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Abstract. The classical H surfaces of H. A. Schwarz form a 1-parameter
family of triply periodic minimal surfaces (TPMS) that are usually described

as close relatives to his more famous P surface. However, a crucial distinction

between these surfaces is that the P surface belongs to a 5-dimensional smooth
family of embedded TPMS of genus three discovered by W. Meeks, while the H

surfaces are among the few known examples outside this family. We construct

a 2-parameter family of embedded TPMS of genus three that contains the H
family and meets the Meeks family. In particular, we prove that H surfaces

can be deformed continuously within the space of TPMS of genus three into

Meeks surfaces.

1. Introduction

This is the second of two papers dealing with new 2-dimensional families of em-
bedded triply periodic minimal surfaces (TPMS) of genus three whose 1-dimensional
“intersections” with the well-known Meeks family exhibit singularities in the moduli
space of TPMS.

Among the many TPMS discovered by H. A. Schwarz [Sch90] is a 1-parameter
family H that can be constructed by extending the Plateau solution for the bound-
aries of the two triangular faces of a triangular prism. Such a Plateau solution
does not exist for all heights of the prism. For small heights, there are two distinct
solutions. One of them limits in the most symmetric singly periodic Scherk surfaces
with 6 annular ends. The other degenerate to a foliation of R3 by horizontal parallel
planes that are joined by catenoidal necks, placed in a hexagonal lattice.

This family is remarkable because it does not belong to the 5-dimensional Meeks
family M of TPMS of genus 3 [Mee90]. Members of that family have the eight
branched values of the Gauss map forming four antipodal pairs, while for an H
surface, they are located at the north and south poles of the 2-sphere and the six
vertices of a triangular prism. The only other known TPMS of genus 3 outside M
are the Gyroid-Lidinoid family [Sch70, LL90, FHL93, FH99, Wey06, Wey08], and
the recently discovered t∆ family [CW18].

We will exhibit a 2-parameter family oH of embedded TPMS of genus 3 that
can be understood as an orthorhombic deformation family of Schwarz’ H surfaces.
The closure of this family has a 1-dimensional intersection with the oP family, a
classical 2-parameter orthorhombic deformation family of Schwarz P surface. How-
ever, surfaces in oH are not inM. This is, after the o∆ family in [CW18], another
2-parameter non-Meeks family of TPMS of genus 3.

Consider an embedded minimal surfaces S inside an axes parallel box [−A,A]×
[−B,B]× [−1, 1] such that
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Figure 1.1. Fundamental Piece and Translational Fundamental Piece

• S satisfies free boundary condition on the vertical planes x = ±A and y =
±B, and fixed (Plateau) boundary condition on the horizontal segments
{(x, 0,±1) | −A ≤ x ≤ A}.
• S intersects the edges of the box in eight vertices, but disjoint from the

vertical lines with (x, y) = ±(+A,+B). Hence, apart from the four ends of
the fixed boundaries, S intersects the vertical lines (x, y) = ±(+A,−B) in
two vertices each.
• S is symmetric under the inversion in the origin.

Therefore S is a right-angled minimal octagon, with its inversion center at the
origin. See Figure 1.1 (left) for an example. If the vertices are labeled as in this
figure, then the fixed boundaries are the segments V8V1 and V4V5.

Because the two horizontal segments are in the middle of the top and bottom
faces of the box, rotations about them and reflections in the lateral faces of the
box extend S to a TPMS Σ̃. More specifically, Σ̃ is invariant under the lattice Λ
spanned by (2A, 0, 2), (−2A, 0, 2) and (0, 4B, 0). In the 3-torus R3/Λ, Σ = Σ̃/Λ is

a compact surface of genus 3. In Figure 1.1 (right) we show part of Σ̃ consisting of
eight copies of S.

Remark 1.1. For crystallographers, the orthorhombic lattice spanned by (4A, 0, 0),
(0, 4B, 0) and (0, 0, 4) is probably more convenient. This is responsible for the letter
“o” in our naming. The part shown in Figure 1.1 (right) is actually a translational

fundamental domain of this orthorhombic lattice. The quotient of Σ̃ by this lattice
is a double cover of Σ, hence of genus 5.

We use O to denote the set of all TPMS obtained in this way. Two classical
families of surfaces in O were already known to Schwarz [Sch90].

Surfaces in the first family have an additional reflectional symmetry in the plane
z = 0. Then, because of the inversional symmetry in the origin, these surfaces must
also contain the z-axis, which serves as the axis of an order-2 rotational symmetry.
This 2-parameter family contains Schwarz’ P surface and belongs to the Meeks’
familyM [Mee90]. It is known as oPb in the literature to distinguish from another
orthorhombic deformation family oPa; see [FK89, FH92]. In this paper, we simply
write oP in place of oPb. An example of oP with small B is shown in Figure 1.2
(left).
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Figure 1.2. Surfaces in oP and H near catenoidal limits

Surfaces in the second family have an additional order-3 rotational symmetry
about a line in the y-direction. The rotational axis necessarily passes through an
end of fixed boundary. This 1-parameter family is Schwarz’ H family. An example,
again with small B, is shown in Figure 1.2 (right).

The main purpose of this paper is to establish the existence of a new 2-parameter
family described in the following theorem, and study its properties.

Theorem 1.2. There exists a 2-parameter continuous family oH in O that contains
Schwarz’ H surfaces as a subfamily. Surfaces in oH do not belong to the Meeks
family. That is, the branched values of the Gauss map do not form four antipodal
pairs. In fact, the only Meeks surfaces in O are the oP surfaces. However, the
closure of oH intersects oP in a 1-parameter family of TPMS.

The intersection oH∩oP will be explicitly described in terms of elliptic integrals.

We now provide the motivation that leads to the discovery of oH.
By opening nodes among 2-tori, Traizet [Tra08] constructed TPMS that looks

like horizontal planes connected by catenoidal necks. In the degenerate limit, the
catenoidal necks become nodes whose positions have to satisfy a balancing equation,
formulated in terms of elliptic functions, and a non-degeneracy condition.

