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Abstract. We point out an interesting connection between fluid dynamics

and minimal surface theory: When gluing helicoids into a minimal surface, the
limit positions of the helicoids correspond to a “vortex crystal”, an equilibrium

of point vortices in 2D fluid that move together as a rigid body. While vortex

crystals have been studied for almost 150 years, the gluing construction of
minimal surfaces is relatively new. As a consequence of the connection, we

obtain many new minimal surfaces and some new vortex crystals by simply

comparing notes.

In 2005, Traizet and Weber [TW05] glued helicoids into screw-motion invariant
minimal surfaces with helicoidal ends. For the glue construction to succeed, the
limit positions of the helicoids must satisfy a balancing condition and a nondegen-
erate condition. For simplicity, they assumed that the helicoids are aligned along a
straight line, and noticed that the roots of Hermite polynomials provide examples
of balanced and nondegenerate configurations. Recently, the second named author
implemented a similar construction without this assumption [Fre21].

The main goal of this short note is to point out an interdisciplinary connection:
The balanced configurations of helicoids correspond to binary vortex crystals. Here,
a vortex crystal [ANS+03], also known as vortex equilibrium, is a configuration of
vortices in 2D fluids that moves as a rigid body, i.e. without any change of shape and
size. A vortex crystal is binary if the circulations of vortices are ±1. We will recall
vortex dynamics in Section 1. For an example of this connection: the “definite”
configurations in [TW05], given by roots of Hermite polynomials, correspond to
vortex crystals that trace back to 19th century [Sti85].

Rotating vortex crystals correspond to screw-motion invariant minimal surfaces;
this connection was readily established in [TW05,Fre21]. Our main results in Sec-
tion 2 establish the other cases of the claimed connection. The construction will
be given in Section 4, where we glue helicoids into translation-invariant minimal
surfaces, corresponding to translating or periodic stationary vortex crystals. The
construction will only be sketched because similar constructions have been repeated
many times in the literature [Tra08a,Tra08b,CT21].

In view of the connection, we will compare notes between fluid dynamics and
minimal surface theory, and obtain new examples in Section 3 for both vortex
crystals and minimal surfaces. The minimal surface theory would benefit a lot
because, in about 150 years, the fluid dynamics community has accumulated a
large collection of examples of binary vortex crystals. In particular, stationary and
translating vortex crystals have been analytically obtained with the help of Adler–
Moser polynomials. When symmetries are imposed, nondegeneracy was recently
verified for translating Adler–Moser examples [LW20]. They then lead to many
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examples. On the other hand, the idea to glue helicoids into minimal surfaces is
only about 18 years old. Nevertheless the minimal surface community is also in
possession of a few examples that would lead to new vortex crystals.

Remark 1. Minimal surfaces obtained by gluing helicoids find applications in nat-
ural sciences as models for topological defects (screw dislocations) in layered struc-
tures such as smectic liquid crystals [KS06,SK07,MKS12], biological membranes [TSK+13]
and nuclear pasta [HBB+15,SBC+16].

Acknowledgement. H. Chen is grateful to Prof. Yong Liu for inspiring discus-
sions.

1. Vortex dynamics

We recommend [ANS+03] for general reference on vortex crystals.
Incompressible and inviscid flow in zero gravity is governed by the Euler equation

(1)
( ∂
∂t

+ u · ∇
)
u = −∇p

under the incompressible condition ∇ · u = 0, where u is the flow velocity field and
p is the pressure. The pressure term can be eliminated by taking the curl of the
Euler equation, which results in the reformulation

(2)
( ∂
∂t

+ u · ∇
)
w = w · ∇u

in terms of the vorticity field w := ∇× u. For 2-dimensional flows, the right-hand
side of (2) vanishes, giving the transport equation( ∂

∂t
+ u · ∇

)
w = 0.

We see that vorticity is transported in the velocity field as material elements.
A point vortex in the plane is given by the vorticity field

w(x) =
σ

2π
δ(x),

where δ is the Dirac delta function, and σ ∈ R is the circulation of the vortex. In
the complex coordinate, a point vortex gives rise to a velocity field

u(z) =
1

2πi

σ

z
.

We use (pk, σk)1≤k≤n to denote a configuration of n point vortices located at pk
with circulation σk, k = 1, · · · , n. Each vortex is advected as a material particle
by the velocity field produced by other vortices. So the dynamics of the vortex
configuration is governed by the ordinary differential equation

(3)
d

dt
pj =

1

2πi

∑
k 6=j

σk
pj − pk

, ∀1 ≤ j ≤ n.

We say that the configuration (pk, σk)1≤k≤n is a vortex crystal if it moves as a rigid
body. If this is the case, we have dpj/dt = v + iωpj , where v ∈ C and ω ∈ R are
constant for all vortices. Hence vortex crystals are characterized by the algebraic
equations

(4) Fj := −v + iωpj +
1

2πi

∑
k 6=j

σk
pj − pk

= 0, ∀1 ≤ j ≤ n.

