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he und Angewandte MathematikUniversität GöttingenLotzestraÿe 16-18D�37073 GöttingenGermanyAbstra
tIn this paper we present a strategy for over
oming the ill�
onditioning of linearsystems arising from radial basis fun
tion or kernel te
hniques. To 
ome up witha more useful basis, we adopt the strategy known from Newton's interpolation for-mula, using generalized divided di�eren
es and a re
ursively 
omputable set of basisfun
tions vanishing at in
reasingly many data points. The resulting basis turns outto be orthogonal in the Hilbert spa
e in whi
h the kernel is reprodu
ing, and under
ertain assumptions it is 
omplete and allows 
onvergent expansions of fun
tionsinto series of interpolants. Some numeri
al examples show that the Newton basis ismu
h more stable than the standard basis.Key words: Radial basis fun
tions, interpolation, s
attered data, kernels, 
onditionAMS Classi�
ation: 41A05,41063, 41065, 65D05, 65D15
1 Stability of Evaluation of InterpolantsWe 
onsider multivariate interpolation on a set X := {x0, . . . , xn} of s
attereddata lo
ations x0, . . . , xn in some bounded domain Ω ⊂ R

d. Given values
f(x0), . . . , f(xn) of a real�valued fun
tion f there, we want to re
onstru
t fby a linear 
ombination

sX,f(x) :=
n∑

j=0

αjwj(x) (1)
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of 
ertain basis fun
tions w0, . . . , wn on Ω. The 
oe�
ients α0, . . . , αn resultfrom solving a linear system
n∑

j=0

αjwj(xk) = f(xk), 0 ≤ k ≤ nwith the 
oe�
ient matrix AX,w = (wj(xk))0≤j,k≤n whi
h we assume to beinvertible.We now look at the norm of the interpolation proje
tor taking the data ve
tor
fX := (f(x0), . . . , f(xn))

T ∈ R
n+1into the interpolant as an element of C(Ω) under the L∞ norm. We get

‖sX,f‖∞ ≤
n∑

j=0

|αj |‖wj‖∞

≤ ‖α‖∞
n∑

j=0

‖wj‖∞

= LX,w‖α‖∞
≤ LX,w‖A−1

X,w‖∞,∞‖fX‖∞

(2)
with the generalized Lebesgue 
onstant

LX,w =
n∑

j=0

‖wj‖∞.Note that this way of bounding the interpolation operator is basis�dependent.But sin
e we assume that a
tual 
al
ulations pro
eed via the 
oe�
ients αj ,the above argument des
ribes the error behavior when evaluating the inter-polant (1). In fa
t, the absolute error of evaluating (1) on a ma
hine withpre
ision ǫ will have a worst�
ase bound
ǫ

n∑

j=0

|αj |‖wj‖∞

≤ ǫLX,w‖A−1
X,w‖∞,∞‖fX‖∞.This means that the instability of evaluation using the basis fun
tions wj andthe formula (1) 
an be measured by the quantity

SX,w := LX,w‖A−1
X,w‖∞,∞. (3)2



Note that this is not the 
ondition of the interpolation pro
ess as a whole, as
onsidered in early papers of W. Gauts
hi [5℄. We plan to treat the Gauts
hi
ondition in a forth
oming paper.Let us look at two typi
al 
ases. If we use a symmetri
 positive de�nite kernel
K : Ω × Ω → R and the basis

wj := K(·, xj), 0 ≤ j ≤ n,it is well�known [8,7℄ that the smallest eigenvalue of AX,w gets very small if ngets large, even if the data points are pla
ed ni
ely, and the e�e
t gets worsewhen the smoothness of the kernel is in
reased. This instability has beenobserved by plenty of authors, and there were many attempts to over
omeit. For instan
e, lo
al Lagrange bases have been su

essfully used for 
ertainpre
onditioning te
hniques [6,1,2℄.But let us look at an opposite 
ase guided by the 
ited papers. Theoreti
ally,one 
an go over to a full Lagrange basis u0, . . . , un of the spa
e
UX,K,n := Span {K(·, x0), . . . , K(·, xn)} (4)satisfying uj(xk) = δjk, 0 ≤ j, k ≤ n. Then one has AX,u = I and theinstability is governed solely by the 
lassi
al Lebesgue 
onstant