For surfaces of genus 3, one needs to open two nodes between two tori. In
the limit, it degenerates to a two-sheeted torus with two singular points. Let
(T1, T2) ∈ C2 be vectors that span the limit torus, and write T3 = −T1 − T2.
Assume that limit positions of the two nodes are p1 and p2, respectively. Up to a
translation, we may assume that p1 = 0. Write p2 = xT1 + yT2 with (x, y) ∈ [0, 1]2.
Then p1, p2 form a balance configuration if (see [Tra08, §4.3.3])

(1.1) ζ(p2) = xη1 + yη2 ,

where ζ is Weierstrass Zeta function, which is quasi-periodic in the sense that
ζ(z+Ti)− ζ(z) = ηi = 2ζ(Ti/2), i = 1, 2, 3. Traizet proved that, if such a balanced
configuration is non-degenerate, then there exists a family of triply periodic minimal
surfaces that limits in this configuration.

Remark 1.3. If we follow [Tra08] more closely, we would need to consider an infinite
sequence of tori indexed by Z, and open a node between each adjacent pair under
the periodicity assumption that pk+2 = pk + T for some T ∈ C. The current



4 HAO CHEN AND MATTHIAS WEBER

paper only deals with the monoclinic special case with T = 0, hence the simplified
formulation.

Recall that η1 + η2 + η3 = 0. Hence for any T1 and T2, there are three trivial
balanced configurations, given by (x, y) = (1/2, 1/2), (0, 1/2) and (1/2, 0), respec-
tively. In other words, if p2 is a 2-division point, the balance equation is auto-
matically solved for any torus. In particular, when |T1| = |T2|, the configuration
x = y = 1/2 is the Traizet limit of the oP (oPb) family; when T2/T1 is purely
imaginary, the configuration x = y = 1/2 is the Traizet limit of the oPa family, and
the configuration (x, y) = (0, 1/2) (or (1/2, 0)) is the Traizet limit of an orthorhom-
bic deformation family of CLP surfaces (termed oCLP’ in [FH92]). Another special
case is the rhombic 60◦ torus. The hexagonal symmetry implies two non-trivial bal-
anced configurations with x = y = 1/3 and x = y = 2/3, which is the Traizet limit
of the H family (non-Meeks). Traizet limit of these classical TPMS are illustrated
in Figure 1.3.

oPa oCLP'

oPb oH

Figure 1.3. Balanced configurations that give Traizet limits of
classical families of TPMS. The solid circle is centered at p1 and
the dashed circle is centered at p2.

More generally, we consider on rhombic tori spanned by T1,2 = exp(±iθ/2) the
balanced configurations with x = y. The symmetry suggests that these are Traizet
limit of O surfaces with B → 0. To see this, just rotate the configuration to place
T3 in the z-direction and open nodes in the y-direction. The balance equation for
such a configuration is given by

(1.2) xζ(T3/2) = ζ(xT3)/2

Our choice of conjugate vectors T1, T2 guarantees real values on both sides. The
solution set to this balanced equation is shown in Figure 1.4. The vertical line
x = 1/2 is the trivial locus, giving the Traizet limit of the oP surfaces.

But we also see a second, non-trivial locus, which is the motivation of the current
project. This “exotic” locus has been noticed independently by both authors, and
probably by many other people in the minimal surface community. We will see that
balanced configurations on this locus are all non-degenerate, so they are indeed
Traizet limits. In fact, they are the Traizet limits of the oH family. Our discovery
of oH is actually the result of an attempt to push TPMS away from these Traizet
limits.

The two loci of Traizet limits intersect at x = 1/2 and θ = θ∗ ≈ 1.23409 ≈
70.7083◦. The balanced configuration at the intersection is degenerate.
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Figure 1.4. Solution set (x, θ) to the balance equation (1.2) on
the diagonal of rhombic tori. The dotted horizontal line mark the
position of θ∗.

The torus T∗ at the intersection is of particular significance. It is the only
rhombic torus on which there exists a meromorphic 1-form with double order pole
at 0 and double order 0 at T3/2 and only real periods. This was exploited for the
construction of translation invariant helicoids with handles [HKW99, WHW09].
This meromorphic 1-form can be constructed geometrically as follows (see Figure
1.5): Take the complex plane, and slit it along the interval [−1, 1] on the real axis.
Then identify the top (resp. bottom) edge of [−1, 0] with the bottom (resp. top)
edge of [0, 1]. The result is a torus carrying a cone metric with two cone points, of
cone angle 6π at the point identified with {−1, 0, 1}, and of cone angle −2π at ∞.
The corresponding 1-form has thus a double order pole at 0, and a doubly order
zero at∞. Its periods are obviously real, and the symmetry of the slit ensures that
the torus is rhombic. The same torus with flat metric is nothing but T∗.

We will revisit the Traizet limit in Section 6 in the framework of our parametriza-
tion of oH. We first prove that the non-trivial locus is non-degenerate, and unique
in the sense that for every 0 < θ < θ∗, (1.2) has a unique solution 0 < x < 1/2.
Then (1.2) will be reformulated in terms of elliptic integrals, leading to an explicit
formula for the non-trivial locus. We will also recover θ∗, not only as the end point
of the Traizet limit of oH, but also as the Traizet limit of the intersection oH∩ oP.

Figure 1.5. Model for the torus T∗

Our paper is organized as follows:
In Section 2, we describe the Weierstrass data for surfaces in O, prove their

embeddedness, and formulate the period problem, depending on three real positive
parameters a, b and t. The case a = b corresponds to the oP surfaces, where the
period problem is automatically solved. In the case a 6= b, the period problem
becomes 1-dimensional.

In Section 3 we show that, if a 6= b, the branched values of the Gauss map can
not be antipodal. This proves that O ∩M = oP, and that any solution with a 6= b
(namely oH) lies outside M.



