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SUMMARY

Choosing data points is a common problem for researchers who employ various meshless methods
for solving partial differential equations. On one hand, high accuracy is always desired; on the other,
ill-conditioning problems of the resultant matrices, that may lead to unstable algorithms, prevent
some researchers from using meshless methods. For example, the optimal placements of source points
in the method of fundamental solutions, or of the centers in the radial basis functions method are
always unclear. Intuitively, such optimal locations will depend on many factors: the partial differential
equations, the domain, the trial basis used (i.e. the employed method itself), the computational
precisions, some user defined parameters, and so on. Such complexity makes the hope of having an
optimal centers placement unpromising. In this paper, we provide a data-dependent algorithm that
adaptively selects centers based on all the other variables. Copyright c© 2000 John Wiley & Sons,
Ltd.

1. Introduction

Many successful applications of meshless methods have recently been studied in science
and engineering; particular examples include the convection-diffusion problems [26], elliptic
problems [6], near singular Poisson problems [7], Dual reciprocity method [5, 12], biharmonic
equation [23], Stokes problems [41], potential problems [40], non-linear thermal explosions
[4], eigenfrequencies of plate vibrations [42], financial mathematics [14, 31], etc. Many other
successful applications based on either the method of fundamental solutions (MFS) or the
radial basis function (RBF) method can be found in different Mathematics, Physics and
Engineering journals [8, 9, 13, 16, 18, 19, 26, 32]. Instead of working on a specific applications,
we propose a new algorithm that allows researchers to use these meshless methods without
worrying the ill-conditioning problem.

For the MFS, it is shown [11] that the accuracy (for compatible problems) will depend on
the placement of source points. It is suggested [1] that placing the source points equispaced
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2 LING & SCHABACK

in the normal direction from the boundary can improve the accuracy of MFS. Similarly, the
conditioning and accuracy of the RBF method greatly depends on the user defined radial
basis centers and the so-called shape parameter c. Most commonly used RBFs Φ(r) can be
scaled by a simple transform r ← r/c where c is referred as the shape parameter. Besides of
the separating distance h of the centers, the accuracy of RBF methods is severely influenced
by the shape parameter c. As the shape parameter c gets large, the RBFs become flat and
consequently the resultant system of equations for the expansion coefficients becomes badly
conditioned. The trade-off for this increased accuracy and ill-conditioning of the associated
linear systems can be explained by the “uncertainty relation” given by Schaback [34, 35, 36].
Our goal, instead of finding optimal value, is to provide a stable procedure as independent as
possible of the user-defined parameter. The search for best shape parameter is still an open
problem. In [39], the role of c to the accuracy of the RBF method is examined. An algorithm
for selecting a good value for the parameter c in the radial basis function interpolation can
be found in [33]. Recently, Huang et al. [17] provides some numerical procedures for searching
such parameter.

On the other hand, good distributions of RBF centers do not get as much attentions mainly
due to the high degree of freedom of the underlying problem. Our previous work [29] provides
an adaptive algorithm to select RBF centers from a large set of candidates. In this paper,
we propose an improved algorithm (over the one in [29]) that picks “good” RBF centers by
introducing a new selection criterium. Our discussion will focus on the unsymmetric RBF
collocation method, also known as the Kansa’s method; however, the method in this paper
can be directly applied to the MFS for source points selection.

First of all, we give a brief introduction to the unsymmetric RBF collocation method and
introduce some notations for the rest of the work. Consider the boundary value problems of
the form

Lu = f in Ω ⊂ R
d,

Bu = g on ∂Ω,
(1)

where d denotes the spatial dimension, ∂Ω denotes the boundary of the domain Ω, L is an
interior differential operator and B is an operator that specifies the boundary conditions of
Dirichlet, Neumann or mixed type. Both f, g : R

d → R are given smooth functions.

In the unsymmetric RBF collocation method, the unknown solution u of (1) is approximated
by a linear combination of RBFs in the form of

u(x) ≈ uN(x) =

N∑

k=1

λk Φ(‖x− ξk‖), (2)

where ΞN = {ξk}
N
k=1 be an indexed set of the N RBF centers. In the original Kansa’s

formulation [20, 21], the set of centers and collocation points are identical. In the present
paper, the link between the two sets of points is decoupled as motivated by the solvability
theory in [29]. In particular, one shall take N ≥M to ensure solvability.

