half-edge which comes after h when traveling around v in the
counterclockwise direction.

3.2. Formal definition. In the case that a saddle tower has parallel wings, they
project to the same straight segment in the degenerate limit. Then the intuitive
picture above, which defines edges geometrically, cannot distinguish them properly.
To include this situation, it is necessary to use the language of rotation system.
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A rotation system consists of a set H and two permutations ι and ς acting on H,
such that ι is an involution without fixed points and the group generated by ι and
ς acts transitively on H. The elements of H are called half-edges. To ease notations
and be consistent with the intuitive picture in Section 3.1, we write −h for ι(h).

3.2.1. The multigraph. The rotation system (H, ι, ς) defines a connected multigraph
(H,V,E), where the vertex set V consists of the orbits of ς and the edge set E consists
of the orbits of ι. As we have mentioned before, the vertices correspond to saddle
towers, the half-edges correspond to wings, and the edges correspond to glued wing
pairs. In this sense, the graph describes the gluing pattern for our construction.

Note that vertices and edges are identified with subsets of H, so h ∈ v means
that the half-edge h is adjacent to the vertex v. For a half-edge h ∈ H, we use v(h)
and e(h) to denote the unique vertex and edge associated to h. We say that e(h)
is a loop if v(h) = v(−h).

The orbits of ςι are called (combinatorial) faces of the graph, and the set of faces
is denoted by F.

Assumption 3.2. All faces have at least two elements.

Among the edges, we define an equivalence relation known as “parallel”, such
that e(h) is parallel to e(h′) whenever {h, h′} is a face. Because an equivalence rela-
tion is transitive, we have e is parallel to e′ whenever there is a sequence h0, · · · , hn
such that e = e(h0), e′ = e(hn), and {hi, hi+1} is a face for all 0 ≤ i < n.

3.2.2. Topological embedding. The rotation system (H, ι, ς) also defines, up to home-
omorphism, a 2-cell embedding of the multigraph on a closed oriented surface.

Recall that an embedding represents vertices by distinct points and edges by
curves that do not intersect in their interiors. The half-edges then correspond to
the curves in small neighborhoods of the vertices. The permutation ς sends a half-
edge to the next half-edge around the same vertex in the counterclockwise direction,
and ι sends a half-edge to the other half-edge of the same edge.

The connected components of the complement of a 2-cell embedding are all
homeomorphic to an open disk, and are called (topological) faces of the embed-
ding. They are in correspondence with the combinatorial faces: Half-edges on the
boundary of a topological face in the clockwise direction form a combinatorial face
of the graph. Note that two edges are parallel if and only if their representatives
are homologous.

If the graph is finite, the genus of the oriented surface can be calculated as

g = 1− 1

2
(|V| − |E|+ |F|)

and we call this number the genus of the graph.

Assumption 3.3. Graphs in the current paper are of genus 1, so they are embed-
ded in a 2-torus T2.

Remark 3.4. Graphs of genus 0 arise when constructing SPMS instead of TPMS.
Higher genus graphs are certainly interesting and could be used to glue saddle
towers in H2 × R.

3.2.3. Geometric representation. We have seen that the rotation system (H, ι, ς)
determines a homeomorphism class of 2-cell embeddings. We choose a geometric
representation % from the closure of this homeomorphism class. More specifically, %
maps vertices to distinct points in a flat torus T2 and maps each edge to a segment
between the images of its endpoints, so that parallel edges are mapped to the same
segment, and non-parallel edges are mapped to segments with disjoint interiors.
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Such a geometric representation always exists. Indeed, let G′ be the graph ob-
tained from G by merging parallel edges. We may apply the genus-one version of
Tutte’s embedding theorem (see [GGT06] for instance) which implies that G′ ad-
mits a straight-edge representation on a flat torus. We then obtain a straight-edge
representation of G by mapping parallel edges to the same segment that represents
the corresponding edge of G′.

3.2.4. Orientation. An orientation of the graph G is a function σ : H→ {±1} such
that σ(−h) = −σ(h) for all h.

Definition 3.5. An orientation σ on G is consistent if σ ◦ ς = −σ. A graph is
orientable if it admits a consistent orientation. Once a consistent orientation is
fixed, we say that the graph is oriented.

Note that an orientable graph only has vertices of even degrees. Vertices of
degree 2 are not relevant for us, since there is no saddle tower with two wings.

Assumption 3.6. Graphs in this paper have only vertices of degree at least 4.

3.3. Vector spaces on graphs.

3.3.1. Cycles and cuts. A (simple) cycle is a set of half-edges c ⊂ H that can be
ordered into a sequence (h1, · · · , hn) such that v(−hi) = v(hi+1) for 1 ≤ i < n,
v(−hn) = v(h1), and v(hi) 6= v(hj) whenever i 6= j. We use −c to denote the
reversed cycle {−h : h ∈ c}. The set of cycles is denoted by C. In particular,
combinatorial faces are all cycles.

For some partition V = V1 t V2 of the vertices, the cut between V1 and V2 is
the set of half-edges b ⊂ H such that v(h) ∈ V1 and v(−h) ∈ V2 for all h ∈ b. We
use −b to denote the reversed cut {−h : h ∈ b}. The set of cuts is denoted1 by B.
In particular, for any vertex v, the set

b(v) = {h ∈ v : v(−h) 6= v}

is a cut between {v} and V \ {v}. We call b(v) the vertex cut at v.

3.3.2. Functions on half-edges. Let H be the space of functions f : H → R. We
say that f ∈ H is symmetric if f−h = fh, and antisymmetric if f−h = −fh. They
can be seen as edge labelings on, respectively, undirected and directed graphs. The
orientation σ is an example of antisymmetric function. We use S and A to denote,
respectively, the space of symmetric and antisymmetric functions.

We denote eh the characteristic function of {h}, so (eh)h∈H is the canonical basis
of H. We equip H with the inner product (·, ·) defined by (eh, eh′) = δh,h′ . Then
S and A are orthogonal complementary |E|-dimensional subspaces of H, i.e. H =
A⊕ S. More specifically, an orthogonal basis for A is given by

ah = eh − e−h

and an orthogonal basis for S is given by

sh = eh + e−h.

So any f ∈ H can be decomposed into f = (fa + fs)/2, where fa ∈ A and fs ∈ S
are defined by

fah = fh − f−h and fsh = fh + f−h.

1Inclusion-wise minimal cuts are called bonds. Hence the cut space is sometimes referred to as
the bond space, therefore our notation.
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3.3.3. Cut space and cycle space. We use C to denote the subspace of A generated
by the character functions

ac =
∑
h∈c

ah for c ∈ C,

known as the cycle space. We use B to denote the subspace of A generated by the
character functions

ab =
∑
h∈b

ah for b ∈ B,

known as the cut space. It is well known [GR01, Chapter 14] that the cut and
cycle spaces are orthogonal complementary subspaces of A, i.e. A = B ⊕ C. The
dimension of C is |E| − |V|+ 1, and the dimension of B is |V| − 1.

A cut basis is a set B∗ ⊂ B such that (ab)b∈B∗ form a basis of the cut space B.
An explicit cut basis is given as follows: Let V∗ be the set of all but one vertices.
Then B∗ = {b(v) : v ∈ V∗} is a canonical cut basis. In the following, we write

av = ab(v) =
∑
h∈v

ah,

for v ∈ V.
A cycle basis is a set C∗ ⊂ C such that (ac)c∈C∗ form a basis of the cycle space

C. In case G has genus one, the cycle space has dimension |F|+ 1 by Euler formula.
An explicit cycle basis is given as follows. Let F∗ be the set of all but one faces.
For i = 1, 2, let ci ∈ C be a cycle which is homologous in T2 to the segment [0, Ti].
Then C∗ = F∗ ∪ {c1, c2} is a canonical cycle basis.

3.3.4. Discrete differential operators. Let V be the vector space of functions f : V→
R such that

∑
v∈V fv = 0. For f ∈ V, define

grad(f) = −
∑
v∈V

fvav =
∑
h∈H

(fv(−h) − fv(h))eh.

Then grad : V → B is an isomorphism.
For f = (fh)h∈H ∈ A, define

divb(f) = (f, ab)/2 =
∑
h∈b

fh, div(f) = (divb(f))b∈B;

curlc(f) = (f, ac)/2 =
∑
h∈c

fh, curl(f) = (curlc(f))c∈C.

Because of the orthogonality between B and C, we have

ker(div) = C and ker(curl) = B.

Hence we can identify

im(div) ' B and im(curl) ' C.

Remark 3.7. Let πB : R|B| → R|V|−1 be the projection (xb)b∈B 7→ (xb)b∈B∗ . Then
πB : im(div) → R|V|−1 is an isomorphism. Indeed, (av)v∈V∗ is a basis of the
cut space so the Gram matrix (av, av′)v,v′∈V ∗ is invertible. In the same way, the

projection πC : R|C| → R|F|+1, (xc)c∈C 7→ (xc)c∈C∗ restricts to an isomorphism from
im(curl) to R|C|+1.
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3.4. A divergence over shortest edges. For each half-edge h, let `◦h be the
length of the segment %(e(h)). For b ∈ B, define

`◦b = min
h∈b

`◦h and m(b) = {h ∈ b | `◦h = `◦b}.

We define the operator mdiv : A → R|B| by

mdivb(φ) = (am(b), φ)/2 =
∑

h∈m(b)

φh, mdiv(φ) = (mdivb(φ))b∈B.

In general, Bm := im(mdiv) is different from B, but the following proposition asserts
that they have the same dimension.

Proposition 3.8. mdiv has rank |V| − 1. Moreover, there exists a cut basis B∗m
such that (mdivb)b∈B∗m has rank |V| − 1.

Proof. Let φ ∈ B such that mdiv(φ) = 0. We can write φ = grad(f) with f ∈ V.
Assume that f is not constant. Let V1 be the set of vertices where f achieves
maximum and let b be the corresponding cut. Then mdiv(φ) < 0, a contradiction.
So f is constant and φ = 0. Hence mdiv is injective on B and

rank(mdiv) ≥ |V| − 1.

For the reverse inequality, consider for ε > 0 the operator mdivε : A → R|B| defined
by

mdivεb(φ) =
∑
h∈b

eε
−2(`◦b−`

◦
h)φh, b ∈ B.

Then

mdiv = lim
ε→0

mdivε .

But we can write for ε > 0

mdivε = Φε ◦ div ◦Ψε,

where

Ψε(φ) = (e−ε
−2`◦hφh)h∈H and Φε(X) = (eε

−2`◦bXb)b∈B.

Hence

rank(mdivε) ≤ rank(div) = |V| − 1.

Since the rank is lower semi-continuous, it follows that

rank(mdiv) ≤ |V| − 1.

Hence mdiv has rank |V| − 1. There exists a subset B∗m ⊂ B with cardinal |V| − 1
such that (mdivb)b∈B∗m has rank |V| − 1. Then for ε > 0, (mdivεb)b∈B∗m has rank
|V| − 1 by continuity, so (divb)b∈B∗m has rank |V| − 1 and B∗m is a cut basis. �

4. Horizontal balance and rigidity

In this part, we assume that G = (H, ι, ς, %) is a finite graph represented in a flat
torus T2 = C/〈T1, T2〉.

To each half-edge h is associated the unit tangent vector u◦h = eiθ◦h of the segment
%(e(h)) at %(v(h)). Recall that `◦h denotes the length of the segment %(e(h)) and set
x◦h = `◦hu

◦
h. As a general rule, we use a superscript ◦ to denote quantities associated

to the given graph G, which are to be perturbed as parameters in the construction.

Remark 4.1. In the intuitive picture in Section 3.1, u◦h is simply the unit vector in
the direction of the oriented edge h and `◦h is its length.
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Obviously, u◦ = (u◦h)h∈H ∈ A2, `◦ = (`◦h)h∈H ∈ S and x◦ = (x◦h)h∈H ∈ A2. For
x ∈ A2 in a neighborhood of x◦, we define

uh(x) =
xh
‖xh‖

and u(x) = (uh(x))h∈H ∈ A2.

We define the horizontal forces as the function

F hor : A2 → B2

x 7→ div(u(x)).

More explicitly, for any cut b ∈ B

F hor
b (x) =

∑
h∈b

xh
‖xh‖

.

Definition 4.2. The graph G is balanced if F hor(x◦) = 0.

Remark 4.3. By remark 3.7, the graph is balanced if and only if∑
h∈v

x◦h
‖x◦h‖

= 0

for all v ∈ V ∗. In other words, it suffices to consider horizontal forces on a canonical
cut basis consisting of all but one vertex cuts.