6 HAO CHEN AND MATTHIAS WEBER

Section 4 is dedicated to the existence proof of oH. We show that for any choice
of a 6= b, there is a value of t that solves the period problem. This is accomplished
through a careful asymptotic analysis of the period integrals. We also conjecture
the uniqueness of t based on numerical experiments.

To prove that oP and the closure of oH have a non-empty intersection, we con-
sider in Section 5 a modified period problem that eliminates the trivial solutions
coming from oP. It turns out that the intersection can be explicitly described in
terms of elliptic integrals.

In section 6 we study the Traizet limit of oH. In particular, the loci of (1.2) will
receive another explicit description in terms of elliptic integrals, and the intersection
of the loci will be recovered in two different ways. We also locate the Traizet limit
of H family on the locus. It is then possible to find a continuous deformation path
within the space of TPMS of genus three, starting from an H surface and ending
with an oP surface, that passes through a sufficiently small neighborhood of the
Traizet limit.

Despite different appearances, motivations and focus points, our parametrization
of oH, as well as many computations, share similarities with our previous work on
o∆ [CW18]. So we will, whenever appropriate, refer the readers to [CW18] for
details. We also omit technical details in Sections 5 and 6, where integral tables
in [BF71] are used for the computations involving elliptic integrals.

Acknowledgements. We are grateful to the anonymous referee for suggestions
and corrections after carefully reading a previous version of the manuscript.

2. Weierstrass Data and the Period Problem

We parameterise a surface in O using a Weierstrass representation defined on the
upper half plane such that the real axis is mapped to the boundary of the octagon
S. Let the vertices of S be labeled by V1, V2, · · · , V8 as in Figure 1.1 (left). Denote
the preimage of Vk by vk ∈ R, and assume that v1 < v2 < . . . < v8.

Figure 2.1. Images of a fundamental piece under Φ1 and Φ2.

Given an O surface, denote by dh its height differential and by G its Gauss
map. Let φ1 := dh · G and φ2 := dh/G. The assumed boundary symmetries of
the surface imply that Φj : z 7→

∫ z
φj (j = 1 or 2) map the upper half plane to

“right angled” Euclidean octagons. The interior angle is 270◦ at Φ1(v2), Φ1(v6)
and Φ2(v3), Φ2(v7). Indeed, the Gauss map is vertical at V2, V3, V6 and V7, hence
these vertices are the poles and the zeros of G. Interior angles at all other vertices
are 90◦; see Figure 2.1.
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We may assume that the inversion is represented by the transform ι : z 7→ −1/z,
hence the inversion center of the minimal octagon at the origin is represented by
i in the upper half plane. Then we assume the eight points vi to be −t < −a <
−1/b < −1/t < 1/t < 1/a < b < t for t > 1.

Such maps are given by Schwarz-Christoffel maps. More specifically, we have

φ1 := −ρ (z + a)+1/2(z + 1/b)−1/2(z − 1/a)+1/2(z − b)−1/2

(z + t)1/2(z + 1/t)1/2(z − 1/t)1/2(z − t)1/2
dz,

φ2 :=
1

ρ

(z + a)−1/2(z + 1/b)+1/2(z − 1/a)−1/2(z − b)+1/2

(z + t)1/2(z + 1/t)1/2(z − 1/t)1/2(z − t)1/2
dz,

dh :=
i

(z + t)1/2(z + 1/t)1/2(z − 1/t)1/2(z − t)1/2
dz .

Here, the real positive Lopéz-Ros factor ρ determines the scaling of the image
domains. The Gauss map is given by

G(z) = iρ(z − 1/a)+1/2(z + a)+1/2(z + 1/b)−1/2(z − b)−1/2 .

Proposition 2.1. Up to congruence and dilation, the image of the upper half plane
under the map

(2.1) F : z 7→ Re

∫ z

(ω1, ω2, ω3) = Re

∫ z (1

2
(φ2 − φ1),

i

2
(φ2 + φ1), dh

)
is almost the fundamental octagon of an O surface in the following sense:

• The intervals v8v1 and v4v5 are mapped to straight segments in the x-
direction, but not necessarily in the y = 0 plane.
• The other intervals are mapped to planar symmetry curves in vertical planes.

More specifically:
– the interval v1v2 (resp. v5v6) is mapped into the plane x = +A (resp.
−A);

– the interval v2v3 (resp. v6v7) is mapped into the plane y = −B (resp.
+B);

– the interval v3v4 (resp. v7v8) is mapped into the plane x = +A′ (resp.
−A′).

• The image is symmetric under the inversion ι in the image of i.

The proof is a straightforward modification of the proof in [CW18].

Proposition 2.2. All minimal octagons constructed by Proposition 2.1 are embed-
ded. In particular, the triply periodic minimal surfaces in O, generated by extending
the octagon across symmetry lines, are embedded as well.

Proof. We note that the space S of these octagons is parametrized by the param-
eters a, b, t and ρ, and hence connected. Moreover, S contains known embedded
surfaces, namely the oP and H surfaces of H.A. Schwarz.

Now let Σ1 be an arbitrary surface in S, and connect it continuously to an
embedded surface Σ0 in S. Let Σ be the first surface in this family that is not
embedded anymore. We denote by ∂Σ = F (R ∪ {∞}) the boundary of Σ, while
Σ = F (R × R+) denotes the interior. By the maximum principle, the immersion
fails to be embedded at a boundary point of Σ.

The boundary ∂Σ itself is parametrized by F injectively: On the vertical seg-
ments between V5 and V8 and between V1 and V4, this follows because the height dif-
ferential is real with constant sign. The straight horizontal segments are parametrized
injectively because the parametrization is conformal and non-degenerate.