LX,u :=
n∑

j=0

‖uj‖∞.The paper [3℄ proves that this 
onstant grows only like √
n for reasonablydistributed interpolation points and any �xed smoothness of the kernel.These two examples show that the interpolants behave well in fun
tion spa
ethough the 
oe�
ients in the standard basis tend to be untolerably largein absolute value. This was also observed by many authors. Within 
ertainlimits, the quality of the interpolant as a fun
tion is not seriously a�e
ted bythe instability of the basis or the bad 
ondition of the matrix AX,w of thelinear system.Consequently, one should look for better bases.This paper 
onstru
ts a new type of basis halfway between the Lagrange 
aseand the standard kernel basis. We shall do this by mimi
king the Newton in-terpolation formula. In terms of 
lassi
al polynomial interpolation, this means3



that we prefer the Newton form of the interpolant over solving the linear sys-tem with a Vandermonde matrix or using the Lagrange basis. As a byprodu
t,we get an orthogonal basis in the �native� Hilbert spa
e in whi
h the kernelis reprodu
ing, and we 
an show that the basis is 
omplete, if in�nitely manydata lo
ations are reasonably 
hosen. The stability properties of the new basisare shown to lie right between those of the standard and the Lagrange basis,and some numeri
al examples support our theory.2 Newton BasesAs is well-known, polynomial interpolation to a real�valued fun
tion f on Rusing values on n + 1 data lo
ations
x0 < x1 < . . . < xnon the real line 
an be done by Newton's formula

pn(x) =
n∑

j=0

[x0, . . . , xj ]f
︸ ︷︷ ︸

:=λj(f)

j−1
∏

i=0

(x − xi)

︸ ︷︷ ︸

:=vj(x)where [x0, . . . , xj ]f stands for the divided di�eren
e of order j applied to f atthe data lo
ations x0, . . . , xj . Note that this takes the form
pn(x) =

n∑

j=0

λj(f)vj(x) (5)splitting the formula in a sum of produ
ts of an f�independent basis fun
tion
vj and an f�dependent data fun
tional λj(f), quite like any other quasi�interpolation formula. This representation has the 
hara
teristi
 properties

vj(xi) = 0, 0 ≤ i < j

vj(xj) 6= 0, 0 ≤ j

λj(vi) = 0, 0 ≤ i < j

(6)
and the simple error representation

f(x) − pn(x) = vn+1(x)[x, x0, . . . , xn]f for all x ∈ R.We now turn to general multivariate interpolation on a set X := {x0, . . . , xn}of s
attered data lo
ations x0, . . . , xn in some bounded domain Ω ⊂ R
d, and4



we assume a symmetri
 positive de�nite kernel K to be given on Ω. In view of(6), we de�ne a basis for the spa
e (4) via �triangular� Lagrange 
onditions.De�nition 2.1 We de�ne the Newton basis {vj}n
j=0 on the sequen
e Xn :=

(xj)
n
j=0 for the kernel K by
vj(xi) = 0, 0 ≤ i < j ≤ n

vj(xj) = 1, 0 ≤ j ≤ n
(7)and the requirement

vj ∈ UX,K,j := Span {K(·, x0), . . . , K(·, xj)}, 0 ≤ j ≤ n . (8)Remark 1 The fun
tions vj are well-de�ned be
ause of the positive de�nite-ness of the kernel K [8,7℄. From the de�nition one 
an also see easily thelinear independen
e of the vj.De�nition 2.2 For f ∈ N we de�ne the 
oe�
ient fun
tionals λj(f), 0 ≤
j ≤ n similar to (5) re
ursively by the equation

f(xj) =
j
∑

k=0

λk(f)vk(xj) , 0 ≤ j ≤ n . (9)For 
onvenien
e we use the notation
fj(x) :=

j
∑

k=0

λk(f)vk(x), 0 ≤ j ≤ n. (10)Remark 2 A permutation of the points in X will 
hange the fun
tionals
λj(f), 0 ≤ j ≤ n. But for a given sequen
e of points these fun
tionals areunique due to the re
ursive stu
ture of (9).Remark 3 If we use the uniqueness of the representation in the spe
ial 
ase
f = vi we get the third equation of (6) in the strengthened form