Remark 4.4. A balanced graph is a weak local minimal network in the sense of
Ivanov and Tuzhilin [IT94]; see Proposition B.1 in the Appendix.

Now define the horizontal periods as the operator

P hor : A2 → C2

x 7→ curl(x).

More explicitly, for any cycle c ∈ C

P hor
c (x) =

∑
h∈c

xh.

The graph G is represented on the torus T2 so we have on any canonical cycle basis
C∗

(1) P hor
c (x◦) =

{
0, c ∈ F∗;

Ti, c = ci, i = 1, 2.

Remark 4.5. The balance and period equations can be compared to Kirchhoff’s
current and voltage laws of electrical networks. More specifically, u◦, x◦, and `◦

play, respectively, the roles of currents, voltages and resistance.

Recall from Section 3.3 that ker(P hor) = B2.

Definition 4.6. The graph G is rigid if the differential DF hor(x◦) restricted to
ker(P hor) is an isomorphism from B2 to B2. Equivalently, the graph is rigid if

(DF hor(x◦), P hor) : A2 → A2

is an isomorphism.

A computation reveals that

(2) DF hor
b (x◦) · χ =

∑
h∈b

1

‖x◦h‖3
(
〈x◦h, x◦h〉χh − 〈x◦h, χh〉x◦h

)
.

The following rigidity result was proved in [You09, Theorem 10].

Theorem 4.7. Assume that all faces of G have 2 or 3 edges. Then G is rigid.
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Figure 5. Left: two saddle towers in phase. Right: two saddle towers
in opposite phase. The solid and dotted lines represent the level lines
x3 = 0 and x3 = π, respectively.

As [You09] is not published, we include a proof in Appendix B.
Next we need to assign a saddle tower to each vertex.

Definition 4.8. Let v ∈ V. Consider the convex closed polygon P whose edges
are the unit vectors u◦h for h ∈ v in the order given by the permutation ς. We say
that v is ordinary if P is neither degenerate (appears as a line segment) nor special
(appears as a parallelogram with two sides of length 1 and two sides of length ≥ 2).

Note that non-ordinary vertices occur only in the presence of parallel edges. If v
is ordinary, there exists a saddle tower Sv, unique up to translations, with deg(v)
wings which are in correspondence with the half-edges h ∈ v, so that the direction
of the wing corresponding to h is u◦h and the natural order on the wings is given by
the permutation ς (see Section 2).

We want to glue the wings of these saddle towers along the edges of G. This
construction is achieved if the saddle towers share a horizontal reflection plane, as
stated in the following theorem due to Younes [You09].

Theorem 4.9 (TPMSs with horizontal symmetry). Let G be a graph represented
in T2 = C/〈T1, T2〉, and assign a phase φv ∈ {0, π} to each vertex v ∈ V. If G is
orientable, balanced, rigid, and all vertices are ordinary, then for sufficiently small
ε > 0, there is a family Mε of embedded minimal surfaces of genus |F| + 1 in the
flat 3-torus

T3
ε = R3/〈(T1ε

−2, 0), (T2ε
−2, 0), (0, 0, 2π)〉.

They lift to triply periodic minimal surfaces M̃ε in R3 such that

(1) M̃ε converges, after scaling by ε2, to G̃×R as ε→ 0, where G̃ is the lift of
G to R2.

(2) For each vertex v of G̃, there exists a horizontal vector Xv(ε) such that

M̃ε − Xv(ε) converges on compact subset of R3 to a saddle tower Sv as
ε→ 0. Moreover, ε2Xv(ε)→ %̃(v) as ε→ 0, where %̃ is the lift of %.

(3) Each limit saddle tower Sv has phase φv. Moreover, M̃ε is symmetric with
respect to a horizontal plane.

5. Closer look on Karcher–Scherk saddle towers

We want to break the horizontal symmetry by prescribing phase difference be-
tween adjacent saddle towers. The phase differences must satisfy a balancing condi-
tion that involves higher order shapes of the Scherk ends. This section is dedicated
to a detailed investigation on the saddle towers. Quantities describing the shapes
of Scherk ends will be defined in term of Weierstrass representation, and will be
useful in the formulation of the main theorem.
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5.1. Weierstrass parameterization of saddle towers. The quotient of a saddle
tower by its vertical period is conformally equivalent to a Riemann sphere C∪{∞}
with n punctures ph, h ∈ H, corresponding to the n wings. The punctures must
lie on a circle C fixed by the anti-holomorphic involution ρ corresponding to the
horizontal reflections. For convenience, C is often taken to be the unit circle or the
real line.

Recall that our saddle tower is scaled so that it has vertical period 2π. Then its
Weierstrass data can be written on the punctured Riemann sphere as

(3) Φ1 =
∑
h∈H

− cos θh
z − ph

dz, Φ2 =
∑
h∈H

− sin θh
z − ph

dz, Φ3 =
∑
h∈H

−iσh
z − ph

dz,

where the orientation σh = ±1 and σς(h) = −σh for h ∈ H. The conformality
condition

Φ2
1 + Φ2

2 + Φ2
3 = 0

determines the punctures ph up to a Möbius transformation (although doing this
explicitly can be difficult). The saddle tower is parameterized by the Weierstrass
Representation formula

(4) z 7→ Re

∫ z

z0

Φ = Re

∫ z

z0

(Φ1,Φ2,Φ3).

The stereographically projected Gauss map G = −(Φ1 + iΦ2)/Φ3 extends holo-
morphically to the punctures with G(ph) = iσhuh. Then the Gauss map extends
at the end ph with

N(ph) = σh(− sin(θh), cos(θh), 0).

Consequently, the image of the arc between ph and pς(h) is a 0-arc if and only if
σh = 1.

5.2. Shape of wings. Let wh be a local complex coordinate in a neighborhood of
ph with wh(ph) = 0. We define

Υh = σh

〈
N(ph),Res

(
Φ

wh
, ph

)〉
H

= − sin(θh) Res

(
Φ1

wh
, ph

)
+ cos(θh) Res

(
Φ2

wh
, ph

)
,

where 〈·, ·〉H denotes the hermitian scalar product on C3 (semi-linear on the left).
Note that Υh depends on the local coordinate wh.

Proposition 5.1.

Υh = i
dG

Gdwh
(ph).

Proof. We may expand G and Φ3 around ph as

G = iσhe
iθh
(
1 + awh +O(w2

h)
)
,

G−1 = −iσhe
−iθh

(
1− awh +O(w2

h)
)
,

Φ3 = −iσh
( 1

wh
+ b+O(wh)

)
dwh,

where a, b ∈ C and

a =
dG

Gdwh
(ph).
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This gives

Res

(
Φ1

wh
, ph

)
= − cos(θh)b− i sin(θh)a,

Res

(
Φ2

wh
, ph

)
= − sin(θh)b+ i cos(θh)a,

and

Υh = − sin(θh) (− cos(θh)b− i sin(θh)a) + cos(θh) (− sin(θh)b+ i cos(θh)a) = ia.

�

We define the quantities

µh = lim
z→ph

(
eiθh log |wh(z)|+ Re

∫ z

z0

Φ1 + i Re

∫ z

z0

Φ2

)
,

νh = lim
z→ph

(
− σh arg(wh(z)) + Re

∫ z

z0

Φ3

)
.

It is easy to see that the limits exist, but these quantities depend on the local
coordinate wh and the choice of the base point z0.

Recall that a saddle tower has a horizontal symmetry plane corresponding to an
anti-holomorphic involution ρ of the Riemann sphere that fixes all punctures ph for
h ∈ H.

Definition 5.2. The local coordinate wh is said to be adapted if wh ◦ ρ = wh and
wh > 0 near ph on the arc between ph and pς(h).

Proposition 5.3. Assume that the coordinate wh is adapted and let φ be the phase
of the saddle tower. Then Υh > 0 and

νh =

{
φ (mod 2π) if σh = +1,

φ+ π (mod 2π) if σh = −1.

Proof. Assume that the coordinate wh is adapted. We start by computing νh.
Consider z on the arc between ph and pς(h). We have arg(wh) = 0 for z sufficiently
close to ph. Then, by the definition of the phase φ, we have

νh = Re

∫ z

z0

Φ3 =

{
φ (mod 2π) if σh = +1,

φ+ π (mod 2π) if σh = −1.

Since the coordinate wh is adapted, we have, for i = 1, 2,

ρ∗
(Φi
wh

)
=

Φi
wh

,

so Res (Φi/wh, ph) ∈ R and Υh ∈ R.
To understand its sign we need to go back to the Jenkins-Serrin construc-

tion. The solution of the Jenkins-Serrin problem is a graph on the convex domain
bounded by the polygon P so its Gauss map is non-horizontal in the interior of
P . Recalling that the conjugate minimal surface has the same gauss map, we have
|G| 6= 1 on the Riemann sphere minus the circle C fixed by the symmetry ρ, and
|G| = 1 on C. Hence in a neighborhood of ph, logG is a well-defined holomorphic
function and is pure imaginary only on C, so its zero at ph is simple by the local
behavior of holomorphic functions in a neighborhood of a zero. Hence Υh 6= 0 by
Proposition 5.1.

Each horizontal symmetry curve on a saddle tower is a convex curve. Since the
unitary vectors uh are ordered in the counterclockwise order, the argument of G is
non-increasing on the arc between ph and pς(h). This implies Υh ≥ 0 by Proposition
5.1. �
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For a geometric intuition of the quantities Υh, µh, and νh, let us expand the
Weierstrass parametrization around ph:

Re

∫ z

z0

Φ1 =

planar terms︷ ︸︸ ︷
Reµh − cos θh log |wh(z)|+

undulation terms︷ ︸︸ ︷
Re

(
wh(z) Res

(
Φ1

wh
, ph

))
+O(|wh(z)|2),

Re

∫ z

z0

Φ2 = Imµh − sin θh log |wh(z)| + Re

(
wh(z) Res

(
Φ2

wh
, ph

))
+O(|wh(z)|2),

Re

∫ z

z0

Φ3 = νh + σh arg(wh(z)) +O(|wh(z)|).

We then observe that

• The terms under the first brace describe a vertical half-plane that passes
through (µh, νh) and extends in the direction θh as wh(z)→ 0.
• The terms under the second brace describe a sinusoidal undulation in the

vertical coordinate that decays exponentially with the horizontal distance
from (µh, νh); see Figure 3.
• The quantity Υh describes the “initial” amplitude of the undulation on the

0-plane in the asymptotic normal direction of the wing.

Remark 5.4. The quantities Υh and µh behave as follows under change of coor-
dinate: if w̃h is another complex coordinate in a neighborhood of ph and Υ̃h, µ̃h
denote the corresponding quantities, we have, from the definitions,

Υh = Υ̃h
dw̃h
dwh

(ph) and µ̃h − µh = eiθh log

∣∣∣∣dw̃hdwh
(ph)

∣∣∣∣ .
Also observe that dw̃h

dwh
(ph) > 0 if both coordinates are adapted.

5.3. Examples. In this section, we compute the quantities Υh and µh for certain
saddle towers with explicitly known Weierstrass data. The punctures ph will be
placed on the unit circle in the clockwise order, so we use the adapted coordinate

wh = i
z − ph
z + ph

.

With this choice, we have for h ∈ H

(5) µh = −eiθh log 2−
∑
j 6=h

eiθj log |ph − pj |.

5.3.1. Symmetrically deformed saddle towers. These examples are described in [Kar88,
§2.4.1]. They have n = 2k ends with k ≥ 2. Their Weierstrass data are given by

G = zk−1 and Φ3 =
2k sin(kϕ)

zk + z−k − 2 cos(kϕ)
· dz
z

where 0 < ϕ < π/k. Comparing to [Kar88, §2.4.1], we multiplied Φ3 by 2k sin(kϕ)
so that the vertical period is 2π.

The punctures are at

ph = exp

(
−i
⌊h

2

⌋2π

k
+ i(−1)hϕ

)
, 1 ≤ h ≤ n,

we have σh = (−1)h and the direction of the wings are

θh =
⌊h

2

⌋2π

k
− (−1)hψ, ψ − π

n
= (k − 1)

(π
n
− ϕ

)
.