Thus it remains to show that the ∂Σ cannot meet a point of Σ. This is clear for
most boundary segments ViVi+1 by the convex hull property of minimal surface.
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But this argument could fail when the arc V7V8 is not coplanar with the arc V5V6,
i.e. when A 6= A′. If A′ < A, for instance, then there could be an interior point p0
of Σ that meets V7V8. If this is the case, Σ would be tangential to ∂Σ at p0.

By the explicit expression of the Gauss map, no point of Σ has a normal vec-
tor parallel to the xz-plane, hence the tangent plane cannot be parallel to the
y-direction. It is therefore possible to find a curve γ(t) on Σ, starting from p0,
whose tangent vector is in the direction of (−1, y(t), 1). This curve can only ter-
minate at a boundary point of ∂Σ or at an interior point with a tangent plane
containing the y-direction. The latter doesn’t exist, and there is no component
of the boundary having points with smaller x-coordinate and greater z-coordinate
than V7. This contradiction shows that Σ̄ = Σ ∪ ∂Σ is embedded. �

For such a minimal octagon to lie in O, we must have have A = A′ so that the
curves V1V2 and V3V4 are coplanar, hence the image of (2.1) is contained in an
axis parallel box centered at the origin. Moreover, V8V1 and V4V5 must lie in the
middle of, respectively, the top and bottom faces of the box. We now express these
conditions in terms of the periods of φ1 and φ2. To this end, we introduce notations
for the edge lengths of the Euclidean octagons

Ik :=

∣∣∣∣∫ vk+1

vk

φ1

∣∣∣∣ , Jk :=

∣∣∣∣∫ vk+1

vk

φ2

∣∣∣∣
for 1 ≤ k ≤ 7. These are positive real numbers that depend analytically on the
parameters a, b, t and ρ. Note that by the inversional symmetry, we have

(2.2) Ik = Ik+4 and Jk = Jk+4

for 1 ≤ k ≤ 3.

Proposition 2.3. The image of the upper half plane under the Weierstrass rep-
resentation (2.1) is the fundamental octagon of a surface in O if and only if the
following period conditions are satisfied:

(2.3)
I1 + I3 = J1 + J3 ,

I2 = J2 .

Proof. The curves V1V2 and V3V4 are coplanar if and only if

Re

∫ v3

v2

ω1 = 0 .

This is equivalent to

Re

∫ v3

v2

(φ1 − φ2) = 0.

Observe that on v2v3, the integrands of φ1 and φ2 are both negative real. So the
equation above can be written as I2 = J2, which is the second period condition.

The top segment V8V1 lies in the middle of the top face if and only if

Re

∫ v2

v1

ω2 = Re

∫ v8

v7

ω2 .

This is equivalent to

Im

∫ v2

v1

(φ1 + φ2) = Im

∫ v8

v7

(φ1 + φ2) .

Observe on v1v2 that the integrand in φ1 (resp. φ2) is negative (resp. positive)
imaginary, and on v7v8 that the integrand in φ1 (resp. φ2) is positive (resp. negative)
imaginary. So the equation above can be written as

I1 − J1 = J7 − I7 = J3 − I3,
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where the second equation follows from the symmetry (2.2). This proves the first
period condition.

If the period conditions are satisfied, then by the inversional symmetry ι, the
curves V5V6 and V7V8 must also be coplanar, and the segment V4V5 must also lie
in the middle of the bottom box. �

We can eliminate ρ by taking the quotient of the two equations, therefore:

Corollary 2.4. If

QI :=
I1 + I3
I2

=
J1 + J3
J2

=: QJ

or, equivalently, if

(2.4) Q := QI −QJ =
I1 + I3
I2

− J1 + J3
J2

= 0

for some choice of a, b, t, then ρ ∈ R>0 can be uniquely adjusted so that the period
conditions (2.3) are satisfied.

Thus we have expressed the period condition as a single equation Q = 0, where
Q depends on three parameters a, b, t.

Note that when a = b, we have additional symmetries:
The involution σ1 : z 7→ −z transforms the Weierstrass data by

σ∗1dh = dh(z) and G(σ1(z))G(z) = ρ2.

Consequently, we have Ik = ρ2J4−k for 1 ≤ k ≤ 3, so the period conditions (2.3)
are satisfied automatically with ρ = 1. In this case, it can be explicitly verified that
the positive imaginary axis is mapped by the Weierstrass representation (2.1) to
the vertical straight segment between the middle points of V4V5 and V8V1, and σ1
induces an order-2 orientation-reversing rotation of the surface around this segment.

On the other hand, the involution σ2 : z 7→ 1/z̄ induces an order-2 reflection in
the z = 0 plane. This can be seen by observing that σ1 ◦ σ2 = ι.

To simplify our computations in the following sections, we employ the substi-
tution ζ = z − 1/z, which is monotone on the positive real axis. We also replace
a− 1/a by α, b− 1/b by β, and t− 1/t by τ so that −τ < −α < β < τ . Then the
1-forms φ1 and φ2 become

φ1 = − ρ(ζ + α)+1/2(ζ − β)−1/2(ζ2 − τ2)−1/2(ζ2 + 4)−1/2 dζ ,

φ2 =
1

ρ
(ζ + α)−1/2(ζ − β)+1/2(ζ2 − τ2)−1/2(ζ2 + 4)−1/2 dζ ,

and the Gauss map is simplified to

(2.5) G(ζ) = ρi(ζ + α)+1/2(ζ − β)−1/2.

In the rest of the paper, the original parametrization is understood whenever
Latin letters a, b, t, z are used, and the simplified parametrization is understood
whenever Greek letters α, β, τ, ζ are used. This should not cause any confusion.

3. Branched Values of the Gauss Map

In this section, we will show that the branched values of the Gauss map are never
antipodal with a 6= b. As a consequence, the only surfaces in O that belong to the
Meeks family M are the surfaces in oP. The arguments don’t require the period
condition to be satisfied and are purely algebraic.