Using the collocation method to ensure that the approximation uN(x) satisfies (1) at a set
of M collocation points XM , we obtain a numerical approximation of u. If we assume the set
of collocation points XM is indexed and is arranged in such a way that the first mI points and
the last mB points are in Ω and on ∂Ω, respectively. To solve for the N unknown coefficients
λ = [λ1, . . . , λN ]T in (2), we need to solve the following N linearly independent equations
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IMPROVED SUBSPACE SELECTION ALGORITHM 3

N∑

k=1

λkLΦ(‖xi − ξk‖) = f(xi) for i = 1, . . . , mI ,

N∑

k=1

λkBΦ(‖xi − ξk‖) = g(xi) for i = mI + 1, . . . , M.

(3)

Rewriting (3) in matrix form, we have the resultant system given by

[
ΨL

ΨB

]

λ =

[
f
g

]

, or Aλ = b, (4)

where f ∈ R
mI , g ∈ R

mB , ΨL ∈ R
mI×N , ΨB ∈ R

mB×N with entries

[ f ]i = f(xi), for i = 1, . . . , mI ,
[ g ]i = g(xi), for i = 1, . . . , mB,

[ΨL]ik = LΦ(‖xi − ξk‖), for i = 1, . . . , mI , k = 1, . . . , N,
[ΨB]ik = BΦ(‖xi − ξk‖), for i = mI + 1, . . . , M , k = 1, . . . , N.

(5)

The matrix given by (4)–(5) is generally unsymmetric and full. Note that the problem of
ill-conditioning is not taken into account yet.

The algorithm proposed in [29] and which is also used in this work is based on the so-called
greedy technique. The basic idea of this technique is to make a sequential selection of points
based on the largest entry-wise residuals. In [38], Schaback and Wendland employ the greedy
techniques for solving large interpolation systems arising form compactly-supported RBF.
Under the symmetric formulation, applying the greedy technique selects both the RBF centers
and collocation points. Such idea has been brought towards the symmetric RBF collocation
method, see [15]. When we moved away from the symmetric setting towards the unsymmetric
one, the immediate problem is the decoupling of the RBF centers and the collocation points.
Namely, picking a collocation point by studying the residual vector provides no information
for the problem of RBF center selection.

In [29], we propose the first greedy version of adaptive algorithm for unsymmetric and global
RBF collocation system. The RBF centers are selected based on the determinant function and
ensure local solvability. With a fast formula, such selection can be done efficiently without the
evaluation or storage of the full matrix. Moreover, the algorithm is data-dependent in a way
that the right-hand vector is taken into account. More numerical results can be found in [25].

The key advance of this work is the introduction of another criterium for RBF centers
selection. The current paper is outlined as follows: an adaptive RBF centers selection algorithm
is proposed based on the primal-dual formulation of the minimum-norm solution to an
overdetermined system. The selection relies on the greedy technique that is overviewed in the
next section. The proposed algorithm is introduced in Section 2.2. The implementation and
cost of the proposed algorithm is also studied. Furthermore, some geometric interpretations
of the greedy technique are provided. In Section 3, some numerical results are presented to
show that the newly proposed algorithm outperforms the previous one. Finally, the paper is
concluded in Section 4
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4 LING & SCHABACK

2. Adaptive trial space selection

To solve the ill-conditioned unsymmetric collocation systems, the rounding error will eventually
have great impact on the accuracy. We will circumvent the problem by adaptively selecting
the best trial space for approximation.

Consider any underdetermined system A ∈ R
M×N and b ∈ R

M with M ≤ N . Then,
the minimum norm solution can be obtained through the following constrained minimization
problem:

{
minimize 1

2λT Iλ,
subject to Aλ− b = 0.

(6)

Using the method of Lagrange multipliers, the primal-dual formulation of Problem (6) can be
rewritten as block form

A

[
λ
ν

]

:=

[
I AT

A 0

] [
λ
ν

]

=

[
0
b

]

, (7)

where ν ∈ R
M is the vector of Lagrange multipliers, IN ∈ R

N×N is the identity matrix and
0 ∈ R

M×M is the zero matrix. In the next section, an adaptive algorithm for selecting RBF
centers (as well as collocation points) is built upon (7).