λj(vi) = δij, 0 ≤ i ≤ j.Lemma 4 The fun
tions fj have the interpolation property
fj(xk) = f(xk) , 0 ≤ k ≤ j.Proof: This follows dire
tly for j = 0 and then by indu
tion from5



fj(x) = λj(f)vj(x) + fj−1(x) and
vj(xk)= 0, 0 ≤ k < j.Lemma 5 The 
oe�
ient fun
tionals λj(f) 
an be 
omputed by the equations
λ0(f) = f0(x0),

λj(f) = f(xj) − fj−1(xj), 1 ≤ j ≤ n.Proof:
f(xj)= fj(xj)

= λj(f)vj(xj) +
j−1
∑

k=0

λk(f)vk(xj)

= λj(f) + fj−1(xj).

2Now we are looking for a way to 
al
ulate the vj . Later, we shall see that thebasis has some hidden orthogonality property, but we 
an do the 
al
ulationalso in a dire
t and straightforward way using a representation
βjjvj(x) = K(x, xj) −

j−1
∑

k=0

βjkvk(x) , βjk ∈ R, 0 ≤ k ≤ j ≤ n, (11)and applying vj(xi) = δij , 0 ≤ i ≤ j from (7). The result is
βji = K(xi, xj) −

i−1∑

k=0

βjkvk(xi), 0 ≤ i ≤ j ≤ n ,

βji = 0 , for i > j .One 
an store the βjk and the vj(xk) together in a matrix or 
ompute themdire
tly via LR-de
omposition.
(K(xi, xj))ij =








β11 0... . . .
βj1 · · · βjj















v1(x1) · · · v1(xj). . . ...
0 vj(xj)








. (12)
But we do not 
laim that the above 
al
ulation is best possible.6



3 OrthogonalityIt is a basi
 fa
t of kernel�based methods [8,7℄ that fun
tions of the form
p(x) :=

n∑

j=0

αjK(x, xj) (13)have a norm given by
‖p‖2

K :=
n∑

j,k=0

αjαkK(xj , xk)whi
h arises from the inner produ
t




n∑

j=1

αjK(·, xj),
m∑

k=1

βkK(·, yk)





K

:=
n∑

j=1

m∑

k=1

αjβkK(xj , yk) .Under this inner produ
t, the span of fun
tions (13) 
an be 
ompleted to forma �native� Hilbert spa
e N for the given kernel, and the kernel is �reprodu
ing�in N in the sense
g(x) = (g, K(x, ·))K for all x ∈ R

d, g ∈ N .This reprodu
tion formula provesTheorem 6 For p ∈ N , p(x) :=
∑n

j=0 αjK(x, xj), the following orthogonalityrelation holds:
(p, g)K = 0 for all g ∈ N with g(xj) = 0, 0 ≤ j ≤ n.Proof: (p, g)K =

∑n
j=0 αj(K(·, xj), g)K =

∑n
j=0 αj g(xj)

︸ ︷︷ ︸

=0

= 0. 2Consequently, (7) and (8) imply orthogonality between the fun
tions of theNewton basis.Corollary 7 Using the de�nition (2.1) we have
(vj , vk)K = 0, 0 ≤ k < j ≤ n.Proof: The proof follows dire
tly from Theorem (6) together with

vk ∈ Span {K(·, x0), . . . , K(·, xk)}and vj(xi) = 0, for 0 ≤ i < j. 2 7



Remark 8 The fun
tions vj , 0 ≤ j ≤ n, are not orthonormal. However from(11) one 
an read o� that
‖vj‖2

K = (K(·, xj) −
j−1
∑

k=0

βjkvk, vj)/βjj

= (K(·, xj), vj)/βjj

= vj(xj)/βjj

= 1/βjjholds, using Corollary (7) and the reprodu
tion formula.From Corollary (7) and De�nition (10) we see that λj(f)‖vj‖K is the j-thexpansion 
oe�
ient of fj in the orthogonal basis {vk}n
k=0. Therefore we 
an
on
lude:Theorem 9 The 
oe�
ients λj(f), 0 ≤ j ≤ n have the representations

λj(f)=
(

fj,
vj

‖vj‖2
K

)

K

=
(

f,
vj

‖vj‖2
K

)

K

=
(

fn,
vj

‖vj‖2
K

)

K
, 0 ≤ j ≤ n.