Theorem 3.1. The branched values of the Gauss map of a surface in O are an-
tipodal if and only if a = b.
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Proof. We begin by locating the branched points of the Gauss map in the funda-
mental octagon. By a result of Meeks [Mee90], the branched points of a TPMS
of genus 3 are precisely the inversion centers of the surface. They are situated, in
the fundamental octagon, at the center of the octagon and at the end points of the
fixed boundary segments.

The octagon center corresponds to i in the upper half plane, so that G(i) is
a branched value. Three more branched points and values are obtained after ex-
tending the octagon by reflections. We then have four branched values, namely
±G(i) and ±G(i). Their stereographic images on the 2-sphere lie at the vertices of
a horizontal rectangle, symmetric in the planes x = 0 and y = 0.

The end points of the fixed boundary segments correspond to ±t and ±1/t in
the parameter domain. Because of the inversional symmetry, they provide only two
branched values G(t) and G(−t). These both lie on the positive imaginary axis, and
their stereographic images on the 2-sphere lie on the upper half-circle with y > 0
and x = 0. Extending the octagon by reflections gives two more branched values
at −G(t) and −G(−t), whose stereographic images lie on the lower half-circle. The
stereographic images of these four branched values then form a quadrilateral in the
plane x = 0 symmetric to the plane y = 0.

We show an example for the location of the eight branched values in Figure 3.1.

Figure 3.1. Branched values of the Gauss map

In order that these eight branched values occur in antipodal pairs, the first
quadrilateral must lie in the plane z = 0, while the second quadrilateral must be a
rectangle. These conditions mean, in terms of the Gauss map, that |G(i)| = 1 and
G(t)G(−t) = −1. We then compute from (2.5) that

ρ2

√
α2 + 4

β2 + 4
= 1 and ρ2

√
τ2 − α2

τ2 − β2
= 1,

which forces α = ±β, hence a = b under the constraint 1/t < 1/a < b < t. �

The reader might be curious about the parameter values for the Schwarz H
surfaces within this representation. These are difficult to determine explicitly. But
we know that, among the eight branched values of the Gauss map of an H surface,
there is one and only one antipodal pair. This implies either G(t) = G(−1/t) = i
or G(−t) = G(1/t) = i. We then obtain from (2.5) a necessary condition of the
parameters for H, namely

ρ2
τ + α

τ − β
= 1 or ρ2

τ − α
τ + β

= 1.
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In view of Conjecture 4.3 in the next section, we believe that this condition is also
sufficient.

We see from (2.5) that, for any reals α, β, ρ with −α < β and ρ > 0, there is a
unique ζ∗ ∈ (∞,−α)∪ (β,∞)∪∞ such that G(ζ∗) = i. In other words, there must
be a point on the boundary of the octagon, namely the image of ζ∗ under (2.1),
where the normal vector points in the y direction. For the oP family, ρ = 1 and
α = β, hence ζ∗ =∞. For the H family, our calculation above shows that ζ∗ = ±τ .
So O is divided in two parts, depending on the image of ζ∗ being on the fixed
boundary (as oP) or on the free boundary of the octagon; Schwarz H family lies on
the interface.

Remark 3.2. Using the order-3 rotational symmetry of the H surfaces, a computer
algebra system gives the explicit expressions

α = τ
4(τ2 + 4)

√
τ4 − 56τ2 + 16− (3τ4 − 40τ2 + 48)

7τ4 + 88τ2 − 16

β = τ
4(τ2 + 4)

√
τ4 − 56τ2 + 16 + (3τ4 − 40τ2 + 48)

7τ4 + 88τ2 − 16

for the parameters α and β in terms of τ . Then the period problem seems auto-
matically solved, at least numerically.

4. Existence of Non-Trivial Solutions

Recall that 0 < 1/t < 1/a < b < t, and the periodic condition (2.4) as we copy
below

Q(a, b; t) =
I1 + I3
I2

− J1 + J3
J2

= 0.

The quantity Q is our focus in the remaining sections of this paper. From now on,
we will ignore the Lopéz-Ros factor ρ in our calculations, since Q is independent of
this factor.

We now prove the main theorem of this paper.

Theorem 4.1. If a = b, the period condition (2.4) is solved for any choice of t.
If a < b, then there exists a value of t that solves the period condition (2.4).

The case a = b has been discussed in Section 2. The case a < b, as well as the
existence of oH, follows from the continuity of Q in t, and the following proposition.

Proposition 4.2. If 1/t < 1/a < b < t and a < b then

lim
t→b+

Q(a, b; t) < 0 ,(4.1)

lim
t→+∞

Q(a, b; t) = +∞ .(4.2)

The remainder of this section is devoted to the proof of this proposition.

Proof of (4.1). The argument in [CW18] applies with slight modification. As t→
b+, all periods have finite positive limits, with the exceptions limt→b+ J3 = 0 and
limt→b+ I2 diverges to +∞. Thus

lim
t→b+

I1 + I3
I2

= 0 and lim
t→b+

J1 + J3
J2

> 0 ,

and (4.1) follows. �

Proof of (4.2). The proof is similar to the argument in [CW18]. Recall that the
substitution ζ = z−1/z is monotonically increasing for z > 0, and write α = a−1/a,
β = b− 1/b, τ = t− 1/t as before.
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For the periods in the denominators, we first note that

lim
τ→∞

τ · I2(α, β; τ) =

∫ β

−α

1√
ζ2 + 4

√
α+ ζ

β − ζ
dζ,

lim
τ→∞

τ · J2(α, β; τ) =

∫ β

−α

1√
ζ2 + 4

√
β − ζ
α+ ζ

dζ

are all finite. Their difference

lim
τ→∞

τ · (I2 − J2) =

∫ β

−α

2ζ + α− β√
(ζ2 + 4)(α+ ζ)(β − ζ)

dζ

=

∫ γ

−γ

2ξ dξ√
((ξ − α/2 + β/2)2 + 4)(γ2 − ξ2)