2.1. Adaptive algorithm

In this section, different submatrices of the collocation matrix A and b are needed. Since A is
completely determined by the collocation points and the RBF centers, we denote submatrices
of A by A( · , · ) : (Rd)m×(Rd)n → R

m×n as a matrix function taking sets of collocation points
and sets of RBF centers, respectively, as the first and second input arguments. Similar, the
right-hand vector b( · ) : (Rd)m → R

m can be treated as a vector function that can be specified
by the collocations points. For example, A = A(XM , ΞN ) ∈ R

M×N and b = b(XM ) ∈ R
M are,

respectively, the original full matrix and the right-hand vector in (4).
We propose an algorithm to build a new indexed sets, denoted by X(k) = {x(1), . . . , x(k)} and

Ξ(k) = {ξ(1), . . . , ξ(k)} (k = 1, . . . , M) for the collocation points and RBF centers respectively,
such that the chosen ones are listed earlier in the lists. Suppose, after k iterations, our algorithm
selected a set of k collocation points X(k) ⊂ XM and a set k RBF centers Ξ(k) ⊂ ΞN ,
respectively. These sets of points define a subproblem to the original one:

{
A(k)λ̌

(k)= b̌(k),

AT
(k)ν̌

(k)=−λ̌(k),
(8)

where A(k) = A(X(k), Ξ(k)) ∈ R
k×k is a square submatrix of the full matrix A and b̌(k) =

b(X(k)) ∈ R
k. After solving (8) for λ̌(k) ∈ R

k, let λ(k) ∈ R
N be the extension of λ̌(k) by

patching zeros into entries associated with the non-selected RBF centers. Similar, ν̌(k) ∈ R
k

can be extended to ν(k) ∈ R
N .

The primal PDE residual, with respect to the intermediate solution λ(k), can be computed
by

r(k) = Aλ(k) − b = A(XM , Ξ(k))λ̌
(k) − b. (9)

From (7), one can investigate how well the Lagrange conditions,

∇λ

(
1

2
λT Iλ + ν(Aλ − b)

)

= 0,
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IMPROVED SUBSPACE SELECTION ALGORITHM 5

are being satisfied by looking at the dual PDE residual

q(k) = λ(k) + AT ν(k) = λ(k) + [A(X(k), ΞN )]T ν̌(k). (10)

The (k+1)st collocation point x(k+1) and the RBF center ξ(k+1) can be selected from (9) and
(10), respectively, using the greedy technique. We pick from the set of collocation points XM

a collocation point x(k+1) such that the corresponding entry in the primal residual r(k) is the
largest in absolute value. Similarly, the new RBF center ξ(k+1) is selected from all candidates

in ΞN such that the dual residual q(k) is the largest in absolute value among all others. The
iterations should stop if either residual (9)–(10) is smaller than some tolerance or if severe
ill-conditioning in (8) is detected.

2.2. Implementation and cost

The proposed adaptive greedy method aims for huge but finite Kansa’s resultant systems that
is severely ill-conditioned. The matrix-free feature of the proposed algorithm means that the
a priori evaluation and storage of the full matrix is unnecessary. Moreover, it is different from
the standard elimination techniques with pivoting because it takes the right-hand side into
account. If applied to some ill-conditioned linear systems, the proposed method will terminate
earlier since fewer RBF centers are needed to make the linear solver breakdown.

Startup is done by finding some collocation points x(1) ∈ XM from the primal residual

r(1) = b 6= 0 and an arbitrary RBF center ξ(1). For all numerical demonstrations in this work,
we take ξ(1) such that A({x1}, ·) is maximized. This ensures A(1) ∈ R

1×1 is nonzero and hence
invertible. For some user defined integers kmax ≤ M ≤ N , the algorithm then iterates on
k = 2, 3, . . . , kmax as follows:

1. Compute and store all entries of the row A({x(k−1)}, ΞN ) corresponding to the previously
selected collocation point x(k−1); this takes O(M) operations.

2. Compute and store all entries of the column A(XM , {ξ(k−1)}) corresponding to the
previously selected RBF center ξ(k−1); this takes O(N) operations.

3. Solve the subproblem (8) for λ̌(k) and ν̌(k) using some direct methods; this takes O(k3)
operations. Note that the submatrix A(k) can be extracted from the stored rows (or
columns) of A.

• STOP if ill-conditioning problem is detected†, or if k = K.