Multiply (4) by σj , and sum the conjugates over j, we obtain

(5) v

n∑
j=1

σj + iω

n∑
j=1

σjpj = 0.
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Multiply (4) by σjpj , and take the sum over j, we obtain

(6) v

n∑
j=1

σjpj − iω

n∑
j=1

σj |pj |2 =
1

4πi

[( n∑
k=1

σk

)2

−
n∑
k=1

σ2
k

]
.

In this paper, we only consider binary vortex crystals, so σk = ±1. Let n± be,
respectively, the number of vortices with circulation ±1, and write m = n+−n− =∑
σk. We distinguish three cases,

(1) We say that the vortex crystal is rotating if ω 6= 0. In this case, the
governing equation (4) is invariant under Euclidean rotations. Moreover,
we may assume that v = 0 up to a translation, and that ω = 1 up to a
Euclidean scaling. After these normalizations, (5) and (6) give

n∑
k=1

σkpk = 0 and

n∑
k=1

σk|pk|2 =
m2 − n

4π
.

(2) We say that the vortex crystal is translating if ω = 0 but v 6= 0. Then (5)
implies that m = 0 so n+ = n− = n/2. In this case, (4) is invariant under
translations. We may assume that v = 1 up to a complex scaling (Euclidean
scaling and rotation). After this normalization, (6) implies that

n∑
k=1

σkpk = − n

4πi
.

(3) We say that the vortex crystal is stationary if ω = 0 and v = 0. Then (6)
implies that m2 = n, hence n+ and n− must be successive triangular num-
bers. In this case, (4) is invariant under Euclidean similarities (translations,
rotations, and scalings).

A vortex crystal is said to be stable if any sufficiently small perturbation does not
diverge. Linear and nonlinear analyses have been carried out on the stability. We
say that a vortex crystal is nondegenerate1 if the Jacobian matrix DF = (∂Fi

∂pj
)i,j

for the autonomous system (3) has the maximum possible rank. We have seen that,
for a rotating (resp. translating, stationary) vortex crystal, the dynamics is invari-
ant under Euclidean rotations (resp. translations, similarities), so the maximum
possible real rank of its Jacobian is 2n− 1 (resp. 2n− 2, 2n− 4).

We may also consider singly or doubly periodic vortex crystals. In this case, it is
convenient to consider a co-rotating reference frame in which the periods are fixed.
Then the vortex crystal is either translating or stationary.

• Assume that the vortex crystal is singly periodic, i.e. invariant under a single
translation T ∈ C. Up to rotations and scalings, we may fix T = 1. Then
the vortices can be seen as lying in the annulus C/〈1〉. Up to translations,
a vortex crystal in the annulus is governed by

Fj := −v +
1

2πi

∑
k 6=j

πσk cotπ(pj − pk) = 0, ∀1 ≤ j ≤ n

in an appropriate reference frame.
• Assume that the vortex crystal is doubly periodic, i.e. invariant under two

linearly independent translations T1 and T2. Up to rotations and scalings,
we may fix T1 = 1 and T2 = τ ∈ C. Then the vortices can be seen as lying

1In fluid dynamics literature, degenerate vortex crystals were often said to be “neutrally
stable”.
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in the flat torus C/〈1, τ〉. Up to translations, a vortex crystal in the torus
is governed by

Fj := −v +
1

2πi

∑
k 6=j

σk
(
ζ(pj − pk; τ)− ξ(pj − pk; τ)

)
= 0, ∀1 ≤ j ≤ n

in an appropriate reference frame, where ζ(z; τ) is the Weierstrass zeta
function on the torus C/〈1, τ〉 and ξ(z; τ) = 2xζ(1/2; τ) + 2yζ(τ/2; τ) with
z = x+ yτ , x, y ∈ R.

In either case, the maximum possible real rank of the Jacobian is 2n− 2, which
defines the degeneracy of these vortex crystals.

2. Main results

The connection between rotating vortex crystals and screw-motion invariant min-
imal surfaces was already established in the following theorem [Fre21].

Theorem 1 (Rotating vortex crystal). Let (p◦k, σk)1≤k≤n be a normalized nonde-
generate rotating vortex crystal with n vortices at p◦1, . . . , p◦n ∈ C. Then there
exists a one-parameter family (Mε)0<ε<δ of embedded minimal surfaces in R3 such
that:

(1) Mε admits a screw symmetry Sε composed of a vertical translation 2π(0, 0, 1)
and a rotation around the vertical axis by an angle 2πε2.

(2) The quotient Mε/Sε is of genus n − 1 and has two ends. The ends are
helicoidal if m =

∑
σk 6= 0, or planar if m = 0.

(3) As ε→ 0, up to a translation, Mε converges to a helicoid of period (0, 0, 2π)
in the neighborhood of (p◦i /ε, 0) for each 1 ≤ i ≤ n. The helicoid is right-
handed (resp. left-handed) if σi = 1 (resp. −1).