=

∫ γ

0

2ξ dξ√
γ2 − ξ2

( 1√
(ξ − α/2 + β/2)2 + 4

− 1√
(ξ + α/2− β/2)2 + 4

)
,

where γ = (α + β)/2 and ξ = ζ − (β − α)/2, is negative when α < β. Hence we
have

(4.3) lim
τ→∞

τI2 < lim
τ→∞

τJ2

for all 0 < α < β.
The periods in the numerators have logarithmic asymptotics. For instance, as

τ →∞,

τ · J3(α, β; τ) =

∫ τ

β

τ√
ζ2 + 4

√
τ2 − ζ2

√
ζ − β
ζ + α

dz

∼
∫ τ

β

τ

ζ
√
τ2 − ζ2

dζ

∼ log t,

hence τ · I3(α, β; τ) diverges to +∞ as τ → ∞. Fortunately, the integrals I1 and
J1 (and I3 and J3) have the same logarithmic singularities. By the dominated
convergence theorem, we obtain the following limits:

(4.4)

lim
τ→∞

τ · (I1 − J1) = − lim
τ→∞

∫ −α
−τ

τ(α+ β)√
(τ2 − ζ2)(ζ2 + 4)(β − ζ)(−α− ζ)

dζ

= −
∫ −α
−∞

α+ β√
ζ2 + 4

√
β − ζ

√
−α− ζ

dζ,

lim
τ→∞

τ · (I3 − J3) = lim
τ→∞

∫ τ

β

τ(α+ β)√
τ2 − ζ2

√
ζ2 + 4

√
ζ − β

√
ζ + α

dζ

=

∫ ∞
β

α+ β√
ζ2 + 4

√
ζ − β

√
ζ + α

dζ.

Note that both integrals are finite and non-zero.
Finally, we write

Q(α, β; τ) =
τ(I1 − J1) + τ(I3 − J3)

τI2
+ τ(J1 + J3)

[ 1

τI2
− 1

τJ2

]
.

The part in the square bracket is positive by (4.3). As τ →∞, the first fraction is
finite by (4.4), and τ(J1 + J3)→ +∞. This concludes the proof of the proposition.

�
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Before ending this section, we propose the following uniqueness conjecture based
on numeric experiments:

Conjecture 4.3. If a < b, then there exists a unique t that solves the period
condition (2.4).

5. Intersection with the Meeks-Locus

We show in this section that oH intersects oP in a 1-parameter family. To make
this precise, we use on O the topology induced by the space of possible Weierstrass
data, which are determined by the four real parameters a, b, t and ρ. Clearly,
the convergence of Weierstrass data implies the locally uniform convergence of the
minimal surfaces.

The goal is to explicitly determine the intersection of the Meeks locus

oP = {(a, b, t) : Q(a, b; t) = 0, a = b, 0 < 1/t < 1/a < b < t}
with the closure of the non-Meeks locus

oH = {(a, b, t) : Q(a, b; t) = 0, a 6= b, 0 < 1/t < 1/a < b < t}.
Without loss of generality, we will focus on the case a < b hence α < β. The idea
is to divide the function Q(α, β; τ) by β − α and take the limit for α → β− to
eliminate solutions in the Meeks locus. We claim:

Theorem 5.1. The intersection oH ∩ oP is described by the equation

(5.1) K̄(m1)E(m2) +m2Ē(m1)K(m2) = K̄(m1)K(m2),

where

K(m) =

∫ π/2

0

1√
1−m sin2(θ)

dθ,

E(m) =

∫ π/2

0

√
1−m sin2(θ) dθ

are complete elliptic integrals of the first and the second kind, K̄(m) = K(1 −m)
and Ē(m) = E(1−m) are the associated elliptic integrals, using the moduli

m1 =
α2 + 4

τ2 + 4
, m2 =

α2

τ2
τ2 + 4

α2 + 4
.

Note that 0 < m1,m2 < 1.

-6 -4 -2 0 2 4 6
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10
-6 -4 -2 0 2 4 6
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10

α

τ

Figure 5.1. Solution set (α, τ) to the period condition (5.1)
describing the intersection oH ∩ oP.
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The theorem follows from the following proposition:

Proposition 5.2. The function

Q̃(α, β; τ) =
Q(α, β; τ)

β − α
extends analytically to α = β by

Q̃(α, α; τ) =
τ2

α2

τ

τ2 − α2

√
α2 + 4

τ2 + 4

K̄(m1)E(m2) +m2Ē(m1)K(m2)− K̄(m1)K(m2)

K(m2)2
.

Proof. With the help of the integral tables in [BF71], we obtain the following explicit
evaluation of the periods.

(I1 + I3)(α, α; τ) = (J1 + J3)(α, α; τ) =
2√

τ2 + 4
K̄(m1) ,

I2(α, α; τ) = J2(α, α; τ) =
α

τ

2√
α2 + 4

K(m2) .

Then we evaluate the derivatives

I ′k(α, α; τ) =
∂

∂β

∣∣∣
β=α

Ik(α, β; τ), J ′k(α, α; τ) =
∂

∂β

∣∣∣
β=α

Jk(α, β; τ),

and obtain

(I ′1 + I ′3)(α, α; τ) = 0 ,

I ′2(α, α; τ) =
1

τ
√
α2 + 4

K(m2) ,

(J ′1 + J ′3)(α, α; τ) =
α

τ2 − α2

2√
τ2 + 4

(
K̄(m1)− τ2 + 4

α2 + 4
Ē(m1)

)
,

J ′2(α, α; τ) =
2

τ
√
α2 + 4

( τ2

τ2 − α2
E(m2)− 1

2
K(m2)

)
.

Finally, by l’Hôpital,

lim
a→b

Q̃(α, β; τ) =
∂Q

∂β

∣∣∣
α=β

=
τ2

α2

τ

τ2 − α2

√
α2 + 4

τ2 + 4

K̄(m1)E(m2) +m2Ē(m1)K(m2)− K̄(m1)K(m2)

K(m2)2
.