Proof:Sin
e the vj are orthogonal we get from fj(x) =
∑j

k=0 λk(f)vk(x) the equation
λj(f)vj =

(

fj ,
vj

‖vj‖K

)

K
.The se
ond and third equation of the theorem follow from

0 = (fj − f)(xk) = (fj − fn)(xk) , 0 ≤ k ≤ j ≤ nand Theorem (6). 2 8



Furthermore, we get from Parseval's identity together with
(fn,

vj

‖vj‖K
)K = 0 for j > n the equation

‖fn‖2
K =

n∑

j=0

(

fn,
vj

‖vj‖K

)2

K

=
n∑

j=0

(

f,
vj

‖vj‖K

)2

K

=
n∑

j=0

λ2
j(f)‖vj‖2

K .Sin
e the interpolants to fun
tions f from the native spa
e always are norm�minimal [8,7℄, we get
‖fn‖2

K =
n∑

j=0

λ2
j(f)‖vj‖2

K

≤ ‖f‖2
Kproving that one 
an take the limit n → ∞ without problems, if there arein�nitely many points.4 StabilityBut before we 
onsider 
ompleteness questions and n → ∞ in detail, we wantto show a bound like (2) for the Newton basis.Theorem 10 For the representation (5) there is the bound

n∑

j=0

|λj(f)||vj(x)| ≤ C
√

n + 1‖f‖K , (14)if we assume that the native spa
e N is 
ontinuously embedded into the spa
eof 
ontinuous fun
tions via
|g(x)| ≤ C‖g‖K for all g ∈ N , x ∈ Ω. (15)Proof:

n∑

j=0

|λj(f)||vj(x)|

≤C
n∑

j=0

|λj(f)|‖vj‖K 9



≤C
√

n + 1

√
√
√
√

n∑

j=0

λ2
j(f)‖vj‖2

K

≤C
√

n + 1‖f‖K . 2The above result shows that both the 
oe�
ients and the fun
tions in therepresentation of the interpolant by the Newton basis 
annot grow ex
eedinglyfast for n → ∞. However, this does not mean that the a
tual values λj(f)and vj(x) are 
al
ulated stably. Like in the standard Newton representationof polynomial interpolants, the 
al
ulation of divided di�eren
es from purelypointwise data is ne
essarily unstable.For su�
iently dense and well-distributed data in bounded domains, we haveuniform boundedness of ‖vj‖∞ be
ause ea
h su
h fun
tion is part of a Lagrangebasis [3℄. Due to Theorem 9, the divided di�eren
e fun
tionals λj(f) havebounds
|λj(f)| =

(fn, vj)K

‖vj‖2
K

≤ ‖fn‖K

‖vj‖K
≤ ‖f‖K

‖vj‖K
,but these bounds are weaker than the summability implied by (14).5 Stability for the Lagrange BasisIn this se
tion we want to show that the bound (14) holds also for the La-grange basis. The proof again uses the fa
t that the elements of the basis areorthogonal with respe
t to (·, ·)K.Theorem 11 For the Lagrange basis {un

j }n
j=0 ,

un
j (xi) = δij , un

j ∈ span{K(·, xk) : xk ∈ Xn}, xi ∈ Xn , (16)there is the bound
n∑

j=0

|f(xj)||un
j (x)| ≤ C

√
n + 1‖f‖K , (17)if we assume that the native spa
e N is 
ontinuously embedded into the spa
eof 
ontinuous fun
tions via

|g(x)| ≤ C‖g‖K for all g ∈ N , x ∈ Ω. (18)Proof: With the de�nition sf,Xn
(x) :=

∑n
j=0 f(xj)u

n
j (x) we get10



‖f‖2
K ≥‖sf,Xn

‖2
K

=
n∑

j=0

(sf,Xn
,

un
j

‖un
j ‖K

)2
K

=
n∑

j=0

(f(xj)uj,
un

j

‖un
j ‖K

)2
K

=
n∑

j=0

f(xj)
2

‖un
j ‖2

K

(un
j , u

n
j )