(4) After rescaling the horizontal coordinates by ε, the resulting surface (no
longer minimal) converges to the union of the multigraph of the multivalued
function

f(z) =

n∑
i=1

σi arg(z − p◦i ), z ∈ C− {p◦1, · · · , p◦n},

the multigraph of f(z) + π, and vertical lines over the points p◦i .

So we only need to construct translation invariant minimal surfaces, correspond-
ing to translating or stationary vortex crystals. More specifically, we will prove the
theorems below.

Theorem 2 (Finite translating vortex crystals). Let (p◦k, σk)1≤k≤n be a nondegen-
erate translating vortex crystal normalized with velocity v = 1, with n vortices at
p◦1, . . . , p◦n ∈ C. Then there exists a one-parameter family (Mε)0<ε<δ of embedded
minimal surfaces in R3 such that:

(1) Mε admits a translational symmetry T0,ε = 2π(−2πε, 0, 1). So Mε is a
singly periodic minimal surface in R3.

(2) The quotient Mε/T0,ε is of genus n − 1 and has two helicoidal ends if the
vortex crystal is translating;

(3) As ε→ 0, up to a translation, Mε converges to a helicoid of period (0, 0, 2π)
in the neighborhood of (p◦i /ε, 0) for each 1 ≤ i ≤ n. The helicoid is right-
handed (resp. left-handed) if σi = 1 (resp. −1).

(4) After rescaling the horizontal coordinates by ε, the resulting surface (no
longer minimal) converges to the union of the multigraph of the multivalued
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function

f(z) =

n∑
i=1

σi arg(z − p◦i ), z ∈ C− {p◦1, · · · , p◦n},

the multigraph of f(z) + π, and vertical lines over the points p◦i .

Unfortunately, we are aware of very few finite, nondegenerate, translating vortex
crystals; see Examples 5. So the theorem above does not bring us many examples.

We will need a version of the theorem with imposed symmetry. For a vortex
crystal, a circulation-preserving (resp. -reversing) symmetry is a Euclidean isometry
that maps vortices to identical (resp. opposite) vortices. When a symmetry group
is imposed, the vortex crystal is said to be nondegenerate if the only perturbations
that preserve the balance as well as the symmetry are the trivial ones, namely
Euclidean translations for translating vortex crystals.

Theorem 3 (Vortex crystals with imposed symmetry). Let (p◦k, σk)1≤k≤n be a
normalized translating vortex crystal with n vortices at p◦1, . . . , p◦n ∈ C. Let G
be a symmetry group of (p◦k, σk). If the vortex crystal is nondegenerate with the
symmetry group G imposed, then the conclusion of Theorem 2 holds. Moreover, the
symmetry group G induces a symmetry group of the resulting minimal surfaces.

In particular, a circulation-reversing reflection in the vortex crystal induces an
order-2 rotational symmetry around a straight line in the minimal surface, and
a circulation-preserving reflection induces a reflection symmetry for the minimal
surface.

Remark 2. We did not manage to establish a similar connection between singly
periodic minimal surfaces and finite stationary vortex crystals. See Remark 6 for
detailed explanation.

Periodic vortex crystals will give rise to doubly or triply periodic minimal sur-
faces, as stated in the following theorems.

Theorem 4 (Singly periodic vortex crystals). Let (p◦k, σk)1≤k≤n be a nondegenerate
vortex crystal with n vortices at p◦1, . . . , p◦n ∈ C/〈1〉. Then there exists a one-
parameter family (Mε)0<ε<δ of embedded minimal surfaces in R3 such that:

(1) Mε admits translational symmetries along the vectors

T0,ε = 2π(εRe ν, ε Im ν, 1) and T1,ε = (ε−1, 0,mπ),

where m =
∑
σk, ν is related to the velocity v of the translating vortex

crystal by ν = −2πv, and ν = 0 if the vortex crystal is stationary. So Mε

is a doubly periodic minimal surface.
(2) The quotient Mε/〈T0,ε, T1,ε〉 is of genus n − 1 and has four Scherk ends

(asymptotic to half-planes).
(3) The flux vector along any closed curve in Mε/〈T0,ε, T1,ε〉 has no vertical

component.
(4) As ε → 0, up to a translation, Mε/〈T1,ε〉 converges to a helicoid of period

(0, 0, 2π) in the neighborhood of (p◦i /ε, 0) for each 1 ≤ i ≤ n. The helicoid
is right-handed (resp. left-handed) if σi = 1 (resp. −1).

Recall that the flux vector along a closed curve Γ is defined as the integral of
the conormal vector along Γ [PR93]. It can be physically interpreted as the surface
tension force along the curve.