4. Compute the primal residual r(k) and dual residual q(k) as in (9) and (10) using λ̌(k)

and ν̌(k) with the computed columns and rows of A, respectively. These take O(kN) and
O(kM), respectively. Note that the extended vectors λ(k) and ν(k) are not needed.

5. Select a new RBF center ξ(k) by finding the entry in q(k) with maximum magnitude.

6. Select a new collocation point x(k) by finding the entry in r(k) with maximum magnitude.

• STOP if the computed values in r(k) are smaller than some tolerance.

7. Repeat the iteration for k + 1.

†In our Matlab implementation, the algorithm will terminate if the BACKSLASH (or MLDIVIDE) function
call shows the “Warning: Matrix is close to singular or badly scaled.”
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6 LING & SCHABACK

Within the kth iteration , the previously proposed algorithm in [29] requires the solutions of
N +1 systems of size k×k such that, in Step 6, a new collocation point is selected to provide a
new (k + 1)× (k + 1) system with determinant closest to 1. The proposed primal-dual criteria
requires the solutions of two k × k subsystems only.

Suppose the above iteration terminates at step kt ≤ kmax ≤ M . The total work of the
proposed adaptive greedy method is O(k2

t (k2
t + M + N)) and the total storage requirement is

O(kt(M +N)) for the selected rows and columns of A. The computational cost can be further
reduced to O(k2

t (kt + M + N)) if a matrix inverse update formula, as in [29], is employed in
Step 3. Figure 1 schematic illustration of the selected RBF centers.

The proposed algorithm is attractive in solving PDE with smooth solution in higher
dimensions. In such cases, good results can be expected from using a large shape parameter c.
Moreover, the final iteration count kt is expected to be small as rather small number of basis
is needed for good approximation. Here, the proposed algorithm provides good confidence for
one to employ a large c in the formulation.

Suppose one wants to solve a PDE with the original Kansa’s method with N nodes; this
costs O(N3). Now, if the proposed method is employed with N collocation points and double
the number of trial RBF centers, and we stop at the kmax = N steps at maximum, then the
computational complexity is less than O(N2(N + N + 2N) = O(N3). Note that, depending
on the conditioning of the underneath matrix, it may not be possible to reach N iterations.
Using the proposed method is more expensive but in the same order of complexity as using
the original Kansa’s method. The extra cost is paid off in two ways: the selected RBF centers
are now optimized, and, we have a safeguard from getting unless numerical solution (when c
is chosen to be too large).

The following theorem guarantees solvability at each iteration.

Theorem 1. If r(k), q(k) 6= 0 so that the selections of new collocation point x(k+1) and RBF

center ξ(k+1) are possible, and if the square submatrix A(k) = A(x(k), ξ(k)) in the previous step

is nonsingular, then A(k+1) = A(x(k+1), ξ(k+1)) is also nonsingular.

Proof. By construction, the (k + 1)× (k + 1) matrix A(k+1) has the form

A(k+1) =

[
A(k) v
uT w

]

=

[
A(k) 0
0T 1

] [
Ik A−1

(k)v

uT w

]

, where u, v ∈ R
k, w ∈ R.

It is straightforward to show that det(A(k+1)) = (w − uT A−1
(k)v) det(A(k)).

It remains to show that w−uT A−1
(k)v is nonzero. Consider the matrix system A(k+1)λ̌

(k+1) =

b(k+1) in block form

[
A(k) v
uT w

]

︸ ︷︷ ︸

A(k+1)

[
y
η

]

︸ ︷︷ ︸

λ̌(k+1)

=

[
b(k)

β

]

︸ ︷︷ ︸

b(k+1)

, y ∈ R
k, η, β ∈ R. (11)

From the first equation and the fact that b(k) = A(k)λ̌
(k), we obtain y = λ̌(k) − ηA−1

(k)v. Put

this to the second equation in (11) to obtain

−η(w − uT A−1
(k)v) = uT λ̌(k) − β = ‖r(k)‖∞ 6= 0.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



IMPROVED SUBSPACE SELECTION ALGORITHM 7

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−3

−2

−1

0

1

2

3

4

Figure 1. Schematic illustration of the selected RBF centers

Hence, det(A(k+1)) is nonzero and A(k+1) is nonsingular. Moreover, we also show that the last

entry of λ̌(k+1) will always be nonzero. In other words, the newly introduced RBF center will
always be used. 2

2.3. Determining the unknown coefficients

After termination at step kt, the end result of the greedy algorithm in Section 2.2 is two
set of points: kt collocation points in X(kt) = {x(1), . . . , x(kt)} and kt RBF centers in
Ξ(kt) = {ξ(1), . . . , ξ(kt)}.