The case n = 4 gives Scherk’s surfaces. The case ψ = ϕ = π/n gives the most
symmetric saddle towers. The saddle towers are embedded for 0 ≤ ψ ≤ π/k (with
strict inequalities for n = 4). If n ≥ 6, the limit cases ψ = 0 and ψ = π/k give a
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saddle tower with k pairs of parallel wings; an example with n = 10 is illustrated
on right side of Figure 4.

Given our choice of adapted coordinate and the simple form of the Gauss map,
Proposition 5.1 immediately gives

Υh = n− 2.

As for µh, Equation (5) does not simplify very much in general, so we only present
some special cases. When n = 4, (5) simplifies to

µh = e−iθh log tan(ψ), 1 ≤ h ≤ 4,

which is not collinear to eiθh unless ψ = π/4 (see Remark 2.2). For arbitrary n, if
ψ = π/n, then by symmetry, µh is collinear to eiθh , and its norm (independent of
h) is tabulated below for small values of n.

n e−iθhµh
4 0

6 log
√

3

8
√

2 log(1 +
√

2)

10 1
4 log 5 +

√
5

2 log(2 +
√

5)

12 1
2 log 3 +

√
3 log(2 +

√
3)

5.3.2. Isosceles saddle tower with 6 wings. These examples with n = 6 wings are
described in [Kar88, §2.5.1]. Their Weierstrass data are given by

G =
z2 + r

1 + rz2
and Φ3 =

8 cos(ϕ)2

(1− r)2
· 1 + r2 + r · (z2 + z−2)

(z + z−1) · (z2 + z−2 − 2 cos(2ϕ))
· dz
z
,

where r ∈ (−1, 1) is the unique solution of

4r

(r − 1)2
=

2 sin(ϕ)− 1

cos(ϕ)2
.

Comparing to [Kar88, §2.5.1], we multiplied Φ3 by 8 cos(ϕ)2/(1 − r)2 so that the
vertical period is 2π.

The punctures are at

(p0, · · · , p5) = (e−iϕ,−i,−eiϕ,−e−iϕ, i, eiϕ),

we have σh = (−1)h+1 and the directions of the wings are

(θ0, · · · , θ5) = (ψ, π/2, π − ψ,−π + ψ,−π/2,−ψ),

where ψ ∈ (0, π/2) is the solution of sinψ + sinϕ = 1, so the wings are parallel to
the sides of an isosceles triangle. The most symmetric saddle tower is recovered by
ψ = π/6. An example with ψ = π/3 is illustrated on the left side of Figure 4. The
Jenkins–Serrin polygon is degenerate in the limit ψ → π/2, and special in the limit
ψ → 0.

We compute explicitly

r =
cos(ψ)− cos(ϕ)

cos(ψ) + cos(ϕ)

Υh =

{
4 cos(ψ)/ cos(ϕ) h = 1 (mod 3),

4 cos(ψ)/ sin(2ϕ) h 6= 1 (mod 3),

µ0 = i log
cos(ϕ)

1− sin(ϕ)
+ exp−iψ log cot(ϕ), µ1 = 2i sin(ψ) log

cos(ϕ)

1− sin(ϕ)
,

and the others µh can be obtained by symmetry, namely

µ0 = −µ2 = −µ3 = µ5 and µ1 = −µ4.
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5.4. Rigidity. By a result of Cosin-Ros [CR01], all saddle towers are rigid, in the
sense that the space of bounded Jacobi fields on a saddle tower is 3-dimensional
and consists of translations. This means that when the angles θh are fixed, a
saddle tower admits no deformation other than translations. In this section, we
reformulate this result in term of Weierstrass Representation, in a way that can be
used in our gluing construction.

The Weierstrass data of a saddle tower can always be written as in Equation (3).
The equation to solve is Q = 0, where Q = Φ2

1 + Φ2
2 + Φ2

3. Note that Q has at most
simples poles at the punctures ph. The angles θh are fixed, and the unknowns are
the poles ph for h ∈ H. We are given a solution, denoted by p◦h, and we want to
study its infinitesimal deformations. The corresponding Weierstrass data is denoted
(Φ◦1,Φ

◦
2,Φ

◦
3).

We formulate the equation Q = 0 as follows. Without loss of generality, we may
assume by rotation that cos(θh) 6= 0 for all h ∈ H and all zeros of Φ◦1 are simple.
Then for p in a neighborhood of p◦, Φ1 has n − 2 simple zeros ζ1, · · · , ζn−2 which
depend holomorphically on p. The meromorphic 1-form Q/Φ1 is holomorphic at
ph, h ∈ H, and has (at most) simple poles at ζ1, · · · , ζn−2. We define

Λ(p) =

(
Res

(
Q

Φ1
, ζi

))
1≤i≤n−3

.

By the Residue Theorem, Q = 0 is equivalent to Λ(p) = 0. By a Möbius transfor-
mation, we may fix the value of three points ph, so the parameter p lies in a space
of complex dimension n− 3.

Theorem 5.5. The differential DΛ(p◦) is an isomorphism.

This theorem is proved in Annexe A of [You09], which is unfortunately not
published. So we include a proof in Appendix A.

6. Main result

6.1. Vertical balance and rigidity. We prescribe the phase differences between
adjacent saddle towers through an antisymmetric phase function φ◦ : H → R/2πZ
that assigns a phase difference φ◦h to each half-edge h. We say that φ◦ is trivial if
φ◦ = 0 or φ◦ = π on every half-edge, which is the case in Theorem 4.9.

Define the vertical periods as the function

P ver : A → C
φ 7→ curl(φ).

We require that the periods of the phase function are given on a canonical cycle
basis C∗ as

(6) P ver
c (φ◦) =

∑
h∈c

φ◦h =

{
0, c ∈ F;

Ψi, c = ci, i = 1, 2.

for some Ψ1,Ψ2 ∈ R/2πZ. We call Ψ1 and Ψ2 the fundamental shifts. We want to
construct minimal surfaces in the flat 3-torus

T3
ε = R3/〈(Λ1 + T1ε

−2,Ψ1), (Λ2 + T2ε
−2,Ψ2), (0, 0, 2π)〉,

Here Λ1, Λ2 are fixed complex numbers that prescribe a first order horizontal de-
formation of the lattice as ε varies.

The phase function must satisfy a balancing condition, which we now explain.
For each vertex v ∈ V, let Ĉv be the punctured Riemann sphere on which

the saddle tower Sv is parametrized. Fix an adapted local coordinate wh in a
neighborhood of the puncture ph ∈ Cv(h) for every h ∈ H. Recall the definition of
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the numbers Υh, µh in Section 5 and the notation µah = µh − µ−h. If the graph G
is balanced and rigid, the system

(7)


DF hor

b (x◦) · ξ = 0, b ∈ B;

P hor
c (ξ) = −P hor

c (µa), c ∈ F∗;

P hor
ci (ξ) = −P hor

ci (µa) + Λi, i = 1, 2

has a unique solution ξ ∈ A2 by Definition 4.6 and Remark 3.7.

Remark 6.1. The system (7) is invariant by horizontal translations of the saddle
towers. Indeed, if Sv is translated by a horizontal vector Xv, then Xv(h) is added
to µh, so curl(grad(X)) = 0 is added to the right-hand side of (7).

We define a symmetric function

(8) Kh = ΥhΥ−he
−Re(ξhu◦h).

By Proposition 5.3, we have Kh > 0. We will see in Proposition 6.10 that Kh

is independent of the choice of adapted coordinates wh. Both ξ and Kh depend on
Λ1 and Λ2, but the dependence is omitted for simplicity. When the values of Λ1

and Λ2 matter, but are not specified in the context, it is implied that Λ1 = Λ2 = 0.
We define the vertical forces as the function

F ver : A → Bm
φ 7→ mdiv

(
(Kh sinφh)h∈H

)
.

More explicitly, for any cut b ∈ B

F ver
b (x) =

∑
h∈m(b)

Kh sin(φh).

Definition 6.2. The phase function φ◦ is balanced if F ver(φ◦) = 0.

Remark 6.3. Trivial phase functions are trivially balanced.

Remark 6.4. Unlike horizontal balancing (see Remark 4.3), the equation F ver(φ◦) =
0 is in general not equivalent to F ver

b(v)(φ
◦) = 0 for v ∈ V∗: it is not enough to consider

vertex cuts; see Example 7.6. This is the reason why it is necessary to introduce
the whole cut space to define vertical balancing.

Remark 6.5. In general, the vertical forces do not depend continuously on the
horizontal periods T1 and T2, but they depend continuously on the deformations
Λ1 and Λ2.

Definition 6.6. The phase function φ◦ is rigid if the differential DF ver(φ◦) re-
stricted to B is an isomorphism between B and Bm. Equivalently, the phase function
is rigid if (DF ver(φ◦), P ver) is an isomorphism.

We call the pair (G, φ◦) a configuration. We say that the configuration is hori-
zontally balanced (resp. rigid) if the graph is balanced (resp. rigid), and vertically
balanced (resp. rigid) if the phase function is balanced (resp. rigid). And we say that
the configuration is balanced (resp. rigid) if it is both horizontally and vertically
balanced (resp. rigid). Our main result for TPMSs is the following.

Theorem 6.7 (TPMSs). Let (G, φ◦) be a configuration, where the graph G is repre-
sented in T2 = C/〈T1, T2〉, and the fundamental shifts of φ◦ is Ψ1 and Ψ2. Assume
that G is orientable, that the configuration is balanced and rigid, and that all vertices
are ordinary. Then for sufficiently small ε > 0, there is a family Mε of embedded
minimal surfaces of genus |F|+ 1 in the flat 3-torus

T3
ε = R3/〈(Λ1 + T1ε

−2,Ψ1), (Λ2 + T2ε
−2,Ψ2), (0, 0, 2π)〉.

They lift to triply periodic minimal surfaces M̃ε in R3 such that



GLUING SADDLE TOWERS I: TPMS 19

(1) M̃ε converges, after a scaling by ε2, to G̃× R as ε→ 0, where G̃ is the lift
of G to R2.

(2) For each vertex v of G̃, there exists a horizontal vector Xv(ε) such that

M̃ε − Xv(ε) converges on compact subset of R3 to a saddle tower Sv as
ε→ 0. Moreover, ε2Xv(ε)→ %̃(v) as ε→ 0, where %̃ is the lift of %.

(3) For each half-edge h, the phase difference of Sv(−h) over Sv(h) is equal to
φ◦h.

Remark 6.8. Unfortunately, Theorem 6.7 does not contain Theorem 4.9 as a par-
ticular case. A trivial phase function is trivially balanced, but it is not necessarily
rigid. However, Proposition 6.12 below implies that the phase function is rigid
when φ◦h, h ∈ H, are all 0 or all π. So Theorem 4.9 follows from Theorem 6.7 when
all saddle towers are in-phase, or all adjacent saddle towers are anti-phase.

Remark 6.9. In fact, we construct a continuous family locally parameterized by
ε, Λ1,2, and Ψ1,2. By Proposition 6.11 below, we may assume that Λ1 = 0 up to
a scaling and a horizontal rotation. This is therefore a 5-parameter family up to
Euclidean rotations and scalings, in correspondence with the deformations of the
lattice.

6.2. Some auxiliary results.

Proposition 6.10. The constant Kh defined in Equation (8) is independent of the
adapted local coordinates wh.

Proof. Consider another adapted local coordinates w̃h in a neighborhood of ph for
each h ∈ H. We use a tilde for all quantities associated to the coordinate w̃h. By
Remark 5.4, we have, writing κh = dw̃h

dwh
(ph) > 0, that

µ̃h − µh = u◦h log κh and Υ̃h = Υh/κh.

Therefore, since u◦−h = −u◦h
µ̃ah − µah = u◦h log(κhκ−h).

Observe that ξ̃ − ξ is the solution of{
DF hor(x◦) · (ξ̃ − ξ) = 0;

P hor(ξ̃ − ξ) = −P hor(µ̃a − µa).

By Equation (2), we have

DF hor(x◦) · (µ̃ah − µah) = 0.

So the solution is trivially

ξ̃h − ξh = −µ̃ah + µah = −u◦h log(κhκ−h), h ∈ H.

Therefore,

K̃h

Kh
=

Υ̃h

Υh

Υ̃−h
Υ−h

exp
(
−Re

(
(ξ̃h − ξh)u◦h

))
=
elog(κhκ−h)

κhκ−h
= 1.

�

Proposition 6.11. The vertical balance condition is invariant under the transform
Λi 7→ Λ̃i = Λi + λTi, λ ∈ C.