Theorem 5 (Doubly periodic vortex crystals). Let (p◦k, σk)1≤k≤n be a nondegen-
erate vortex crystal with n vortices at p◦1, . . . , p◦n ∈ T = C/〈1, τ〉. Assume that
m =

∑
σk = 0. Then there exists a one-parameter family (Mε)0<ε<δ of embedded

minimal surfaces in R3 such that:
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(1) Mε admits a translational symmetry along the vectors

T0,ε = 2π(εRe ν, ε Im ν, 1),

T1,ε = (ε−1, 0,Ψ1(ε)),

T2,ε = (ε−1 Re τ, ε−1 Im τ,Ψ2(ε)),

where ν is related to the velocity v of the translating vortex crystal by ν =
−2πv, and ν = 0 if the vortex crystal is stationary. So Mε is a triply
periodic minimal surface.

(2) The quotient Mε/〈T0,ε, T1,ε, T2,ε〉 is of genus n+ 1.
(3) The flux vector along any closed curve in Mε/〈T0,ε, T1,ε, T2,ε〉 has no vertical

component.
(4) As ε → 0, up to a translation, Mε/〈T1,ε, T2,ε〉 converges to a helicoid of

period (0, 0, 2π) in the neighborhood of (p◦i /ε, 0) for each 1 ≤ i ≤ n. The
helicoid is right-handed (resp. left-handed) if σi = 1 (resp. −1). Moreover,
we have

Ψ1(ε)→ −2πy and Ψ2(ε)→ 2πx as ε→ 0,

where (x, y) ∈ R2 are defined by
∑
σkpk = x+ yτ .

Remark 3. In the Theorems, the surface is rotated into a position so that the flux
vectors are horizontal. We find this choice best to reveal the connection to vortex
crystals. The price is that Ψ1 and Ψ2 are left to vary with ε. One could also rotate
the surface to fix Ψ1 = Ψ2 ≡ 0. Then the flux vectors are not horizontal, and the
connection to vortex crystals is less direct.

3. Examples

The study on vortex crystals traces back to about 150 years ago, and has accu-
mulated plenty of examples, many of which are binary hence would imply minimal
surfaces. A nice survey of these examples is provided by Aref et al. [ANS+03]. Here,
we examine the known vortex crystals and their corresponding minimal surfaces.
Occasionally, we also have minimal surfaces that lead to new vortex crystals.

Example 1 (Linear configuration). Traizet and Weber [TW05] considered configu-
rations of helicoids along a straight line. In particular, when p◦i , 1 ≤ i ≤ n, are the
roots of Hn, the Hermite polynomial of degree n, and σi = −1 for all i, then the
configuration (p◦i , σi)1≤i≤n is balanced and nondegenerate. In fluid dynamics, the
corresponding rotating vortex crystal was first found by Stieltjes in 1885 [Sti85],
and has been rediscovered and revisited many times [Sze59,Mar49,EFN51].

Traizet and Weber [TW05] also considered a configuration with n = 2m + 1
helicoids, m + 1 of which lie at the roots of Hm+1 and have positive handedness,
and the remaining m lie at the roots Hm and have negative handedness. This
configuration is proved to be balanced and nondegenerate. We are not aware of
any discussion of corresponding vortex crystals in the fluid dynamics community.
So this is a new example of vortex crystal inspired by the minimal surfaces. �

Example 2 (Polygonal configuration). A Karcher–Scherk tower with 2n wings can
be twisted into a configuration of n negatively handed helicoids lying at the vertices
of a regular polygon; see Figure 1 and [Fre21, Prop. 8.11]. The Fischer–Koch
surfaces can be twisted into a similar configuration, only with an extra helicoid,
positively or negatively handed, at the center of the polygon; see [Fre21, Prop. 8.13].

The corresponding rotating vortex crystals were first investigated by Thomson
in 1883 [Tho82]. In particular, he famously proved that identical vortices at the
vertices of a regular n-gon is linearly stable if n ≤ 6, and linearly unstable if n ≥ 8,
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Figure 1. Left: A twisted Karcher–Scherk tower of six wings
near the limit consisting of three helicoids at the vertices of
an equiangular triangle (source: 3D-XplorMath Minimal Surface
Gallery). Right: Thomson’s vortex polygons seen in superfluid
Helium [YGP79].

and “neutrally stable” if n = 7. The proof was improved and modified many
times [Hav31,Dri85,Are95].

For our minimal surfaces, this stability analysis means that the Helicoid limit of
twisted Scherk surface is nondegenerate for n 6= 7, for which Theorem 2 applies.
The n = 7 case is degenerate, but becomes nondegenerate if we impose the dihedral
symmetry of the heptagon [Fre21], so Theorem 3 applies. Even without imposed
symmetry, it was proved that the nonlinear stability still holds for n = 7 [KY02],
so a more elaborated version of the implicit function theorem might apply. �

Example 3 (Nested polygonal configurations). Fluid dynamists also investigated
vortex crystals where vortices lie on the vertices of several concentric regular poly-
gons [Hav31,CZ78,AvB05]. In some cases, e.g. when the vortices lie on two concen-
tric polygons, with or without an extra vortex at the center, an algebraic approach
is possible. However, we are not aware of any systematic investigation on such
configurations.