The selected RBF centers are used to define a trial space and the approximate solution
are expanded as in (2). Motivated by the convergent theory [37], unknown coefficients are
chosen not only based on the selected kt conditions but on a large set of collocation points.
If we simply take the original set XM as such large set, the final step is to solve an M × kt

overdetermined system, using the least-squares approach,

A(XM , Ξ(kt))λkt
= b,

for the approximate solution λkt
to Aλ = b which requires O(k2

t M) operations.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



8 LING & SCHABACK

2.4. Greedy techniques revisit

Following the geometric interpretation of the row projection method [2] for saddle point
systems, we represent the Kansa’s matrix by its row as

A =






gT
1
...

gT
m




 .

Let the square bracket [ · ]i denote the ith entry of a vector; the right-hand vector has entries
b = ([ b ]1, . . . , [ b ]M )T . Then, the M equations in (4), that is the M collocation conditions,
gives M hyperplanes in R

N . These hyperplanes can be explicitly written down as

Hi :=
{
z ∈ R

N : gT
i z = [ b ]i

}
for i = 1, . . . , M.

Let G :=
⋂
Hi be the subset of R

N that is the intersection of all M hyperplanes. We can
formulate Problem (6) as seeking λ ∈ G with minimum norm. The proposed adaptive criteria
for collocation points and RBF centers can be interpreted geometrically by the following
theorems.

Theorem 2. The i-th entry of the greedy primal residual r(k) ∈ R
M is a scaled distance

between the k-th iterative solution λ(k) and the i-th hyperplane.

Proof. Consider any hyperplane Hi (i = 1, . . . , M) and observe that λ(k) ∈ R
N can be

uniquely decomposed, by orthogonal projections, into λ(k) = PH〉
λ(‖) + PH⊥

〉
λ(‖) where

PHi
λ(k) ∈ Hi and PH⊥

i

λ(k) ∈ H⊥
i . In this proof, ‖ · ‖ = ‖ · ‖2. Since PH⊥

i

λ(k) is pointing

in the normal direction of the hyperplane Hi, we can represent PH⊥
i

λ(k) =
∥
∥PH⊥

i

λ(k)
∥
∥n̂i

where n̂i = gi/‖gi‖. Hence, we have

λ(k) = PHi
λ(k) + PH⊥

i

λ(k)

gT
i λ(k) = gT

i PHi
λ(k) + gT

i PH⊥
i

λ(k)

gT
i λ(k) = [ b ]i +

∥
∥PH⊥

i

λ(k)
∥
∥gT

i n̂i

∥
∥PH⊥

i

λ(k)
∥
∥ = (gT

i λ(k) − bi)/‖gi‖.

Note that gT
i λ(k) − [ b ]i = [r(k)]i is the i-th entry of the greedy primal residual r(k). The

assertion is proven. 2

Theorem 3. The norm of the greedy dual residual q(k) is larger than the distance between the

k-th iterative solution λ(k) and the subspace G⊥ with respect to the same norm. In particular,

the proposed algorithm takes ‖q(k)‖∞ as the RBF center selection criteria.

Proof. Note that G is parallel to NulA. Clearly, −AT ν(k) ∈ G⊥ = Row A . Hence,
dist(λ(k), RowA) ≤ dist(λ(k),−AT ν(k)) = ‖q(k)‖. 2

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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3. Numerical demonstrations

In this section, some numerical examples are shown to demonstrate the stability and convergent
behaviours of our proposed algorithms, new-Greedy, in double–precision and to compare with
the accuracy of the previously proposed method, abbreviated as old-Greedy. In all examples,
we have used the multiquadric kernel

Φc(r) =
√

c2 + r2,

in (2) where r ∈ R and c > 0. As a test problem, we solve the Poisson equation with the
Dirichlet boundary conditions, i.e.

△u(x) = f(x) for x ∈ Ω ⊂ R
d,

u(x) = g(x) for x ∈ ∂Ω.
(12)

on the unit square Ω = [−1, 1]d (d = 2, 3) for easy reproduction of the presented numerical
results. The power of meshless method, still, is its capability in solving problems in complicated
geometries.