Proof. We use a tilde for all quantities associated to Λ̃i. Using Equations (1) and

(2), the solutions of (7) satisfy ξ̃ − ξ = λx◦. Hence K̃h = Kh exp(−`◦h Reλ) and

F̃ ver
b = F ver

b exp(−`◦b Reλ). �

We conclude this section with the following vertical rigidity result:
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Proposition 6.12. Let φ◦ be a phase function such that cos(φ◦h), h ∈ H, are all
positive or all negative. Then φ◦ is rigid. In particular, the zero phase function is
always balanced and rigid.

Proof. It suffices to prove the case where cos(φ◦h) are all positive. Let φ̇ ∈ B such

that DF ver
b (φ◦) · φ̇ = 0. We can write φ̇ = grad(f) with f ∈ V. Then

0 = dF ver
b (φ◦) · φ̇ =

∑
h∈m(b)

Kh cos(φ◦h)(fv(−h) − fv(h)).

Since Kh cos(φ◦h) > 0 for all h ∈ H, we conclude that φ̇ = 0 by the same argument
as in the proof of Proposition 3.8, considering the maximum of f . �

7. Examples

In this part, examples are sketched in the form of diagrams. Edges are decorated
with arrows to illustrate a consistent orientation σ. Unless otherwise specified
(e.g. Example 7.7), for each h such that σ(h) = 1, we label the phase difference φ◦h
on the edge e(h). The fundamental parallelogram of the torus spanned by T1 and
T2 is illustrated by dotted lines.

For all the examples presented below, the computation of Kh is either trivial
because of symmetry, or not necessary (e.g. Examples 7.2).

7.1. Genus three. The genus of a TPMS is at least three, hence the graph for
our construction has at least two faces. We notice four families of balanced con-
figurations with two faces. They are illustrated in Figure 6. Theorem C.1 in the
Appendix asserts that these are the only balanced configurations whose graphs are
orientable with two faces. Hence they are the only possible configurations that give
rise to TPMSs of genus 3.

0 T1

T2

a

−a

b

−b

0 T1

T2

a

b −a
−b

0 T1

T2

π
−
a

a

π
−
bb

0 T1

T2

−a
π
−2
b+
a

b

π
+
b

Meeks aH aG aI

Figure 6. The four balanced configurations that could give rise to
TPMSs of genus three.

Example 7.1 (Meeks family). The first diagram illustrates a 4-parameter family
(parameterized by T1, T2, a, and b). It actually describes the Scherk limit of
Meeks’ family [Mee90]. To see this, note that the configurations are invariant under
the translation (T1 + T2)/2. This implies an orientation-reversing translational
symmetry in the corresponding TPMSs, which characterizes Meeks’ surfaces. See
Figures 2(a–c) for examples in this family.

Let us work out this small example explicitly. The graph is clearly balanced and
rigid. Let v be the center vertex, and label 1, 2, 3, 4 the half-edges adjacent to v
in anti-clockwise order, starting with the half-edge marked a. Then the horizontal
period condition (1) on any face cycle gives

φ1 − φ2 + φ3 − φ4 = 0

and the fundamental shifts are given by

Ψ1 = −φ1 + φ2 and Ψ2 = −φ1 + φ4.
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• If T1 and T2 are orthogonal, all edges have the same length so m(b(v)) =
{1, 2, 3, 4} and

F ver
b(v)(φ) = K (sin(φ1) + sin(φ2) + sin(φ3) + sin(φ4)) .

A solution is (φ1, φ2, φ3, φ4) = (a,−b,−a, b) with a = −Ψ1−Ψ2

2 and b =
Ψ2−Ψ1

2 . Regarding rigidity, we have φ̇ ∈ ker(P ver, DF ver(φ)) if and only if
φ̇1 − φ̇2 + φ̇3 − φ̇4 = 0

−φ̇1 + φ̇2 = 0

−φ̇1 + φ̇4 = 0

cos(a)(φ̇1 + φ̇3) + cos(b)(φ̇2 + φ̇4) = 0

which gives φ̇ = 0 if cos(a) + cos(b) 6= 0, so the configuration is vertically
rigid if cos(a) + cos(b) 6= 0.
• If arg(T2/T1) < π/2, the edges e(2) and e(4) are shorter so m(b(v)) = {2, 4}

and
F ver
b(v)(φ) = K (sin(φ2) + sin(φ4)) .

The solution (a,−b,−a, b) is rigid if cos(b) 6= 0.
• If arg(T2/T1) > π/2, the edges e(1) and e(3) are shorter, som(b(v)) = {1, 3}

and the solution (a,−b,−a, b) is rigid if cos(a) 6= 0. �

Example 7.2 (aH). The second diagram is again a 4-parameter family. We name
it aH because, when |T1| = |T2| and a = b = 0, it gives Scherk limits of the oH
family [CW21]; see Figure 2(d). Another special case in this family is the Scherk
limit of the rhombohedral deformation family rGL of the Gyroid [Che21], given by
T2/T1 = exp(2iπ/3) and a = b = 2π/3; see Figure 1 (left). All configurations in the
family are rigid, hence give rise to a new 5-parameter family of TPMSs, generalizing
H and rGL. �

Previously, we knew that both the Gyroid and the H surfaces can be continuously
deformed to Meeks surfaces [Che21, CW21]. The aH family implies a deformation
path between them that does not pass through the Meeks family.

Corollary 7.3. The Gyroid can be continuously deformed to an H surface along a
path in the space of TPMSs of genus 3 that stays outside the Meeks family.

Example 7.4 (aG). The third diagram is constrained to arg(T2/T1) = π/2, hence
a 3-parameter family. One of the fundamental shift must be π. We name it aG
as it includes the Scherk limit of the tetragonal deformation family tG of the Gy-
roid [Che21], given by |T1| = |T2| and a = b = π/2; see Figure 1 (right). It intersects
Meeks family when a = b = 0. Moreover, when a = 0 and b = π, we recognize
alternative Scherk limits of the oH family [CW21]; see Figure 2(e).

Unfortunately, configurations in this family are not vertically rigid, hence our
construction is inconclusive for them. To see this, note that adding a common
constant to a and b does not change the fundamental shifts. For the corresponding
TPMSs, this seems to suggest that one can vertically slide one Scherk tower with
respect to the other without changing the lattice. Numerical experiments suggest
that these configurations give indeed rise to TPMSs, but a vertical sliding between
the towers must be accompanied by a very slight deformation of the horizontal
lattice, which becomes undetectable in the Scherk limit. �

Example 7.5 (aI). The fourth diagram is again a 4-parameter family, but con-
strained to arg(T2/T1) 6= π/2. The fundamental shifts satisfy Ψ2 −Ψ1 = π. When
Ψ1 = π, it tends to aG configurations as arg(T2/T1)→ π/2. Otherwise, the depen-
dence of the vertical balancing condition on the horizontal lattice is not continuous;
see Remark 6.5.
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Configurations in this family are not vertically rigid: adding a common constant
to a and b does not change the fundamental shifts. Our construction is inconclusive
and, apart from the aG limit, we are not aware of any known TPMS that admits
this kind of Scherk limit. But by Theorem 4.9, the trivial phase functions given by
a, b = 0 or π should give rise to a family of TPMSs. For a lack of a better name,
we call this family aI (following the pattern of aG, aH.) �

7.2. Technical examples with triangular lattice.

Example 7.6. The purpose of this example is to demonstrate the necessity to
define vertical balancing on the whole cut space.

Figure 7 illustrates a graph with four vertices. If only vertex cuts are considered,
solving the vertical balancing equation would only determine phase differences on
the four vertical edges. This gives a false illusion that one may vertically slide the
saddle towers with respect to each other. In fact, to determine phase differences on
the remaining edges, we must acknowledge that they form a cut and must also be
balanced. �

Figure 7. For vertical balancing on this graph, it is not enough to
consider only vertex cuts.

Example 7.7. The purpose of this example is to demonstrate the diversity of
balanced phase functions.

The graph in Figure 8, which is a 3×3 block of the triangular lattice, is trivially
balanced and rigid by Theorem 4.7. Unlike other diagrams in this section, the
phases of the saddle towers are labeled on the vertices up to the addition of a
common constant. This is possible because the fundamental shifts are 0.

On this small graph, we look for phase functions symmetric in the points marked
with empty circles in the figure. That is,

φ1 = −φ2, φ3 = −φ6, φ4 = −φ8, φ5 = −φ7.

Under these strict restrictions, we still find two non-trivial, balanced, and rigid
phase functions, namely

• −φ1 = φ2 = 2π/3, −φ3 = φ5 = φ6 = −φ7 = π/3, and φ4 = −φ8 = π;

• φ1 = −φ2 = −φ3 = φ5 = φ6 = −φ7 = 2 arctan
√

5/7 and φ4 = −φ8 = π.

For readers who are interested in double checking: the rigidities are confirmed
numerically by computing the determinant of an 8 × 8 Jacobian matrix, which is
the derivative of vertical forces on 8 vertices with respect to their phases. If we
assume Kh = 1 on all half-edges (up to scaling of local coordinates), the Jacobian
determinant is −3/4 for the first phase function, and −315/4 for the second.

We certainly did not find all non-trivial, balanced, and rigid phase functions
on this graph. It can be imagined that, if we take a larger block of triangular
lattice or relax the inversion symmetry, there will be more balanced and rigid phase
functions. �
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0 φ1 φ2 0

φ3
φ4 φ5

φ3

φ6
φ7 φ8

φ6

0 φ1 φ2 0

Figure 8. A configuration with the graph of the triangular lattice.
Phase functions are labeled on the vertices instead of the edges. We
look for phase functions symmetric in the points marked with the empty
circles.

7.3. Generalizing some known examples. We generalize here some interest-
ing known examples to demonstrate the power of our construction. Many known
families of TPMSs admit saddle tower limits. In addition to those discussed be-
low, examples also include Schoen’s so-called RII, RIII, I-6, I-8, I-92, and GW
surfaces [Sch70, Bra], and many more constructed in [FK87, Kar89]. Brakke’s web-
page [Bra] is a great source of examples. We certainly do not plan to discuss all of
them.

If a graph contains a pair of parallel edges, they must be adjacent, and their
orientations and phase differences must all be opposite. In fact, given any graph
G = (H, ι, ς, %) with only simple edges, we may construct a doubling graph Ḡ =
(H̄, ῑ, ς̄ , %̄) with only parallel edges as follows (we use a bar for all objects associated
to Ḡ).

• For each h ∈ H, we have two half-edges h̄+, h̄− ∈ H̄;
• We define ῑ by ῑ(h+) = (ι(h))− and ῑ(h−) = (ι(h))+;
• We define ς̄ by ς̄(h+) = h− and ς̄(h−) = (ς(h))+;
• We define %̄ by %̄(v̄(h̄±)) = %(v(h)) and %̄(ē(h̄±)) = %(e(h)).

Clearly, the doubling graph Ḡ is always orientable, even if the original graph G
is not. This observation expands the power of our constructions: Even if the graph
is not orientable, as long as a graph is balanced and rigid, its doubling would be an
orientable, balanced, and rigid graph.

a

b

−a

−b

−a

−b

a

b

a−
b

b−
a

−b

b

−c

c

a
−a

Figure 9. Configurations doubling the graphs of parallelogram, trian-
gle and hexagonal tilings.

2These names are coined by Brakke for they are the 6th, 8th, and 9th surface on Page I of a
note by Schoen.
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Example 7.8. In Figure 9, we illustrate three configurations that double the graphs
of tilings of the Euclidean plane. Each diagram describes a 4-parameter family of
balanced configurations. They generalize, respectively, the Scherk limits of Schoen’s
S’–S”, T’–R’, and H”–R families [Sch70]; see Figures 2(g–i). The first two configu-
rations in the figure are trivially balanced and rigid, hence give rise to 5-parameter
families of TPMSs.

As for the last one that doubles hexagonal tilings, the graph is balanced if and
only if the vertices are at the unique Fermat–Torricelli points of the gray triangles
spanned by the 2-division points of the torus. This is well defined only when these
triangles do not have an angle ≥ 2π/3. Let la, lb and lc be the lengths of the
edges labeled by ±a, ±b and ±c in the figure, respectively. We may assume that
la ≤ lb ≤ lc. Then the balance condition for the phase function is

eia

eia + eib

eia + eib + eic

being real, if

 la < lb ≤ lc;
la = lb < lc;
la = lb = lc.