This line of research overlaps with [Fre21], where the second named author con-
sidered configurations with dihedral symmetry, and helicoids all lie on the symmetry
lines (including the center). Each dihedral configuration of helicoids can be seen as
corresponding to a nested polygonal vortex crystal.

For instance, the Callahan-Hoffman-Meeks surface [CHM89] can be deformed to
a helicoid limit where the segment between the two positively handed helicoids and
the segment between the two negatively handed helicoids bisect each other per-
pendicularly. This corresponds to a vortex crystal where vortices lie on concentric
2-gons. �

Example 4 (Numerical examples). Campbell and Ziff [CZ78, CZ79] have obtained
numerical examples of vortex crystals, and claimed to have found linearly stable
configurations with up to 30 identical vortices. Their 1978 report is often referred to
as the Los Alamos Catalog. Many of their examples were experimentally observed
in superfluid Helium [YGP79]; see Figure 1, right. By our connection, they all
correspond to screw-motion invariant minimal surfaces.

In many of their examples, the vortices seem to lie on concentric rings, but this
impression is not precise. Rather, all their examples admit an axis of symmetry.
Asymmetric examples were not found until [AV98]. �

Example 5 (Translating vortex crystal). A translating vortex crystal must consist
of an even number n of vortices, with n/2 positive vortices and n/2 negative ones.
The simplest case is a pair of opposite vortices, corresponding to Riemann minimal
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Figure 2. Top: A Riemann minimal example near the limit
consisting of a pair of opposite helicoids (source: 3D-XplorMath
Minimal Surface Gallery). Bottom: A pair of opposite vortices
seen in a cross-section of the vortex sheet behind a wing. (source:
H. Bipps [vD82, p. 50]).

examples; see Figure 2. Surprisingly, there is no solution for n/2 = 2. Some
examples for n/2 = 3 and n/2 = 6 can be found in [KC87].

More generally, when n/2 = j(j+1)/2 is a triangular number, binary translating
vortex crystals have been found [Bar84, CK87, Cla09] with positive vortices at the
roots of a j-th Adler–Moser polynomial Θj , and negative vortices at the roots of

the corresponding modified Adler–Moser polynomial Θ̃j .
The Adler–Moser polynomial Θj(z) actually depends on m complex parameters

κ1 = z, κ2, . . . , κj . Changing these parameters preserves the balance. In fact, these
perturbations are linearly independent and span the kernel of the Jacobian [LW20].
As a consequence, the Adler–Moser translating configurations are degenerate except
for the trivial case n = 2.

However, under the assumption that Θj has only simple roots, these config-
urations are proved to be nondegenerate [LW20] if we impose (up to Euclidean
motions) a reflection symmetry in the real axis that preserves circulations and a
reflection symmetry in the imaginary axis that reverses circulations. In fact, this
symmetry is realized by a unique choice of parameters κ2, . . . , κj . With this choice,
the assumption that Θj has only simple roots is verified for j ≤ 34 [LW20].

By Theorem 3, these symmetric translating Adler–Moser configurations give
rise to singly periodic minimal surfaces. The reflection in the real axis becomes a
rotational symmetry in the x-axis, and the reflection in the imaginary axis becomes
a reflection in the yz-plane. See Figure 3 for an example with n/2 = 6. �

Example 6 (Singly periodic vortex crystals). The doubly periodic Scherk surface
can be deformed to a periodic helicoid limit. It corresponds to a singly periodic
vortex crystal with a single vortex in the period.

The famous vortex street of von Kármán [vK12], and more general cases of
Dolaptschiew and Maue [Mau40], are the only singly periodic vortex crystals with
two (opposite) vortices in the period. They correspond to the helicoid limits of
Karcher–Meeks–Rosenberg surfaces [Kar88,MR88]. See Figure 4. �
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Figure 3. Left: An Adler–Moser translating vortex crystal with
n/2 = 6. Middle: Top view of a singly periodic minimal surface
arising from the corresponding helicoid configuration. Right: Side
view of the same minimal surface.

Figure 4. Top: A doubly periodic Karcher–Meeks–Rosenberg
surface near the limit consisting of a row of alternating helicoids
(source: 3D-XplorMath Minimal Surface Gallery). Bottom: A
von-Kármán vortex street. (source: Sadatoshi Taneda [vD82, p.
57]).

Example 7 (Doubly periodic vortex crystals). If a doubly periodic vortex crystal
has two vortices in the period, they must be of opposite circulations. Such a
configuration is generically nondegenerate. They give rise to triply periodic minimal
surfaces of genus 3 (TPMSg3); see Figure 5 for an example. In fact, our construction
will assume an orientation-reversing translation, hence the produced examples must
all belong to the 5-parameter family of TPMSg3s constructed by Meeks [Mee90]. �

4. Sketched construction

In [TW05,Fre21], the main technical issue was the multivaluedness of the Weier-
strass data. For translating invariant minimal surfaces, the Weierstrass data is
single-valued, so the construction is much easier. The construction below is adapted
from [Tra08a]. This approach has been repeated many times in the literature [Tra08a,
Tra08b, CT21] and is only simpler in our context; hence we will only present a
sketch.
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Figure 5. Left: A triply periodic rPD surface near the limit
consisting of helicoids arranged in a hexagonal lattice (source:
Matthias Weber). Right: A doubly periodic vortex crystal
seen in the wake behind a row of cylinders. (source: Toshio
Kobayashi [JSME84, p. 43]).