3.1. Example 1

The functions f and g in (12) are generated by the peaks function (as the exact solution, see
Figure 1) given by

u∗ = 3(1− x)2e−x2−(y+1)2 − 10(
x

5
− x3 − y5)e−x2−y2

−
1

3
e−(x+1)2−y2

.

The numerical results in [29, 30] suggest the improvement of accuracy if one allows the
greedy algorithm to select RBF centers outside Ω. For the sake of easy comparison, we employ
the setting in the original Kansa’s method. We take XM ≡ ΞN and, moreover, the points are
regularly spaced in Ω with separating distance h. That is

M = N = (h−1 + 1)2.

Having randomly distributed points, even with very small separating distance, will not
dramatically affect the performance of the proposed method. All errors of the approximate
solutions uN are measured by the root mean squares (RMS) norm:

RMS =

(
∑

zi∈Z

(uN (zi)− u∗(zi))
2

|Z|

) 1
2

, (13)

where Z ∈ Ω ∪ ∂Ω is a set of regularly placed 101× 101 evaluation points.
In Figure 2, we demonstrate the RMS errors for various h from 2× 13−1 down to 2× 115−1

with c = 1.0 and c = 0.5. Also, for each test, the number of selected RBF centers are presented.
Thanks to the matrix-free feature, the evaluations of the full matrices (of size up to 1162×1162)
are not needed. Moreover, such matrix-free feature makes the collocation method numerically
feasible to problems in higher-dimensions.

Also note that both tested c values are relatively large for the original Kansa’s method. It
can be expected that, for all test cases, the condition numbers of the full matrices are too large
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10 LING & SCHABACK

to be handled by direct solvers in double precision. Furthermore, sizes of some tested matrix
systems are too large to be stored.

For both c = 1 and c = 0.5, the new-Greedy clearly outperforms the old-Greedy over all the
tests. Moreover, the new-Greedy shows clear convergence patterns (before stagnation occurs)
as h decreases. This is considered to be an improvement over the old-Greedy: when c = 1, it is
clear in the error profile of the old-Greedy that providing more points as candidates does not
always result in better accuracy; particularly in the range of large h’s in which the conditioning
is comparably well. What we can see is that the RMS errors of old-Greedy first oscillate then
stagnate when h decreases.

Another improvement of the new-Greedy is the ability to select more RBF centers when more
candidates are provided. Recall that the selection algorithm stops when the resultant Kansa’s
submatrix, corresponding to the selected centers, is ill-conditioned that potentially harmful
to the linear solver. From this point of view, the new-Greedy is better since the number of
selected RBF centers are consistently larger than that from the old-Greedy. Also, note that
the accuracy is closely related to the number of RBF centers used for the final approximation‡.
Namely, more RBF centers being selected will usually result in better accuracy.

For a second-order method to achieve an accuracy to the order of 10−5 in a 2D problem, over
105 nodes/elements are needed. Also presented in Figure 3 is the estimated convergence rate
based on the number of candidates N (not the number of selected RBF centers). Although we
cannot observe any evidence for exponential convergence with the new-Greedy (with respect
to the number of candidates), high convergence rates are observed; namely, 8.2 and 9.6,
respectively, for c = 1.0 and c = 0.5. We have no intention to make any conjecture about the
convergence rate of the adaptive algorithm here; the convergence of various modified Kansa’s
methods addressed by our more theoretical works [30, 37]. On the other hand, it is interesting
to note that RBF method [10] results in O(h7) and with preconditioning [3, 28] results in
O(h1.78) convergence numerically; it is even slower if one employed the domain decomposition
method [27]. Effectively, the numerical results in this paper only use a very small subset of
the provided N RBF centers; even so, the rate of convergence is faster than the cases when
all RBF centers are being used. It is important to have a good set of RBF centers instead of
many RBF centers.

In Figure 3, with h = 2× 115−1, we demonstrate the RMS errors for various c between 0.5
to 2.5. Note that we are not presenting the so-called c-convergence as the actual number of
bases used differs from case to case.

As mentioned in the introduction, having a good shape parameter is important to the
accuracy of MQ-RBF method. More importantly, bad shape parameters, usually the ones that
are too large, cause the linear solver to break down and results in poor or even unacceptable
solution’s quality. We want to show that, with the adaptive algorithm, a bad shape parameter
will not lead to numerical tragedy. Of course, we want to demonstrate that the new algorithm
outperform the previous version.