The phase function is rigid if the left hand side is non-zero.
We see again that balancing conditions do not depend continuously on the hori-

zontal lattice. But the dependence on Λ1 and Λ2 is continuous, so the rigid config-
urations still give rise to 5-parameter families of TPMSs. See Remark 6.5. �

We end the section with the saddle tower limit of a known TPMS family, which
is however not horizontally rigid.

Example 7.9. On the left of Figure 10 is a configuration that generalizes the Scherk
limit of Schoen’s H’–T family [Sch70] (with T2/T1 = exp(iπ/3) and a = b = 0; see
Figure 2(f)). The graph is obviously balanced but, unfortunately, not rigid. To see
this, notice that the graph is represented as the union of three lines. Any of the
lines can be moved parallelly yet the graph remains balanced. As a consequence,
our construction does not work directly on this graph.

But we may impose an inversion symmetry in the vertices. Under this imposed
symmetry, the phase function must have the form as shown in the figure. The
configurations form a 4-parameter family. They are trivially balanced and rigid
modulo symmetries. Our construction works with little modification, and gives rise
to a 5-parameter family of TPMSs of genus 4 generalizing the H’–T surfaces. We
do not plan to write down the details. �

0 T1

T2

a

b−
a−b

−a

a−
b

b

2π/3

2π
/
32π

/
3

2π/3

2π
/
3 2π

/
3

Figure 10. Left: Configurations generalizing the Scherk limit of
Schoen’s H’–T family. Right: Scherk limit of the QTZ–QZD family,
a chiral generalization of H’–T.

Remark 7.10. Recently, a chiral variation of H’–T was discovered and named QTZ–
QZD [MSSTM18]. It arises from the same graph as H’–T, but has a non-trivial
phase function; see the right side of Figure 10.



GLUING SADDLE TOWERS I: TPMS 25

8. Construction

In this section, we prove Theorem 6.7. The given phase function is denoted
φ◦. All parameters will vary in a neighborhood of a central value denoted with
a superscript ◦, which depends on the given configuration (G, φ◦). The Implicit
Function Theorem will be applied at ε = 0 and the central value of all parameters.

Without loss of generality, we assume as in Section 5.4 that cos(θ◦h) 6= 0 for all
h ∈ H and that the zeros of Φ1 are simple for all saddle towers involved in the
construction. If this is not the case, we could always apply a horizontal rotation to
the configuration.

8.1. Opening nodes. For each vertex v ∈ V, we want to place a saddle tower Sv

determined by the angles θ◦h, h ∈ v, and glue them along the wings.
Recall that a saddle tower is conformally a sphere with punctures corresponding

to the wings. Hence our initial surface at ε = 0 is a singular Riemann surface
consisting of |V| spheres identified at their punctures. More specifically: to each

vertex v ∈ V of the oriented graph G, we associate a Riemann sphere Ĉv. To each
half-edge h ∈ v, we associate a complex number p◦h ∈ Ĉv, so that Ĉv punctured at
p◦h, h ∈ v, provides a conformal model for Sv. Then we identify p◦h and p◦−h. The
resulting singular Riemann surface with nodes is denoted Σ0.

As ε increases, we want to desingularize the nodes into necks. This is done
as follows. For each h ∈ H, ph is a complex parameter in a neighborhood of
p◦h. Consider a local coordinate wh in a neighborhood of ph ∈ Ĉv(h) such that
wh(ph) = 0. The local coordinate wh depends holomorphically on ph, but the
dependence is omitted for simplicity. Moreover, we assume that the local coordinate
w◦h associated to p◦h is adapted. We denote p = (ph)h∈H.

Since the graph is finite, it is possible to fix a small number δ > 0 independent
of v such that the disks |w◦h| < 2δ for h ∈ v are disjoint in each Riemann sphere

Ĉv. Then for p close enough to p◦, the disks |wh| < δ for h ∈ v are disjoint.
Consider a symmetric complex parameter t = (th)h∈H in the neighborhood of 0

with |th| < δ2. For every h ∈ H, if th 6= 0, we remove the disk

|wh| < |th|/δ,

and identify the annuli

|th|/δ ≤ |wh| ≤ δ and |t−h|/δ ≤ |w−h| ≤ δ

by

whw−h = th.

When th = 0, ph and p−h are simply identified to form a node. This produces a
Riemann surface, possibly with nodes, denoted by Σt. Note that Σt also depends
on the parameter p, but the dependence is not written for simplicity. When th 6= 0
for all h ∈ H, Σt is a regular Riemann surface of genus g = |F|+ 1 which provides
the conformal model for our construction.

We consider the following fixed domains in all Σt:

Uv,δ = {z ∈ Ĉv : ∀h ∈ v, |w◦h| > δ/2} and Uδ =
⊔
v∈V

Uv,δ

For v ∈ V, we denote ∞v the point at infinity in the Riemann sphere Ĉv and fix
an origin Ov ∈ Uv,δ \ {∞v} as the starting point of the integration defining the
Weierstrass parameterization of the saddle tower Sv.
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8.2. Regular 1-forms. Let Σt be a family of Riemann surfaces defined by opening
nodes as above. A regular 1-form ω on Σt is a differential 1-form that is holomorphic
away from the nodes and, whenever two points p and q are identified to form a node,
has simple poles of opposite residues at p and q. Regular 1-forms extend the notion
of holomorphic 1-forms to noded Riemann surfaces. By [Mas76, Proposition 4.1],
there is a basis ω1,t, · · · , ωg,t for the space of regular 1-forms on Σt which “depends
holomorphically” on t in a neighborhood of 0. More formally, in our case, this
means that the restriction of ωj,t to Uδ depends holomorphically on z ∈ Uδ and t.

One can also consider regular 1-forms with simple poles away from the nodes: by
[Mas76, Proposition 4.2], if p, q are two points on Σ0 minus the nodes, there exists
a unique 1-form ωp,q,t on Σt which has simple poles at p and q with residues 1 and
−1, is otherwise regular in the sense above, and has suitably normalized periods (a
normalized differential of the third kind). Moreover, ωp,q,t depends holomorphically
on t in a neighborhood of 0.

More specifically, we shall use the following result. For each half-edge h ∈ H, let
Ah denote a small anticlockwise circle in Uv(h),δ around ph; it is then homologous
in Σt to a clockwise circle in Uv(−h),δ around p−h.

Proposition 8.1. Given an antisymmetric function (αh)h∈H, there exists a unique
regular 1-form ωt on Σt, possibly with simple poles at ∞v, v ∈ V, such that

∀h ∈ H,

∫
Ah

ωt = 2πiαh.

Moreover, the restriction of ωt to Uδ depends holomorphically on t in a neighborhood
of 0.

Proof. this follows from [Mas76, Proposition 4.2]. See also [Tra13, Theorem 8.2]
for a constructive proof. �

Note that by the Residue Theorem in Ĉv,

Res (ωt,∞v) = −
∑
h∈v

αh.

We will also need the following results.

Lemma 8.2 ([Tra08, Lemma 3]). The derivative ∂ωt/∂th at t = 0, restricted to
Uδ, coincides with a meromorphic 1-form on Σ0 with double poles at the nodes,
holomorphic elsewhere, and vanishing A-periods. In term of the local complex co-
ordinates wh used to open nodes, the principal part at ph is

−dwh
w2
h

Res

(
ω0

w−h
, p−h

)
.

For every half-edge h and th 6= 0, let Bh be the concatenation of

(1) a path in Uv(h),δ from Ov(h) to wh = δ,

(2) the path parameterized by wh = δ1−2s tsh for s ∈ [0, 1], from wh = δ to
wh = th/δ, which is identified with w−h = δ, and

(3) a path in Uv(−h),δ from w−h = δ to Ov(−h).

Lemma 8.3 ([Tra02b, Lemma 1]). The difference

(9)
(∫

Bh

ωt

)
− αh log th

extends holomorphically to th = 0. Moreover, its value at t = 0 is equal to

lim
z→ph

[(∫ z

Ov(h)

ω0

)
− αh logwh(z)

]
− lim
z→p−h

[(∫ z

Ov(−h)

ω0

)
− α−h logw−h(z)

]
.
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Lemma 8.3 was essentially proved in [Tra02b, Lemma 1]. As the lemma has been
and will be used in similar constructions, we consider it a good time to refurbish
the proof in Appendix D.

8.3. Weierstrass data. We construct a conformal minimal immersion using the
Weierstrass parameterization in the form

z 7→ Re

∫ z

(Φ1,Φ2,Φ3),

where Φi are meromorphic 1-forms on Σt satisfying the conformality equation

(10) Q := Φ2
1 + Φ2

2 + Φ2
3 = 0.

Observe that Q is a meromorphic quadratic differential on Σt.

8.3.1. A-periods. We need to solve the following A-period problem

Re

∫
Ah

(Φ1,Φ2,Φ3) = (0, 0, 2πσh), ∀h ∈ H.

We define Φ1, Φ2, and Φ3, using Proposition 8.1, as the unique regular 1-forms on
Σt with (at most) simple poles at ∞v for v ∈ V and the A-periods∫

Ah

(Φ1,Φ2,Φ3) = 2πi(αh, βh, γh − iσh), ∀h ∈ H,

where (α, β, γ) ∈ A3 are antisymmetric parameters. This way, the A-period prob-
lems are solved by definition. We choose the following central value for the param-
eters:

α◦h = − cos(θ◦h), β◦h = − sin(θ◦h), γ◦h = 0.

Then at ε = 0 and the central value of all parameters, we have in Ĉv

Φ◦1 =
∑
h∈v

− cos(θ◦h)

z − p◦h
dz, Φ◦2 =

∑
h∈v

− sin(θ◦h)

z − p◦h
dz and Φ◦3 =

∑
h∈v

−iσh
z − p◦h

dz.

In other words, (Φ◦1,Φ
◦
2,Φ

◦
3) is precisely the Weierstrass data of the saddle tower

Sv as we want.
Note that σ ∈ ker(div), that is ∑

h∈v

σh = 0,

so we have by Residue Theorem in Ĉv

Res (Φ,∞v) = −
∑
h∈v

(αh, βh, γh) = −divb(v)(α, β, γ).

We want ∞v to be regular points, so we need to solve

(11) divb(v)(α, β, γ) =
∑
h∈v

(αh, βh, γh) = 0, for all v ∈ V.

If the graph is balanced, then the central values solve (11) at ε = 0. We call (11)
the balance equations.

Remark 8.4. If we see the surface as a soap film, then the saddle tower at v(h) is
pulled by a surface tension force along the wing of h, which can be calculated (up
to a physical coefficient) as

− Im

∫
Ah

(Φ1,Φ2,Φ3) = −2π(αh, βh, γh).
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8.3.2. B-periods. For any cycle c = (h1, · · · , hn) of the graph, let Bc denote the
concatenation Bh1

∗ · · · ∗Bhn
which is a cycle in Σt. Recall from Section 3.3.3 the

cycle basis C∗ = F∗ ∪ {c1, c2}. We need to solve the following B-period problem:

ε2
(

Re

∫
Bc

Φ1 + i Re

∫
Bc

Φ2

)
=

{
0 c ∈ F∗,

Ti + ε2Λi c = ci, i = 1, 2;
(12)

Re

∫
Bc

Φ3 =

{
0 (mod 2π) c ∈ F∗,

Ψi (mod 2π) c = ci, i = 1, 2.
(13)

8.3.3. Conformality. At ε = 0 and the central value of all parameters, Φ◦1 has deg(v)

simple poles in Ĉv, hence deg(v) − 2 zeros denoted ζ◦v,j for 1 ≤ j ≤ deg(v) − 2.
Recall that these zeros are simple (see the beginning of Section 8). We can also
assume that they are not∞v. When the parameters are close to their central value,
Φ1 has a simple zero ζv,j close to ζ◦v,j in Ĉv for 1 ≤ j ≤ deg(v)− 2.

Remark 8.5. If the balancing equations are not solved, Φ1 may have a pole at ∞v

and consequently, an extra zero near∞v. We may ignore this zero, as it disappears
when the balancing equations are solved. See Proposition 8.6 below.

We will solve the following equations:∫
Ah

Q

Φ1
= 0, h ∈ H,(14)

Res

(
Q

Φ1
, ζv,j

)
= 0, 1 ≤ j ≤ deg(v)− 3, v ∈ V.(15)

Proposition 8.6. The conformality equation (10) is solved if the equations (11),
(14), and (15) are solved.

Proof. If Equation (11) is solved, then Q and Φ1 are holomorphic at ∞v and Φ1

has no extra zero in Ĉv. By the Residue Theorem in Ĉv

∑
h∈v

∫
Ah

Q

Φ1
+ 2πi

deg(v)−2∑
j=1

Res

(
Q

Φ1
, ζv,j

)
= 0.