Now note that the function Q̃ can be extended to a holomorphic function of
complex arguments α, β, τ . The computation above shows that it remains bounded
for α = β, and hence extends holomorphically to α = β. In particular, the extension
for real arguments is real analytic. �

The solution set to (5.1) is shown in Figure 5.1. In Figure 5.2, we show two
surfaces in the intersection with extreme values of α. In the next section, we will
analyze the Traizet limit on the right (with small α). The left image strongly
suggest that, in the limit of large α, the family tends to a doubly periodic Karcher-
Meeks-Rosenberg surface of genus 1 [Kar88, Kar89, MR89].

6. Revisiting the Traizet limit

With our parametrization of oH, the Traizet limit, with infinitesimally small
catenoid nodes, corresponds to the limit ab → 1 or α + β → 0. In this limit, the
Gauss map G(z) = i except at two singular points z = 1/a = b and z = −a = −1/b.
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Figure 5.2. Two surfaces in the intersection of oH ∩ oP

So the octagon degenerates into the plane y = 0 as expected. The angle of the limit
rhombic torus can be computed as

(6.1) tan
θ

2
=
|
∫ 1/t

−1/t dh|

|
∫ t
1/t

dh|
=
K ′(m)

K(m)
,

where m = τ2/(τ2 + 4).
From (5.1), we can already locate the Traizet limit of oH ∩ oP. First note that

m2 → 0 when α = β → 0. Divide both sides of (5.1) by m2 to eliminate the trivial
but meaningless solution at α = β = 0. Recall that [BF71] (K(m) − E(m))/m →
π/4 and K(m)→ π/2 as m→ 0. Hence we obtain for the Traizet limit

2E(m) = K(m),

where m = τ2/(τ2 + 4). This is uniquely solved with τ ≈ 4.35932 or t ≈ 4.57777.
By putting these parameters into (6.1), we recover the angle

θ∗ ≈ 1.23409 ≈ 70.7083◦.

While we did not manage to prove uniqueness Conjecture 4.3, we can however
prove the uniqueness at the Traizet limit.

Theorem 6.1. For any 0 < θ < θ∗, there is a non-trivial solution 0 < x < 1/2
that solves the balance equation (1.2). This solution is unique and non-degenerate,
hence is the Traizet limit for a family of TPMS.

Proof. Recall that T1,2 = exp(±iθ/2) and T3 = −T1 − T2 = −2 cos(θ/2). We
consider the function

f(x; θ) = xη3(θ)− ζ(xT3(θ); θ).

Observe the following properties of f .

• f → +∞ as x → 0+. To see this, note that the lattice is spanned by
conjugate vectors T1, T2, so ζ(z) is real for real z. By definition, it has
residue +1 at 0. The claim follows.

• ∂2xf > 0 for 0 < x < 1/2. This can be seen by noting that

∂2f

∂x2
= T 2

3℘
′(xT3)

is clearly non-zero. So f must be convex in x.
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So there is a unique non-trivial solution of f(x) = 0 if

g(θ) :=
∂f

∂x

∣∣∣
x=1/2

= T3℘(T3/2) + η3 > 0,

or no non-trivial solution otherwise. These two cases are separated by the zeroes
of g(θ). They correspond to the Traizet limit of oH ∩ oP, which is uniquely given
by θ∗. Since non-trivial solutions are known for θ = π/3 < θ∗, we conclude that
g(θ) > 0 if and only if 0 < θ < θ∗.

For the non-degeneracy, we consider the function

F (x, y; θ) = (x+ y)η1(θ) + (x− y)η2(θ)− ζ((x+ y)T1(θ) + (x− y)T2(θ); θ) .

Note that F (x, 0; θ) = −f(x, θ). So the convexity of f in x implies that ∂xF (x, 0; θ)
is real negative at a non-trivial solution of (1.2). On the other hand

∂F

∂y

∣∣∣
y=0

= η1 − η2 + (T1 − T2)℘(xT3)

is positive purely imaginary for 0 < x < 1/2. This can be seen by noting that

∂

∂x

∂F

∂y

∣∣∣
y=0

= (T 2
2 − T 2

1 )℘′(xT3)

is negative purely imaginary for 0 < x < 1/2, and ∂yF is positive purely imaginary
at (x, y) = (1/2, 0). The non-degeneracy then follows readily. �

Note that, as θ approaches θ∗, the non-trivial solution tends to 1/2, and T3℘(T3/2)+
η3 tends to 0. So the balanced configuration at (x, θ) = (1/2, θ∗) is degenerate.

We may also recover solutions of (1.2) in terms of our parametrization.

Proposition 6.2. The Traizet limit of oH is described by the equation

(6.2) (2β2 − τ2 + 4)K(m) = 2(β2 + 4)Π(n,m),

where Π(n,m) is the complete elliptic integral of the third kind, with the character-
istic n = τ2/(τ2 − β2) > 0, and the modulus m = τ2/(τ2 + 4).

-4 -2 0 2 4
0

5

10

15

20

β

τ

Figure 6.1. Solution set (β, τ) to the period condition (6.2)
describing the Traizet limit of oH, together with the trivial locus
β = 0 describing the Traizet limit of oP. To compare with Fig-
ure 1.4.
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Proof. Again, with the help of the integral tables in [BF71], we obtain I2(−β, β; τ) =
J2(−β, β; τ) = 0 and

(I1 + I3)(−β, β; τ) = (J1 + J3)(−β, β; τ) =
√

1−mK(m) ,

and the derivatives up to order 2 with respect to α at α = −β

(I ′1 + I ′3)(α, β; τ) = (J ′1 + J ′3)(α, β; τ) =
β

τ2 − β2

1√
τ2 + 4

Π(n,m) ,

I ′2(α, β; τ) = J ′2(α, β; τ) =
π

2

1√
(τ2 − β2)(β2 + 4)

,

I ′′2 (α, β; τ) = J ′′2 (α, β; τ) =
π

2

β√
(τ2 − β2)(β2 + 4)

( 1

τ2 − β2
− 1

β2 + 4

)
.