2
K

=
n∑

j=0

f(xj)
2‖un

j ‖2
K .Thus we 
an 
on
lude

n∑

j=0

|f(xj)||un
j (x)| ≤C

n∑

j=0

|f(xj)|‖un
j ‖K

≤C
√

n + 1

√
√
√
√

n∑

j=0

f(xj)2‖un
j ‖2

K

≤C
√

n + 1‖f‖K . 26 Convergen
e and CompletenessAs we saw before, it is no problem to let n tend to in�nity, but one 
annotexpe
t to have a good reprodu
tion quality of interpolants without makingfurther assumptions on the pla
ement of the data lo
ations.We deal in this se
tion with an f�independent setting. Let Ω ⊂ R
d be abounded Lips
hitz domain with an interior 
one 
ondition. Then we assumean in�nite sequen
e x0, x1, . . . of quasi-uniform data lo
ations su
h that the
onse
utive �ll distan
es

hj := sup
y∈Ω

min
0≤k≤j

‖y − xk‖2tend to zero for j → ∞, and at the same time the separation distan
es
qj := min

0≤i<k≤j
‖xi − xk‖2are bounded below by

qj ≥ c · hj , j ≥ 011



by some positive 
onstant c. We 
all su
h sequen
es quasi-uniformly spa
e-�lling and remark that there are various ways to get su
h sequen
es, for ex-ample by a spe
ial greedy method [4℄.If N points �ll the domain in a quasi�uniform way, the volume of the domainmust roughly be 
overed by N balls of radius hN , su
h that
hN ≈ c · N−1/dmust be expe
ted. If this is done by re�nement of regular grids by a fa
tor of1/2, one still gets

hj ≈ c · 2d · j−1/d. (19)If the kernel is su
h that its native Hilbert spa
e is a subspa
e of W τ
2 (Rd), one
an expe
t a 
onvergen
e like

‖f − fn‖∞ ≤ Chτ−d/2
n ‖f‖K

(19)

≤ Cn1/2−τ/d‖f‖Kwhen using interpolants fn based on n+1 quasi-uniformly distributed points.Furthermore, one has norm 
onvergen
e ‖f − fn‖K → 0 for n → ∞. if thesequen
e of data points is quasi-uniformly spa
e-�lling.Thus we have a series representation
f =

∞∑

j=0

λj(f)vj (20)whi
h is at least 
onvergent in ‖ · ‖K , and our error bound shows that thepartial sums are 
onvergent in the L∞ norm at the given rate.These 
onsiderations prove the followingTheorem 12 For quasi-uniformly spa
e-�lling sequen
es and for kernels gen-erating �native� subspa
es of W τ
2 (Rd) for τ > d/2, the orthogonal system 
on-sisting of the Newton basis fun
tions vj is 
omplete in the native Hilbert spa
eof the kernel, and we 
an represent ea
h fun
tion there as

f =
∞∑

j=0

(f, vj)K

‖vj‖2
K

vj. 2This result will surely have appli
ations elsewhere, be
ause it is a �rst 
ase ofan orthogonal expansion of fun
tions from reprodu
ing kernel Hilbert spa
esinto a 
onvergent series of interpolants.12



7 ExamplesIn this se
tion we provide numeri
al examples to support our theoreti
al re-sults. The data points were quasi�uniformly spa
e��lling in [−3, 3]2 by thegreedy method of [4℄. We used the Gaussian kernel K(x, y) = exp(−‖x − y‖2/25)throughout.The graphs show that there are big di�eren
es between the three bases (kernel,Lagrange, and Newton) as far as evaluation stability is 
on
erned. Figure 1displays the stability 
onstant SX,w of (3) for the three bases as a fun
tion ofthe number of data points used.To 
ompare 
onditions of interpolation matri
es, see Figure 2. The Lagrangebasis always has 
ondition 1, and thus it is not displayed.If the MATLAB peaks fun
tion is interpolated, one 
an 
al
ulate the bound of(2) based on the available 
oe�
ients. It 
annot ex
eed the stability 
onstant
SX,w up to the fa
tor ‖fX‖∞, and Figure 3 shows that the stability bound
SX,w is not unrealisti
.A MATLAB 
© program pa
kage is available viahttp://www.num.math.uni-goettingen.de/s
haba
k/resear
h/group.html
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Fig. 1. Stability bound SX,w of (3)13
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