4.1. Weierstrass data. Let Σ+ be

• the Riemann sphere Ĉ = C ∪ {∞} if the vortex crystal is finite;
• the annuli C/〈1〉 if the vortex crystal is singly periodic;
• the torus T+ = C/〈1, τ+〉 if the vortex crystal is doubly periodic.

Moreover, let Σ− be

• Another copy of Σ+ if the vortex crystal is finite or singly periodic;
• the torus T− = C/〈1, τ−〉 if the vortex crystal is doubly periodic.

Consider n points p = (pk)1≤k≤n in Σ+ and n points q = (qk)1≤k≤n in Σ−.
The node-opening is parameterized by n complex numbers t = (tk)1≤k≤n. If

t = 0, we identify pk ∈ C+ and qk ∈ C− to form a node. The resulting singular
Riemann surface with nodes is denoted Σ0. If t 6= 0, we open the nodes as follows.
Let z± be the standard coordinates of C±. Consider local coordinates w+

k = z+−pk
in the neighborhood of pk and w−k = z−−qk in the neighborhood of qk. Fix a small

δ > 0 such that the disks |w±k | < δ are all disjoint. Then for every 1 ≤ k ≤ n, we
remove the disk |wk,±| < |tk|/δ, and identify the annuli

|tk|/δ ≤ |w+
k | ≤ δ and |tk|/δ ≤ |w−k | ≤ δ

by

w+
k w
−
k = tk.

This produces a Riemann surface that we denote Σt.
We construct the minimal surface using the Weierstrass parameterization

Σt 3 z 7→ Re

∫ z

z0

(
φ1, φ2, φ3)

where φ1, φ2, and φ3 are meromorphic forms on Σt satisfying the conformality
condition

(7) Q = φ2
1 + φ2

2 + φ2
3 = 0.

Then the flux vector along a closed curve Γ is given by [PR93]

Im

∫
Γ

(φ1, φ2, φ3) .
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4.2. Equations. We define

Ω± = {z ∈ Σ± | |w±k | > δ for all 1 ≤ k ≤ n}.

Let Ak be an anticlockwise circle in Ω+ around pk and A′k be an anticlockwise circle
in Ω− around qk. Note that Ak is homologous in Σt to −A′k. Let Bk be a cycle in
Σε which goes “half-way up” from Σ+ to Σ− through the helicoind near p1 then
“half-way down” through the helicoid near pk, as in [Fre21]. We need to solve the
period problems

Re

∫
Ak

(φ1, φ2, φ3) = 2πσk(εRe ν, ε Im ν, 1),

Re

∫
Bk

(φ1, φ2, φ3) = (0, 0, 0).(8)

We close the A-period by defining φ’s as the unique meromorphic forms satisfying∫
Ak

(φ̃1, φ̃2, φ̃3) = 2πi(αk − iσkε
2 Re ν, βk − iσkε

2 Im ν, γk − iσkε),

where φ̃i := εφi are the rescaled Weierstrass data. Depending on the type of the
vortex crystal, we also require the following

• if the vortex crystal is finite and translating, we want φ̃1 and φ̃2 to have double
poles at ∞±. Up to rotations and scalings, we assume that

(9) φ̃1 ∼ dz± +O(z−2
± )dz± and φ̃2 ∼ ∓idz± +O(z−2

± )dz± at ∞±.

On the other hand, since the minimal surfaces have planar ends, φ̃3 must be
holomorphic at ∞±. Consequently, we must have m =

∑
σk = 0.

• if the vortex crystal is singly periodic, let A± ⊂ Σ± be the segments {t ∓ Ki |
0 ≤ t ≤ 1}, where K > | Im pk| and K > | Im qk| for all k. We want that

Re

∫
A±

(φ̃1, φ̃2, φ̃3) = (1, 0, εmπ).

So we require that∫
A±

(φ̃1, φ̃2, φ̃3) = (1 + iα±, iβ±, εmπ + iγ±).

The flux vectors (α±, β±, γ±) (or rather their inverse) can be physically inter-
preted as the surface tension forces along the Scherk ends. Up to a rotation
around the x-axis (corresponding to the real axis), we may assume that γ+ ≡ 0.