Hence if Equations (14) and (15) are solved, the residue of Q/Φ1 at the last zero
ζv,deg(v)−2 must also vanish. So the 1-form Q/Φ1, being holomorphic on Σ with
vanishing A-periods, must be 0. �

8.3.4. Dimension count. Let us perform a dimension count before proceeding fur-
ther.

We have 3|E| real parameters (α, β, γ). The complex parameters t comprises |E|
complex numbers. For each v ∈ V, Möbius transforms on Ĉv do not change the
conformal structure of Σt. So we can fix the positions of three of the punctures
(ph)h∈v, leaving deg(v) − 3 free complex parameters for each v ∈ V. So, together
with the parameter ε of the family, we have 9|E| − 6|V|+ 1 real parameters.

Let us now count the equations. The B-period problems is 3g = 3(|F| + 1) real
equations. The conformality equations contain |E| + 2|E| − 3|V| = 3|F| complex
equations. (This is of course the dimension of the space of holomorphic quadratic
differentials on Σt.) Moreover, we have 3|V| − 3 balancing equations (11). Hence
there are 9|F|+ 3|V| = 9|E| − 6|V| real equations. This is one less than the number
of parameters, so 1-parameter families are expected out of our construction.
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8.4. Solving the conformality problem.

Proposition 8.7. For (t, α, β, γ) in a neighborhood of (0, α◦, β◦, 0), there exists
p = (ph)h∈H depending analytically on (t, α, β, γ), such that the conformality equa-
tions (15) are solved. Moreover, ph(0, α◦, β◦, 0) = p◦h.

Proof. As in Section 5.4, for each v ∈ V, we may fix the position of three points ph
in Ĉv using a Möbius transformation. At (t, α, β, γ) = (0, α◦, β◦, 0), (Φ1,Φ2,Φ3)

restricted to Ĉv is the Weierstrass data considered in Section 5.4, depending on the
parameters (ph)h∈v. By Theorem 5.5, the partial differential of(

Res

(
Q

Φ1
, ζv,j

))
1≤j≤deg(v)−3

with respect to (ph)h∈v is an isomorphism. So Proposition 8.7 follows from the
Implicit Function Theorem. �

From now on, we assume that ph are given by Proposition 8.7. We make the
change of parameters

αh + iβh = −ρh exp(iθh).

Clearly, ρ = (ρh)h∈H ∈ S, and (exp(iθh))h∈H ∈ A2. The central values of ρh is

ρ◦h = 1 and the central value of θh is θ◦h with u◦h = eiθ◦h .

Proposition 8.8. For (t, θ) in a neighborhood of (0, θ◦), there exist unique values of
ρ and γ, depending real-analytically on (t, θ), such that the equations (14) are solved.
At th = 0 we have, no matter the values of θ, (tk)k 6=±h, and other parameters, that

(16) ρh = 1 and γh = 0.

In particular, we have |γh| ≤ C|th| for a uniform constant C. Moreover, at (t, θ) =
(0, θ◦), we have the Wirtinger derivatives

(17)
∂ρh
∂th

= −1

2
ΥhΥ−h and

∂γh
∂th

= − i

2
σhΥhΥ−h.

Proof. Define for h ∈ H

Eh(t, ρ, γ, θ) =
1

2πi

∫
Ah

Q

Φ1
.

Assume that th = 0. Then Φ1, Φ2, and Φ3 have a simple pole at ph, so Q/Φ1 has
a simple pole at ph and, by the Residue Theorem

Eh |th=0=
α2
h + β2

h + (γh − iσh)2

αh
=
ρ2
h + γ2

h − 1− 2iσhγh
αh

.

So the solution of (14) at th = 0 is (ρh, γh) = (1, 0), no matter the values of the
other parameters. This proves (16). We compute the partial derivatives of Eh with
respect to ρh and γh at (t, ρ, γ, θ) = (0, 1, 0, θ◦):

(18)
∂Eh
∂ρh

=
2

α◦h
,

∂Eh
∂γh

=
−2iσh
α◦h

.

So the existence and uniqueness statement of the proposition follows from the Im-
plicit Function Theorem. To prove the last point, we need to compute the partial
derivative of Eh with respect to th at (t, ρ, γ, θ) = (0, 1, 0, θ◦). We use the following
elementary results: if f = a−1z

−1 + a0 + O(z) and g = b−1z
−1 + b0 + O(z) are

meromorphic functions with a simple pole at z = 0, then

Res

(
f

z2g
, 0

)
=
a0b−1 − a−1b0

(b−1)2
, Res

(
f2, 0

)
= 2a−1a0, and Res

(
f2z, 0

)
= (a−1)2.
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We have

∂Eh
∂th

= Res

 3∑
j=1

2
Φ◦j
Φ◦1

∂Φj
∂th

, p◦h

 by the Residue Theorem

=− 2

3∑
j=1

Res

(
Φ◦j dwh

Φ◦1w
2
h

, p◦h

)
Res

(
Φ◦j
w−h

, p◦−h

)
by Lemma 8.2

=− 2

α◦h

3∑
j=1

Res

(
Φ◦j
wh

, p◦h

)
Res

(
Φ◦j
w−h

, p◦−h

)
(19)

+
2

(α◦h)2
Res

(
Φ◦1
wh

, p◦h

) 3∑
j=1

Res
(
Φ◦j , p

◦
h

)
Res

(
Φ◦j
w−h

, p◦−h

)
.(20)

Since Q◦ = 0, we have

Res

(
whQ

◦

dwh
, p◦h

)
=

3∑
j=1

Res
(
Φ◦j , p

◦
h

)2
= 0,(21)

Res

(
Q◦

dwh
, p◦h

)
= 2

3∑
j=1

Res
(
Φ◦j , p

◦
h

)
Res

(
Φ◦j
wh

, p◦h

)
= 0.(22)

Because Res
(
Φ◦j , p

◦
−h
)

= −Res
(
Φ◦j , p

◦
h

)
, Eq. (22) implies that the term (20)

vanishes. Note that
1√
2

Res (Φ◦, p◦h) ,
1√
2

Res
(
Φ◦, p◦h

)
, N◦(p◦h)

form an orthonormal basis of C3 for the standard hermitian product 〈·, ·〉H. After
recalling the definition of Υh in Section 5.2, we decompose in this basis

Res

(
Φ◦

wh
, p◦h

)
=

1

2

〈
Res (Φ◦, p◦h) ,Res

(
Φ◦

wh
, p◦h

)〉
H

Res (Φ◦, p◦h) + σhΥhN
◦(p◦h).

Here, the component on Res
(
Φ◦, p◦h

)
vanishes because of (22). In the same way,

after recalling that N◦(p◦−h) = N◦(p◦h) and σ−h = −σh,

Res

(
Φ◦

w−h
, p◦−h

)
=

1

2

〈
Res (Φ◦, p◦h) ,Res

(
Φ◦

w−h
, p◦−h

)〉
H

Res (Φ◦, p◦h) − σhΥ−hN
◦(p◦h).

Hence by Equation (19)

∂Eh
∂th

=
−2

α◦h

〈
Res

(
Φ◦

wh
, p◦h

)
,Res

(
Φ◦

w−h
, p◦−h

)〉
H

=
2

α◦h
ΥhΥ−h.

If k 6= ±h, we have ∂Eh/∂tk = 0 as ∂Φj/∂tk is holomorphic at p◦h.
We differentiate Eh(t, ρ(t, θ), γ(t, θ), θ) = 0 with respect to th and obtain, using

Equation (18),

(23)
2

α◦h

(
ΥhΥ−h +

∂ρh
∂th
− iσh

∂γh
∂th

)
= 0.

Since Eh is holomorphic in th, we obtain by differentiation with respect to th and
conjugation

(24)
2

α◦h

(
∂ρh
∂th

+ iσh
∂γh
∂th

)
= 0.

Solving the system (23), (24) gives Equation (17). �

From now on, we assume that ρ and γ are given by Proposition 8.8.
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8.5. Solving horizontal balance and period problems. We make the change
of parameters

(25) th = − exp
(
− `hε−2 + iσhφh

)
,

where ` = (`h)h∈H ∈ S, and φ = (φh)h∈H ∈ A. The central value of `h is `◦h, the
length of the edge e(h). The central value of φh is the given phase function φ◦h. We
combine ` and θ into

xh = `he
iθh ,

whose central value is x◦h as given by the graph.

Proposition 8.9. Assume that the graph G is rigid and balanced. For (ε, φ) in a
neighborhood of (0, φ◦), there exist unique values for (xh)h∈H, depending smoothly
on (ε, φ), such that x(0, φ) = x◦ for all φ and the horizontal B-period equations
(12) as well as the α and β components of the balance equations (11) are solved.
Moreover, x is an even function of ε and at ε = 0, we have for all φ

∂2xh
∂ε2

(0, φ) = 2ξh

where ξh is the solution to (7).

Proof. Define for (ε, x, φ) in a neighborhood of (0, x◦, φ◦) and h ∈ H

Phor
h (ε, x, φ) = ε2

(
Re

∫
Bh

Φ1 + i Re

∫
Bh

Φ2

)
.

By Lemma 8.3

λhor
h (ε, x, φ) :=

[(
Re

∫
Bh

Φ1

)
− αh log |th|

]
+ i

[(
Re

∫
Bh

Φ2

)
− βh log |th|

]
extends at ε = 0 to a smooth function of remaining parameters (ε, x, φ).

Recall the definition of µh in Section 5.2 and that z0 = Ov is chosen as the
origin of the parameterization of the saddle tower Sv. By the last statement of
Lemma 8.3, we have at the central value

λhor
h (0, x◦, φ) = µh − µ−h.

We then have

Phor
h (ε, x, φ) =ε2

[
(αh + iβh) log |th|+ λhor

h (ε, x, φ)
]

=− ε2ρhe
iθh(−`hε−2) + ε2λhor

h (ε, x, φ)

=ρhxh + ε2λhor
h (ε, x, φ).

Note that by definition, Phor
h is an even function of ε. Since ρh is an analytic

function of th with value 1 at th = 0 and all derivatives of th with respect to ε
vanish at ε = 0, we have at ε = 0

(26) Phor
h (0, x, φ) = xh and

∂2Phor
h

∂ε2
(0, x◦, φ) = 2(µh − µ−h).

Now define for c in the cycle basis C∗

Phor
c (ε, x, φ) = ε2

(
Re

∫
Bc

Φ1 + i Re

∫
Bc

Φ2

)
=
∑
h∈c

Phor
h (ε, x, φ).

Then, at ε = 0, we have

Phor
c (0, x, φ) =

∑
h∈c

xh = P hor
c (x) and

∂2Phor
c

∂ε2
(0, x◦, φ) = 2

∑
h∈c

(µh − µ−h) = 2P hor
c (µa).
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Regarding the horizontal balance equation (11), we define for b in the cut-basis
B∗

Fhor
b = −divb(α+ iβ) = divb(ρhe

iθh) = divb(ρhuh(x)).

Again, Fhor
b is an even function of ε and at ε = 0, we have since ρ = 1

Fhor
b (0, x, φ) = F hor

b (x) and
∂2Fhor

b

∂ε2
(0, x◦, φ) = 0.

We want to solve the system
Phor
c (ε, x, φ) = 0, c ∈ F∗,

Phor
ci (ε, x, φ) = Ti + ε2Λi, i = 1, 2,

Fhor
b (ε, x, φ) = 0, b ∈ B∗.

If G is balanced, the system is solved at ε = 0 with x(0, φ) = x◦ for all φ. If G is
rigid, then by Implicit Function Theorem, for ε in a neighborhood of 0, there exists
a unique solution x(ε, φ) depending smoothly on (ε, φ) such that x(0, φ) = x◦.

Moreover, since the system is even in ε, so is the unique solution x(ε, φ). Taking
the second derivative of the system with respect to ε at ε = 0 gives

2P hor
c (µa) + P hor

c

(∂2x

∂ε2
(0, φ)

)
= 0, c ∈ F∗,

2P hor
ci (µa) + P hor

ci

(∂2x

∂ε2
(0, φ)

)
= 2Λi, i = 1, 2,

DF hor
b (x◦) · ∂

2x

∂ε2
(0, φ) = 0, b ∈ B∗.

Its unique solution is, by definition, ∂
2x
∂ε2 (0, φ) = 2ξ. �

From now on, we assume that the parameters xh are given by Proposition 8.9.