We look at a modified period condition, namely

Q̂ =
1/QI − 1/QJ

(α+ β)2
= 0 .

The evaluations above suffice to compute, by l’Hôpital, that

lim
α→−β+

Q̂(α, β; τ) =
∂2

∂α2

∣∣∣
α=−β

(1/QI − 1/QJ)

=
πβ
√
τ2 + 4

4(β2 + 4)3/2(τ2 − β2)3/2
(2β2 − τ2 + 4)K(m)− 2(β2 + 4)Π(n,m)

K(m)2
.

Hence Q̂ extends analytically to α + β = 0. Under the constraint τ > β, we
notice indeed two loci: β = 0 for the Traizet limit of oP, and the Traizet limit of
oH must be described by (6.2). �

And (6.2) must be describing the unique non-trivial locus of (1.2). Its solution
set is plotted in Figure 6.1. Alternatively, (6.2) can also be written in the forms

(τ2 + 4)K(m) = 2(β2 + 4)Π(n′,m)

where n′ = (τ2 − β2)/(τ2 + 4), or(
8
τ2

n′′
+ (τ2 − 4)(β2 + 4)

)
K(m) = 8

( τ2
n′′
− (β2 + 4)

)
Π(n′′,m)

where n′′ = β2/(β2 + 4).
To find the intersection with the trivial locus, let β → 0+. For the three forms

of (6.2), we recall, respectively, that

lim
n→1+

Π(n,m) = K(m)− E(m)

1−m
[DLMF, (19.6,6)];

lim
n′→m

Π(n′,m) =
E(m)

1−m
[DLMF, (19.6.1)];

lim
n′′→0+

Π(n′′,m)−K(m)

n′′
=
K(m)− E(m)

m
cf. [BF71, (733.00)].

Any one of these leads once again to

2E(m) = K(m).

Remark 6.3. The magic equation 2E(m) = K(m) also appeared in [CW18] for
locating the bifurcation point in the tD family.

Remark 6.4. Assume that the limit torus is spanned by T1 = 1 and T2 = τ . We
have studied the rhombic case |τ | = 1. Numerically, we find that if τ is taken
from the colored region on the left in Figure 6.2, within the fundamental domain
of the modular group, then there is unique non-trivial position p2(τ) that solves
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Traizet’s balance equation (1.1). The left boundary curve of this region, which is
asymptotic to the circle |z − 1| = 1 as |τ | → 0, represents a one-parameter family
of tori for which the trivial configuration x = y = 1/2 is degenerate. The image of
the continuous map τ 7→ p2(τ) is the colored region on the right in Figure 6.2. The
coloring should help to visualize the map.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure 6.2.

Remark 6.5. It recently comes to our attention that the solutions of Traizet’s bal-
ance equation (1.1) have been systematically studied in the PDE contexts as the
critical points of the Green function on flat tori [LW10, CKLW18, BE16]. For a
fixed torus, apart from the trivial solutions at the 2-division points, there could be
at most one pair of non-trivial solutions. In other words, the balancing equation
has either three or five solutions. The boundary between the two cases provides a
1-parameter family of degenerate balanced configuration.

Let kr denote the r-th elliptic integral singular values, i.e. K ′(k2r)/K(k2r) =
√
r.

A table of kr can be found in [Bow61, p. 95] and [BB87, (4.6.10)].

It was calculated by Legendre (see [WW62, §22.81]) that k3 = (
√

6−
√

2)/4, hence

K ′(m)/K(m) = 1/
√

3 when m = 1−k23 = (2 +
√

3)/4. We then see from (6.1) that

the rhombic torus with θ = 60◦ occurs when τ = 2(2 +
√

3). Then (6.2) is solved,
very conveniently, with β = 2. One then verifies that the singular point at β is
mapped to one third of the height of the box. These are then explicit parameters
for the Traizet limit of Schwarz’ H family.

We are now ready to prove:

Theorem 6.6. Schwarz H surfaces can be deformed within the set of TPMS of
genus three into Meeks surfaces.

Proof. Within a sufficiently small neighborhood of a Traizet limit, Traizet’s con-
struction actually implies a homeomorphism between the space of TPMS of genus
three and the space of 3-tori. This was not explicitly stated in [Tra08], but follows
from his design of the Weierstrass data and the uniqueness in the implicit function
theorem, as argued in [Tra02]. Let U be such a neighborbood of the Traizet limit
of H. In particular, U ∩ oH is connected.

Now fix ε > 0. We consider the oH surfaces with α + β = ε. The period
condition for such surfaces is Q̃ε(β, τ) = Q̃(ε − β, β; τ) = 0, defined on the region

{(β, τ) ∈ R2
+ : τ > β ≥ ε/2}. We have shown that Q̃ε(β; τ) is negative as τ

approaches β, and positive as τ tends to infinity. This holds, in particular, also for
α = β = ε/2. Hence in the real analytic solution set of Q̃ε = 0, there must be a
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real analytic curve γ that separates the line τ = β from τ = ∞. If ε is sufficiently
small, the curve γ passes through U .

So we deform an H surface first along the H family into U , then within U ∩ oH
onto the curve γ, finally along γ until an oP surface. The latter belongs to Meeks,
which is connected. Note that this deformation path is within oH until hitting
oP. �

Remark 6.7. It is easy to find k1 = 1/
√

2, hence K ′(m)/K(m) = 1 when m =
1 − k21 = 1/2. We then see from (6.1) that the rhombic torus becomes square
when τ = 2. In this case, (6.2) has no solution with β < τ . So the only balanced
configuration is with β = 0. This is the Traizet limit of the tetragonal deformation
family tP of Schwarz’ P surface.
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