• if the vortex crystal is doubly periodic, let A± ⊂ Ω± be curves homologous in Σ±
to the segment from 0 to 1, and B± ⊂ Ω± be curves homologous to the segment
from 0 to τ±. We want that

Re

∫
A±

(φ̃1, φ̃2, φ̃3) = (1, 0, εΨ1),

Re

∫
B±

(φ̃1, φ̃2, φ̃3) = (Re τ, Im τ, εΨ2).(10)

So we require that∫
A±

(φ̃1, φ̃2, φ̃3) = (1 + iα±, iβ±, εΨ1 + iγ±).

Again, the flux vectors can be physically interpreted as the surface tension forces.
Up to a Euclidean rotation, we may assume that the periods of φ̃3 over A+ and
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B+ are real. That is

γ+ = Im

∫
A+

φ̃3 = 0 and Im

∫
B+

φ̃3 = 0.

In any of these cases, the φ’s are uniquely determined by the requirements above.

Write Q̃ := ε2Q. The conformality condition (7) is equivalent to

Ek :=

∫
Ak

Q̃w+
k

dz+
= 0, 1 ≤ k ≤ n,(11)

Fk :=

∫
Ak

Q̃

dz+
= 0, 1 ≤ k ≤ n,(12)

F ′k :=

∫
A′k

Q̃

dz−
= 0, 1 ≤ k ≤ n,(13)

and, if the vortex crystal is periodic,

(14)

∫
A±

Q̃

dz±
= 0.

Note that (12) are not independent. One dependence comes from the residue the-
orem, namely that

(15)

n∑
k=1

Fk = 0.

4.3. Solutions. To facilitate the solution, we will construct minimal surfaces with
an orientation-reversing translational symmetry Rε such that R2

ε = T0,ε. We want
Rε to correspond to the symmetry

ι : Σ+ 3 z 7→ z ∈ Σ−.

More specifically, we want that

ι∗(φ1, φ2, φ3) = (φ1, φ2, φ3).

This can be achieved by assuming that

qk ≡ pk, tk ∈ R and (αk, βk, γk) ≡ 0.

In the doubly periodic case, we also assume that τ− ≡ τ+. As a consequence, the
B-period problem (8) are automatically solved. Indeed, we can choose B-curves
such that Bk + ι(Bk) is homologous to σ1A1 − σkAk, for which all φ periods are
pure imaginary; see [Fre21]. In the periodic cases, since ι(A+) = A−, we also have

γ− = γ+ ≡ 0. In the doubly periodic case, since ι(B+) = B−, the period of φ̃3

over B− must also be real. Note that the A-curves and B-curves form a homology
basis. Now that the vertical components of the flux vectors vanish along all these
curves, they must vanish along any closed curve.

Moreover, since ι∗(Q) = Q and ι(Ak) = Ak = −A′k, we have

Ek =

∫
Ak

Q̃w+
k

dz+
=

∫
ι(Ak)

ι∗
( Q̃w+

k

dz+

)
= −

∫
A′k

Q̃w−k
dz−

= −Ek,

and

Fk =

∫
Ak

Q̃

dz+
=

∫
ι(Ak)

ι∗
( Q̃

dz+

)
= −

∫
A′k

Q̃

dz−
= −F ′k.

This means that Re Ek = 0 and (13) is automatically solved if (12) is solved.
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Remark 4. Without the symmetry ι, we can use the Implicit Function Theorem to
prove the existence of qk, Im tk, αk, βk, γk, and τ− that solve the B-period problem
and the conformality equation (13).

Similar arguments as in [Tra08a], using the Implicit Function Theorem, show
that

Proposition 6. For ε in a neighborhood of 0 and pk in a neighborhood of its central
values p◦k, there exist unique values for parameters tk, α±, β±, and τ+, depending
smoothly on ε and pk, such that the imaginary part of (11), as well as (14) in the
periodic cases, and (10) in the doubly periodic case, are solved. At ε = 0, we have
tk = 0 in all cases, α± = 0, β± = ∓1 in the periodic cases, and τ+ = τ in the
doubly periodic case, where τ is the torus parameter for the given doubly periodic
vortex crystal.

A sketched proof for the proposition is delayed to Appendix A.
At ε = 0, we have

φ̃1 = dz± and φ̃2 = ∓idz± on Σ±.

On Σ+, φ3 = φ̃3/ε extends smoothly to ε = 0 with the explicit form

(16)
∑
−iσkΥ(z − pk)dz

where

Υ(z) :=


1/z if (pk, σk) is finite;

π cot(πz) if (pk, σk) is singly periodic;(
ζ(z; τ)− ξ(z; τ)

)
if (pk, σk) is doubly periodic.