Each test run has over ten thousand RBF centers as candidates; the numbers of selected
RBF centers are relatively small. Obviously, the new-Greedy is better than the old-Greedy not
only because of the smaller RMS errors. Moreover, the new-Greedy has the ability to select

‡One can still see Equation (2) as an expansion of N basis; but zero coefficients are assigned to the unselected
RBF centers.
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Figure 2. Example 1: RMS errors for different separating distances on RBF candidates; also, provided
the number of actually selected RBF centers.
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Figure 3. Example 1: RMS errors for different MQ shape parameters.

more RBF centers for large c. In particular, when c = 0.5 the new-Greedy selects 1.7× more
centers than the old-Greedy; when c = 2.5, the new-Greedy selects 3× more. With the higher
degrees of freedom, the RMS errors of the new-Greedy is one and three orders of magnitude
smaller, respectively, for c = 1.0 and c = 0.5.

3.2. Example 2

In this example, we solve another 2D Poisson equation with, in (12), f(x) = −1 and

g(x) = g(x1, x2) =

{
(1− x2

1)
2, if x2 = −1,

0, otherwise.

Since the functions f and g are not generated from an a priori known solution, we do not
have the exact solution for computing error. Note that weak singularities are expected at
the corners; e.g., the exact solution does not lie in the native space of the RBF kernel. The
numerical set up here is almost the same as in Example 1 except that we increase the weighting
on the boundary conditions imposed to the bottom edge of the square. This is to make sure
that the incompatible boundary condition is well approximated in the least-squares process.

On a mesh with 40257 nodes and 79872 triangles, the Matlab Partial Differential Equation

Toolbox is able to solve Example 1 to an accuracy of 6 × 10−5 RMS error (on nodes). We
employ the same mesh in this example to generate the approximated solution for evaluating
error, see Figure 4. Formula (13) will be used with Z being the 40257 nodes in the mesh.

Due to the presence of singularities, all previous convergence theories on strong from RBF-
PDE (reviewed in Section 1) do not hold. For fixed c = 1 with various separating distances, the
(estimated) RMS errors range between 7.1× 10−3 to 3.9× 10−4, and, the numbers of selected
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Figure 4. Example 2: Solution obtained by FEM is used to measure error of the proposed method.

basis are between 163 to 401. Both old- and new-Greedy do not provide highly accurate results.
To better understand the situation, we will examine the error functions. For separating distance
h = 24−1, the error functions of both approaches are shown in Figure 5. The maximum errors
are 1.25×10−2 and 1.30×10−2, respectively, for the old- and new-Greedy. In fact, old-Greedy
has smaller maximum error here. Roughly speaking, old-Greedy provides a rather uniform
error function that is nice for an one step approach. If high accuracy is not desired, old-Greedy
can efficiently provide the user a numerical approximation. On the other hand, new-Greedy
results in large error near the corner singularities.

In Figure 6, the error profiles for different shape parameters c are shown. Compared with that
in Example 1, see Figure 3, the error reduction is not as obvious. In fact, the error profiles are
all similar to the one shown in Figure 6 for different value of c. However, small c does results in
more selected basis. Hence, for problems with incompatible boundary conditions, new-Greedy
with a large c can be seen as an efficient approach to obtain a smooth approximation. If
one then take the residual (with some large c) and apply the greedy algorithm with compactly
supported RBFs [15], the localized errors can be quickly reduced and results in better numerical
solution.

3.3. Example 3

In the last example, the performance of new-Greedy in solving 3D problems are demonstrated.
The set of collocation points is regularly spaced in Ω = [−1, 1]3 with spacing (2k + 2)−1 for
k = 1, . . . , 6. The set of trial candidates is identical to the collocations points in order to reduce
memory requirement. The RMS errors are computed based on a set of regularly placed points
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Figure 5. Example 2: Error functions of old-Greedy (#RBF=80) and new-Greedy (#RBF=314) when
solving a Poisson equation with singularites.
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Figure 6. Example 2: RMS differences to the FEM solution for different MQ shape parameters.

with spacing 0.05. Three different exact solutions for (12) are considered:

u1(x) =
1

‖(x, y, z)T − (2, 2, 2)T ‖2
,

u2(x) = exp(x + y + z),

u3(x) = cos(x) cos(y) cos(z).