8.6. Solving vertical balance and period problems.

Proposition 8.10. Assume that the phase function φ◦ is balanced and rigid. For
ε in a neighborhood of 0, there exist unique values for (φh)h∈H, depending smoothly
on ε, such that φh(0) = φ◦h and the vertical B-period problems (13) as well as the
γ component of (11) are solved.

Proof. Similarly to the proof of Proposition 8.9, we define for h ∈ H

Pver
h (ε, φ) = Re

∫
Bh

Φ3.

By Lemma 8.3,

λver
h (ε, φ) := Re

[(∫
Bh

Φ3

)
− (γh − iσh) log th

]
extends smoothly at ε = 0. By Proposition 8.8, we have γh = O(th) so γh log th
extends smoothly at ε = 0 with value 0. Hence by Lemma 8.3, we have at ε = 0

λver
h (0, φ) = Re lim

z→ph

[(∫ z

Ov(h)

Φ◦3

)
+ iσh logwh(z)

]
− Re lim

z→p−h

[(∫ z

Ov(−h)

Φ◦3

)
+ iσ−h logw−h(z)

]
=νh − ν−h

where νh is defined as in Section 5.2. We then have

Pver(ε, φ) = λver
h (ε, φ)− γh`hε−2 + φh + σhπ.
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Since γh = O(th), we have at ε = 0

(27) Pver
h (0, φ) = νh − ν−h + φh + σhπ.

Now define for c in the cycle-basis C∗

Pver
c (ε, φ) = Re

∫
Bc

Φ3 =
∑
h∈c

Phor
h (ε, φ).

Observe that by Proposition 5.3∑
h∈c

(νh − ν−h + π) =
∑
h∈c

(νh − νς(h) + π) = 0 (mod 2π)

Hence at ε = 0, we have

Pver
c (0, φ) = P ver

c (φ) (mod 2π).

Regarding the vertical balance equation (11), we define for b in the cut basis B∗

Fhor
b (ε, φ) = −divb(γ(ε, φ)) = −

∑
h∈b

γh(ε, φ).

Using the Mean Value Inequality and Proposition 8.8, we have for ε→ 0

γh(ε, φ) = σhΥhΥ−h Im(th(ε, φ)) + o(th(ε, φ)).

By Proposition 8.9 and that ∂xh/∂ε = 0, we have

∂2xh
∂ε2

(0) = exp(iθ◦h)
(∂2`h
∂ε2

(0) + i`h
∂2θh
∂ε2

(0)
)

= 2ξh,

so
∂2`h
∂ε2

(0) = 2 Re(ξh exp(−iθ◦h)).

Therefore using Taylor formula

Im(th(ε, φ)) =− σh sin(φh) exp(−`h(ε, φ)ε−2)

=− σh sin(φh) exp
(
−`◦hε−2 − Re(ξh exp(−iθ◦h)) +O(ε2)

)
.

Hence we have

Fver
b (ε, φ) =

∑
h∈b

ΥhΥ−h sin(φh) exp
(
−`◦hε−2 − Re(ξh exp(−iθh)) +O(ε2)

)
.

Recall that `◦b = min{`◦h | h ∈ b} and define for ε 6= 0

F̃ver
b (ε, φ) = exp(`◦bε

−2)Fver
b (ε, φ).

Then F̃ver extends smoothly at ε = 0 and in the limit ε→ 0 only the shortest edges
remain:

F̃ver(0, φ) =
∑

h∈m(b)

ΥhΥ−h sin(φh) exp (−Re(ξh exp(−iθh))) = F ver(φ).

We want to solve the system
Pver
c (ε, φ) = 0, c ∈ F∗,

Pver
ci (ε, φ) = Ψi, i = 1, 2,

F̃ver
b (ε, φ) = 0, b ∈ B∗.

If the phase function φ◦ is balanced, the system is solved at ε = 0 by φ = φ◦. If φ◦

is rigid and the cut basis B∗ is B∗m as given by Proposition 3.8, then by the Implicit
Function Theorem, the system has a unique solution φ(ε), depending smoothly on
ε for ε in a neighborhood of 0, such that φ(0) = φ◦. �
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8.7. Geometry and Embeddedness. We have constructed a 1-parameter family
of Weierstrass data (Φ1,ε,Φ2,ε,Φ3,ε) depending on ε > 0 that solve the Conformality
and Period Problems. All parameters are now smooth functions of ε and are denoted
accordingly th(ε), θh(ε), etc... We denote

fε = (fhor
ε , fver

ε ) : Σt(ε) → T3
ε

the immersion given by Weierstrass Representation formula, decomposed into its
horizontal and vertical components. Note that Σt(ε) and fε are independent of the
positive number δ used to define Σt (although the smaller δ, the smaller ε must be
in the definition of Σt). We first prove that the immersion is regular, that is:

Proposition 8.11. we have

(28) |Φ1,ε|2 + |Φ2,ε|2 + |Φ3,ε|2 > 0

on Σt(ε) for sufficiently small ε.

Proof. The statement holds in Uδ because the Saddle towers are regular embed-
dings, and the inequality (28) remains for sufficiently small ε. It suffices to prove (28)
on the annuli that we identified to form necks. This is the case if Φ3,ε has no zero
in the necks.

Recall that Φ◦3 has deg(v) poles hence deg(v) − 2 zeros in Ĉv. By choosing δ
sufficiently small, we may assume that all 2|E|−2|V| = 2|F| = 2g−2 zeros lie in Uδ,
which remains true for sufficiently small ε. But for ε 6= 0, Φ3,ε, being a holomorphic
function on a Riemann surface of genus g (without nodes), has exactly 2g−2 zeros,
therefore no other zeros. The statement then follows readily. �

It remains to prove that the image of fε has the desired geometry, as stated in
Points (1), (2), (3) of Theorem 6.7, and is embedded. Define

Xv(ε) = fhor
ε (Ov).

Then fε − Xv(ε) converges smoothly on Uv,δ to fv,0 which parametrize a Saddle
tower which we denote Sv. Hence fε(Uv,δ) is embedded for ε > 0 small enough.
Let S ◦v be the reference saddle tower, namely translated so that the image of Ov
is the origin. We denote ϕ(S ) the phase of a saddle tower. Using Equation (27)
and Proposition 5.3, we have for h ∈ H

ϕ(Sv(−h))− ϕ(Sv(h)) = ϕ(S ◦v(−h))− ϕ(S ◦v(h)) + lim
ε→0
Pver
h (ε)

= ϕ(S ◦v(−h))− ϕ(S ◦v(h)) + φ◦h + νh − ν−h + σhπ

= φ◦h (mod 2π).

This proves Point (3). Using Equation (26), we have for h ∈ H

lim
ε→0

ε2
(
Xv(−h)(ε)−Xv(h)(ε)

)
= lim
ε→0
Phor
h (ε) = x◦h.

This proves Point (2). Moreover, because the vertices are represented by distinct
points, the images fε(Uv,δ) for v ∈ V are disjoint for ε > 0 small enough.

For δ and ε small enough, the image of the circle |wh| = δ is close to a vertical
segment sh(ε) lying in fε(Uv,δ). On the boundary of the annulus |th|/δ < |wh| < δ,
the gauss map is close to a horizontal constant (from the convergence to saddle
towers), so by the maximum principle for holomorphic functions, it is close to this
constant on the whole annulus. Given the boundary behavior, the image of this
annulus is a graph over a vertical plane, hence embedded. By the convex hull
property of minimal surfaces, the image of the annulus |th|/δ < |wh| < δ stays close
to the vertical plane Be(h)(ε) bounded by sh(ε) and s−h(ε). After a scaling by ε2,
Point (1) follows.
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If there are no parallel edges, by taking δ > 0 small enough, we may ensure
that the planes Be(ε) for e ∈ E are disjoint and conclude that the image of fε
is embedded because the graph is embedded. The situation is more subtle in the
case of parallel edges. Assume that the edges e(h1), · · · , e(hk) are parallel, with
h1, · · · , hk ∈ v and ς(hi) = hi+1 for 1 ≤ i ≤ k − 1. Because the saddle tower
Sv is embedded, the corresponding ends are asymptotic to parallel but distinct
vertical planes. Hence, by our choice of ordering of the ends, the abscissa of the
vertical segments shi

(ε) are decreasing and separated by a distance greater than
some uniform r > 0. On the other side, the abscissa of the vertical segments s−hi(ε)
are also decreasing and uniformly separated. Hence for ε small enough, the planes
Be(hi) for 1 ≤ i ≤ k are disjoint, and we conclude again that the image of fε is
embedded. This concludes the proof of Theorem 6.7.

Appendix A. Rigidity of saddle towers

This section is dedicated to a proof of Theorem 5.5. Let ṗ ∈ kerDΛ(p◦). We
want to prove that, if ṗh = 0 for three h ∈ H, then ṗ = 0.

Define p(ε) = p◦+ εṗ. Let (Φ1(ε),Φ2(ε),Φ3(ε)) be the Weierstrass data given by
Equation (3) and X(ε) the corresponding immersion given by Equation (4). Note
that X(ε) is harmonic but not minimal. Let H(ε) be the mean curvature and N(ε)
be the normal of X(ε). To ease computation, the dependence on ε will not be
written. Instead, we use an exponent ◦ to denote the value at ε = 0 and a dot to
denote the partial derivative with respect to ε at ε = 0.

Lemma A.1. We have Ḣ = 0 on the Riemann sphere minus the points p◦h for
h ∈ H.

Proof. We have for all ε

Q =

n−2∑
i=1

λi
Φ1 dz

z − ζi
with λi = Res

(
Q

Φ1
, ζi

)
.

We have λ◦i = 0 and λ̇i = DΛi(p
◦) · ṗ = 0 so Q̇ = 0. Let w = x1 + ix2 be a local

complex coordinate on the Riemann sphere. Recall the standard formula for the
mean curvature

(29) H =
g22b11 + g11b22 − 2g12b12

2(g11g22 − g2
12)

where g and b are respectively the matrices of the first and second fundamental
forms in the coordinate system (x1, x2). We have for all ε

Q =

(∥∥∥∥ ∂X∂x1

∥∥∥∥2

−
∥∥∥∥ ∂X∂x2

∥∥∥∥2

− 2i

〈
∂X

∂x1
,
∂X

∂x2

〉)
dw2 = (g11 − g22 − 2ig12)dw2.

Hence from Q◦ = 0 and Q̇ = 0 we obtain

(30) g◦11 = g◦22, g◦12 = 0, ġ11 = ġ22 and ġ12 = 0.

Since X(ε) is harmonic for all ε, we have b11 + b22 = 0 for all ε, so

b◦11 + b◦22 = 0 and ḃ11 + ḃ22 = 0.

Taking the derivative of (29), we obtain Ḣ = 0. �

By Lemma A.1, u = 〈Ẋ,N◦〉 is a Jacobi field. In a neighborhood of p◦h, we have

(31) Ẋ = Re

[
(cos(θh), sin(θh), iσh)

ṗh
z − p◦h

]
+ bounded terms

N◦ = σh(− sin(θh), cos(θh), 0) +O(z − p◦h)
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so u is a bounded Jacobi field. Since all saddle towers are rigid, there exists c ∈ R3

such that u = 〈N◦, c〉. Consider the translated immersion Y (ε) = X(ε) − εc.

Then 〈Ẏ , N◦〉 = 0 so Ẏ is a tangent vector. Using the local complex coordinate

w = x1 + ix2, we decompose Ẏ in the tangent space as

Ẏ = ξ1
∂X◦

∂x1
+ ξ2

∂X◦

∂x2
= ξ

∂X◦

∂w
+ ξ

∂X◦

∂w
with ξ = ξ1 + iξ2.

Lemma A.2. ξ d
dw defines a holomorphic vector field on the Riemann sphere.

Moreover, ξ(p◦h) = −ṗh for h ∈ H.

Proof. Since X◦ is conformal and harmonic, we have〈
∂X◦

∂w
,
∂X◦

∂w

〉
= 0,

〈
∂X◦

∂w
,
∂2X◦

∂w2

〉
= 0, and

∂2X◦

∂w∂w
= 0

where 〈·, ·〉 denotes the C-bilinear dot product. For all ε〈
∂X

∂w
,
∂X

∂w

〉
=

1

4
(g11 − g22 − 2ig12).