One then verifies that, at ε = 0, we have indeed∫
A±

φ3 = mπ ∈ R

if (pk, σk) is singly periodic and (cf. [Tra08a, § 4.3.1] and [CT21, § 5])∫
A±

φ3 = −2πy ∈ R and

∫
B±

φ3 = 2πx ∈ R

if (pk, σk) is doubly periodic, as we have assumed. Here (x, y) ∈ R2 are defined by∑
σkpk = x+ yτ .
Then, as ε→ 0, Fj,+/ε2 converges smoothly to the value

∂Fj,+
∂ε2

∣∣∣
ε=0

=

∫
Aj

( 2φ̃1

dz+

∂φ̃1

∂ε2
+

2φ̃2

dz+

∂φ̃2

∂ε2

)
+ 2πiRespj

φ2
3

dz+

=
∂

∂ε2

∫
Aj

(2φ̃1 − 2iφ̃2)− 2πiRespj

(∑
k

σkΥ(z − pk)
)2

= 4πσj Re ν − 4πiσj Im ν − 4πiσj
∑
k 6=j

σkΥ(pj − pk)

= 4πσj

[
ν − i

∑
k 6=j

σkΥ(pj − pk)
]

= 8π2Fj ,

which vanishes if and only if (pk) and (σk) are the positions and circulations of a
binary vortex crystal with velocity v = −ν/2π. Recall that Fk are related by (15).
Therefore, if the vortex crystal is not a finite stationary one, and is nondegenerate
(possibly with imposed symmetry), we may apply the Implicit Function Theorem
to prove the following proposition that concludes the construction of a family of
immersed surfaces.
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Proposition 7. If (p◦k) and (σk) are the positions and circulations of a binary
vortex crystal that is nondegenerate (possibly with imposed symmetry). Then for ε
in a neighborhood of 0, there exist unique values for pk, depending smoothly on ε,
such that pk(0) = p◦k and the conformality condition (12) is solved.

Finally, a similar argument as in [TW05, Fre21] proves that the constructed
surfaces are all embedded for ε sufficiently small.

Remark 5. The same construction can be carried out without the symmetry ι
(see Remark 4) and the conclusion is the same. By uniqueness of the implicit
functions, this implies that all minimal surfaces sufficiently close to a balanced and
nondegenerate configuration of helicoids admit an orientation-reversing symmetry.

Remark 6. For finite stationary vortex crystals, we may fix two vortices to quo-
tient out Euclidean similarities, leaving n − 2 free complex parameters. But in
the last step of the construction, we have n complex equations Fk = 0 to solve.
The relation (15) eliminates one complex equation, Riemann Bilinear relation can
eliminate a real equation (see [Tra02a,Tra08b]), but we still have one real equation
too many. Hence the construction does not work. This is compatible with Traizet’s
observation that catenoids cannot be glued into a single periodic minimal surface
with vertical periods [Tra02b].

Remark 7. In [Tra15], a correspondence was established between hollow vortices
and minimal surfaces bounded by horizontal symmetry curves. More specifically,
the height differential of the minimal surface corresponds to the velocity field of
the fluid. A similar correspondence can be seen in our construction by noticing
from (16) that, at ε = 0, φ3 = 2πudz, where u is the flow vector field generated by
the vortex crystal (away from the vortices).

Appendix A. Proof of proposition 6

Similar arguments as in [Tra08a] apply here.

When ε = 0, all the Ak-periods of φ̃’s vanish, and thus φ̃3 converges to 0. If the
vortex crystal if finite, φ̃1 and φ̃2 converge to holomorphic forms in C, and their
limits are determined by their behavior at ∞. In view of the assumptions (9), we
have

φ̃1 → dz± and φ̃2 → ∓idz±

in Σ± as ε→ 0, and one easily verifies that Q̃ converges to 0.

If the vortex crystal is periodic, φ̃1 and φ̃2 converge to holomorphic forms in Σ±
and are determined by their A± periods. More specifically, at ε = 0, we have

φ̃1 → (1 + iα±)dz± and φ̃2 → iβ±dz±

in Σ± as ε→ 0. Whence we have,

Q̃ = (φ̃1)2 + (φ̃2)2 → (1 + 2iα± − α2
± − β2

±)dz2
±.

In order for this to vanish, we need α± = 0 and β± = ∓1. The sign of β± is chosen
so the surface has the desired orientation. Hence, again, we have the limit

φ̃1 → dz± and φ̃2 → ∓idz±

in Σ± as ε→ 0.
The remaining proof focuses on Σ+. To ease the notations, we write dz in the

place of dz+. For periodic vortex crystals, we compute the partial derivatives

∂

∂α+

∫
A+

Q̃

dz
= 2i,

∂

∂β+

∫
A+

Q̃

dz
= 2,
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and all other partial derivatives of
∫
A+

Q̃/dz vanish. By [Tra08a, Lemma 3], we
have the partial derivatives

∂Ek
∂tk

=
∂

∂tk

∫
Ak

(z − pk)Q̃

dz
=

∫
Ak

(z − pk)

(
2
∂φ̃1

∂tk
− 2i

∂φ̃2

∂tk

)
= −8πi,

and all other partial derivatives of Ek vanish.
Finally, we compute, at ε = 0,

(Re τ, Im τ) = Re

∫
B+

(φ̃1, φ̃2) = Re

∫ τ+

0

(dz,−idz) = (Re τ+, Im τ+),

which determines τ+ = τ .
The proposition then follows from the Implicit Function Theorem.
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