In Table I, the RMS errors for different c are shown. As observed in the 2D examples, new-
Greedy works extremely well on smooth solutions. We also observed that using c = 4 and
c = 1 results in similar accuracy but the numbers of selected trial centers (e.g. run time) differ
by a great amount.

If incompatible boundary conditions and inhomogeneous term are imposed, we will expect
a similar loss of accuracy as in Example 2. The result presented here gives a strong motivation
to couple the proposed method with the local scheme in [15]. In general, we can expect good
approximation from new-Greedy with very localized error; probably near the singularities. In
3D, this smooth approximation will greatly speed up the convergence of the local scheme as
it takes away most of the “energy” from the residual. We will leave this to our future work.

4. Conclusion

We presented an improved adaptive algorithm for the unsymmetric radial basis functions
(RBFs) collocation method. The proposed algorithm selects a small subset of RBF centers
that ensure stable solution. The proposed algorithm is tested against a previously proposed
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c = 1
h u1 u2 u3

0.2500 7.9E-5 (122) 5.1E-3 (125) 4.1E-4 (125)
0.1667 1.1E-5 (315) 5.1E-4 (320) 5.5E-5 (300)
0.1250 2.2E-6 (531) 8.2E-5 (589) 1.0E-5 (474)
0.1000 4.4E-7 (711) 9.1E-5 (577) 1.9E-6 (607)
0.0833 2.2E-7 (800) 3.4E-5 (724) 2.8E-6 (568)
0.0714 3.9E-7 (721) 2.0E-5 (833) 1.2E-6 (800)

c = 2
h u1 u2 u3

0.2500 5.0E-5 (125) 2.0E-3 (125) 1.2E-4 (125)
0.1667 2.1E-6 (194) 8.8E-5 (229) 4.4E-6 (208)
0.1250 5.8E-7 (266) 1.9E-5 (285) 1.8E-6 (246)
0.1000 1.8E-6 (245) 7.3E-5 (267) 6.6E-7 (276)
0.0833 1.2E-6 (263) 5.2E-5 (279) 1.1E-6 (265)
0.0714 1.9E-6 (273) 6.6E-5 (292) 1.2E-6 (267)

c = 4
h u1 u2 u3

0.2500 2.0e-5 (089) 8.5e-4 (091) 1.4e-5 (091)
0.1667 8.2E-6 (103) 7.9E-4 (085) 2.8E-6 (113)
0.1250 6.1E-6 (122) 2.9E-4 (112) 9.7E-6 (102)
0.1000 1.5E-5 (107) 2.4E-4 (110) 6.5E-6 (123)
0.0833 1.1E-5 (114) 3.4E-4 (118) 9.6E-6 (120)
0.0714 1.2E-5 (117) 4.2E-4 (115) 6.1E-5 (076)

Table I. Example 3: RMS errors of new-Greedy with c = 1, 2, 4 for some 3D examples. The
notation “ aE-e (n) ” stands for an RMS error of a × 10−e with n selected basis in the least-squares

approximation.

algorithm and demonstrates improvements in many different aspects. (1) it demonstrates
convergent error profiles as the separating distance decreases; and, (2) the stable error profiles
as the RBF shape parameter increases. Moreover, the proposed algorithm is easier to implement
and computationally more efficient than the old algorithm. Both 2D and 3D examples are
provided. Interested readers are referred to [24] for numerical results when the proposed
algorithm is applied to both 2D and 3D modified Helmholtz problems. In [22], the proposed
method is coupled with a periodic MQ-RBF and the level-set method for simulating 2D
combustions.

The proposed algorithm is efficient for solving partial differential equations with smooth
solution. However, we emphasize that infinitely-flat RBFs are out of the reach of the proposed
algorithm. It is an application dependant problem to get a balance between human labor for
implementation, desired accuracy, applicability to irregular domain, and etc. The presented
work provides the readers an alternative way to implement the unsymmetric collocation
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method and other meshless methods. It is ideal to handle 3D problems with smooth solution
on irregular domains.

Away from singularities, the proposed algorithm is able to well approximate the solution.
The numerical solution can be better approximated using compactly supported basis. For
time dependent problem, it makes sense to make use of the previously selected RBF centers
(enlarge the set if necessary) as candidates for the next time step. Such procedure can reduce
the number of candidates and hence reduce complexity of the algorithm. We leave this to our
future research.
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