Taking the derivative with respect to ε and using Equation (30), we obtain

2

〈
∂X◦

∂w
,
∂Ẏ

∂w

〉
= 2

〈
∂X◦

∂w
,
∂

∂w

(
ξ
∂X◦

∂w
+ ξ

∂X◦

∂w

)〉
= 2

∂ξ

∂w

〈
∂X◦

∂w
,
∂X◦

∂w

〉
= 0.

Hence ∂ξ
∂w = 0 and ξ is holomorphic. If w′ is another local complex coordinate, we

can write

Ẏ = ξ′
∂X◦

∂w′
+ ξ′

∂X◦

∂w′
= ξ′

∂X◦

∂w

dw

dw′
+ ξ′

∂X◦

∂w

(
dw

dw′

)
This gives

ξ = ξ′
dw

dw′

so ξ transforms as a holomorphic vector field under change of coordinate. Using
the complex coordinate w = z − p◦h in a neighborhood of p◦h, we have

∂X◦

∂w
=

1

2w
(− cos(θh),− sin(θh),−iσh) +O(1).

Hence by Equation (31),

ξ(p◦h) = −ṗh.

�

Recall that we have fixed the position of three points ph. Hence ξ has at least
three zeros. Now a non-zero holomorphic vector field on the Riemann sphere has
two zeros, so ξ = 0. This implies that ṗ = 0 and concludes the proof of Theorem 5.5.

Appendix B. Horizontal rigidity of “triangulated” graphs

This section is dedicated to a proof of Theorem 4.7. Consider, for x ∈ H, the
total length

L(x) =
1

2

∑
h∈H

‖xh‖.



GLUING SADDLE TOWERS I: TPMS 37

If P hor(χ) = 0, so that χ = grad f , we have

DL(x◦) · χ =
1

2

∑
h∈H

1

‖x◦h‖
〈x◦h, fv(−h) − fv(h)〉

=−
∑
h∈H

1

‖x◦h‖
〈x◦h, fv(h)〉 (using h→ −h for fv(−h))

=−
∑
v∈V

∑
h∈b(v)

1

‖x◦h‖
〈x◦h, fv〉

=−
∑
v∈V
〈F hor
b(v), fv〉.

We have proved that

Proposition B.1. The graph is balanced if and only if x◦ is a critical point of L
restricted to those x ∈ A such that P hor(x) = P hor(x◦).

Assume that F hor(x◦) = 0 and let χ = grad(f) be in the kernel of (DF hor(x◦), P hor).
Differentiating the above equation

D2L(x◦) · (χ, χ) = −
∑
v∈V
〈DF hor

b(v)(x
◦) · χ, fv〉 = 0.

On the other hand, a direct computation gives

D2L(x◦) · (χ, χ) =
1

2

∑
h∈H

1

‖x◦‖3
(
‖x◦h‖2‖χh‖2 − 〈x◦h, χh〉2

)
.

The summands are all non-negative, hence must be all zero, which means that χh
is parallel to x◦h for all h ∈ H.

If all faces have 2 or 3 edges, this implies that χh = λx◦h for some λ ∈ R. Then
P hor
c1 (χ) = λT1 = 0 implies λ = 0 and χ = 0, which proves Theorem 4.7.

Appendix C. Classification of balanced configurations of genus 3

As promised in Section 7.1, we prove the following Classification Theorem.

Theorem C.1. The Meeks, aG, aH, and aI configurations in Figure 6 are the only
balanced configurations whose graphs are orientable with two faces. Hence they are
the only possible configurations that give rise to TPMSs of genus 3.

Proof. If a configuration gives rise to a TPMS of genus three, its graph must have
two faces. By Euler’s formula, the average degree of the graph is

2|E|/|V| = 2(|V|+ |F|)/|V| = 2 + 4/|V|.
By Assumption 3.6, the average degree is at least 4, hence the graph has at most 2
vertices. We discuss two cases

|V| = 1, |E| = 3: Then all edges are loops. Since edges are represented by straight
segments, no loop is null-homologous. If two loops are homologous, they
must be parallel, and represented by the same segment that cuts the torus
into an annulus. To form a 2-cell embedding, the remaining edge must be
in a different homology class. But then, it is impossible to orient the half-
edges alternately incoming and outgoing around the vertex, contradicting
the orientability.

So we have three pairwise non-homologous simple loops. They only
intersect at the vertex, hence any two of them form a homology basis, and
the remaining loop must be homologous to their concatenation. So the
graph must be homeomorphic to that of the aH.
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Any configuration with this graph is trivially balanced because all edges
are loops. It is also trivially rigid as there is only one vertex, so the cut
space is trivial.

|V| = 2, |E| = 4: We first prove that such a graph has no loop. The graph is con-
nected, hence the edges can not be all loops. If exactly one or three edges
are loops, the degree of a vertex will be smaller than 4, contradicting As-
sumption 3.6. If exactly two edges are loops, they must be adjacent to
different vertices. So they divide the torus into two annuli. Since the graph
is represented as a limit of 2-cell embeddings, the remaining edges must
lie in different annuli. But then, it is impossible to orient the half-edges
alternately incoming and outgoing around each vertex, contradicting the
orientability. This proves that none of the edges is a loop.

So we have four edges between two vertices. Any two of the edges form
a cycle. If some of these cycles are null-homologous, we will have parallel
edges. If at most one edge is simple, it is not possible to form a 2-cell
embedding. If exactly two edges are simple, the only 2-cell embedding does
not have a proper orientation.

So we have four simple edges between two vertices. Then the graph
must be as shown in Figure 11. This graph is balanced if and only if the
half-edges form two collinear pairs around each vertex. So if one vertex is
at 0, the other vertex must lie at a 2-division point.

By the period condition (6), the phase function must be of the form

c−Ψ2/2, c+ Ψ2/2, c+ Ψ1 + Ψ2/2, , c+ Ψ1 −Ψ2/2

on the half-edges around a vertex, where Ψ1 and Ψ2 are the fundamental
shifts. See Figure 11.

0 T1

T2

c−
Ψ

2
/2

c+
Ψ

1
+
Ψ

2
/2

−
c−

Ψ
1 +

Ψ
2 /

2

−
c−

Ψ
2 /

2

Figure 11

If arg(T2/T1) 6= π/2, the shortest edges of the graph form a collinear
pair. Assuming arg(T2/T1) < π/2 as in Figure 11, then the phase function
is balanced if and only if

sin(c+ Ψ1/2) = 0 or cos
Ψ2 −Ψ1

2
= 0.

The solution Ψ1 = −2c gives Meeks’ configuration which is generically rigid.
The solution Ψ2 − Ψ1 = π gives the aI configurations, which is not rigid
because c remains a free variable.

If arg(T2/T1) = π/2, the phase function is balanced if and only if

sin c+ sin(c+ Ψ1) = 0 or cos(Ψ2/2) = 0.
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The solution Ψ1 = −2c gives again Meeks’ configurations. The solutions
Ψ1 = π and Ψ2 = π give the aG configurations, which is not rigid because
c remains a free variable.

�

Appendix D. Integral of a holomorphic 1-form through a neck

To prove Lemma 8.3, we first prove a general result, Theorem D.1 below. This
was in fact proved in [Tra02b, Lemma 1] and has been used in several papers, but
was not clearly stated as an independent result and the value at t = 0 was not
explicitly given.

Fix some numbers 0 < ε1 < ε. For t ∈ C such that 0 < |t| < ε2, let At ⊂ C be the
annulus |t|/ε < |z| < ε and ψt : At → At be the involution defined by ψt(z) = t/z.
Let βt be the curve from ε1 to t/ε1 parameterized for s ∈ [0, 1] by

βt(s) = ε1−2s
1 ts.

Note that βt depends on the choice of the argument of t. Let γ be the circle
parameterized by γ(s) = ε1e

2πis.

Theorem D.1. Let ωt be a family of holomorphic 1-forms on At, depending holo-
morphically on t ∈ D∗(0, ε2), and let ω̃t = ψ∗t ωt. Define

αt =
1

2πi

∫
γ

ωt = − 1

2πi

∫
γ

ω̃t.

Assume that

lim
t→0

ωt = ω0 and lim
t→0

ω̃t = ω̃0

where ω0 and ω̃0 are holomorphic in D∗(0, ε) with at most simple poles at z = 0,
and the limit is uniform on compact subsets of D∗(0, ε).

Then
∫
βt
ωt − αt log t is a well-defined holomorphic function of t 6= 0 which

extends holomorphically at t = 0. Moreover, its value at t = 0 is

lim
z→0

[(∫ z

ε1

ω0

)
− α0 log z

]
− lim
z→0

[(∫ z

ε1

ω̃0

)
+ α0 log z

]
.

Proof. If arg(t) is increased by 2π, the homotopy class of βt is multiplied on the
left by γ, so

∫
βt
ωt is increased by 2πiαt. On the other hand, log t is increased by

2πi, so the difference
∫
βt
ωt − αt log t is a well-defined holomorphic function of t in

D∗(0, ε2). Using the change of variable rule, we write

(32)
(∫

βt

ωt

)
− αt log t =

[(∫ √t
ε1

ωt

)
− αt log

√
t

]
−
[(∫ √t

ε1

ω̃t

)
+ αt log

√
t

]
.

To estimate the first term, we fix ε1 < ε2 < ε and expand ωt in Laurent series in
the annulus At as

ωt =
∑
n∈Z

an(t)zn−1dz

with a0(t) = αt and

an(t) =
1

2πi

∫
|z|=ε2

z−nωt =
−1

2πi

∫
|z|=ε2

ψ∗t (z−nωt) =
−1

2πi

∫
|z|=ε2

t−nznω̃t.

Since ωt and ω̃t are uniformly bounded on the circle |z| = ε2, this gives the esti-
mates, for n > 0 and a uniform constant C,

(33) |an(t)| ≤ C

(ε2)n
and |a−n(t)| ≤ C|t|n

(ε2)n
.
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Then we have(∫ √t
ε1

ωt

)
−αt log

√
t = −αt log ε1 +

∞∑
n=1

[
an
n

(
tn/2−(ε1)n

)
− a−n

n

(
t−n/2−(ε1)−n

)]
.

Using the estimates (33) and ε1 < ε2, it is straightforward to check that the sum is
uniformly bounded with respect to t and that we have

lim
t→0

[(∫ √t
ε1

ωt

)
− αt log

√
t

]
= −α0 log ε1 −

∞∑
n=1

an(0)

n
εn1 .

On the other hand, we have∫ z

ε1

ω0 = α0 log

(
z

ε1

)
+

∞∑
n=1

an(0)

n
(zn − (ε1)n)

so

(34) lim
t→0

[(∫ √t
ε1

ωt

)
− αt log

√
t

]
= lim
z→0

[(∫ z

ε1

ω0

)
− α0 log z

]
.

The second term in (32) is estimated in the exact same way, leading to

(35) lim
t→0

[(∫ √t
ε1

ω̃t

)
+ αt log

√
t

]
= lim
z→0

[(∫ z

ε1

ω̃0

)
+ α0 log z

]
.

The function
∫
βt
ωt−αt log t is bounded so extends holomorphically at t = 0 by Rie-

mann Extension Theorem. The last point of Theorem D.1 follows from Equations
(32), (34) and (35). �

Proof of Lemma 8.3. Recall the definition of the path Bh just before Lemma 8.3.
On path number (1), ωt depends holomorphically on th in a neighborhood of 0 so∫ wh=δ

Ov(h)

ωt

is a holomorphic function of th in a neighborhood of 0. Same for path number (3).
Regarding path number (2) we write

(36)
(∫ wh=th/δ

wh=δ

ωt

)
− αh log th =

(∫ th/δ

δ

(w−1
h )∗ωt

)
− αh log th

and we apply Theorem D.1 to the 1-form (w−1
h )∗ωt with ε1 = δ, t = th, observing

that

ψ∗th(w−1
h )∗ωt = ((ψth ◦ wh)−1)∗ωt = (w−1

−h)∗ωt

so the hypotheses of Theorem D.1 are satisfied. Hence (36) extends holomorphically
at th = 0 and its value there is

lim
z→0

[(∫ z

δ

(w−1
h )∗ω0

)
− αh log z

]
− lim
z→0

[(∫ z

δ

(w−1
−h)∗ω0

)
− α−h log z

]
= lim
z→ph

[(∫ z

wh=δ

ω0

)
− αh logwh(z)

]
− lim
z→p−h

[(∫ z

w−h=δ

ω0

)
− α−h logw−h(z)

]
.

Adding the three terms gives Lemma 8.3.
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