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Abstract

In this paper we present a strategy for overcoming the ill-conditioning of linear
systems arising from radial basis function or kernel techniques. To come up with
a more useful basis, we adopt the strategy known from Newton’s interpolation for-
mula, using generalized divided differences and a recursively computable set of basis
functions vanishing at increasingly many data points. The resulting basis turns out
to be orthogonal in the Hilbert space in which the kernel is reproducing, and under
certain assumptions it is complete and allows convergent expansions of functions
into series of interpolants. Some numerical examples show that the Newton basis is
much more stable than the standard basis.
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1 Stability of Evaluation of Interpolants

We consider multivariate interpolation on a set X := {xo, ..., x,} of scattered
data locations xy,...,z, in some bounded domain 2 C R? Given values
f(zo), ..., f(x,) of a real valued function f there, we want to reconstruct f
by a linear combination

sx.5(z) = Z e 1)

I Supported by Deutsche Forschungsgemeinschaft via Graduiertenkolleg 1023

Preprint submitted to Elsevier 16 January 2008



of certain basis functions wy, ..., w, on €. The coefficients «y, ..., a, result
from solving a linear system

Zn:%‘wj(xk) = f(ax), 0<k<n
7=0

with the coefficient matrix Ax.,, = (w;(zk))o<jr<n Which we assume to be
invertible.

We now look at the norm of the interpolation projector taking the data vector

fX = (f(xO)v ceey f(xn>>T € Rn+1

into the interpolant as an element of C'(€2) under the L., norm. We get

n
Isx.slloe < D laslllwilloo
i=0

S Ol o Wi || oo
] jZ::OII il 2)

= LX,w”O‘Hoo

< LX,w”A)_(,leOO,OOHfXHoo

with the generalized Lebesgue constant
n
Lxw = Z [[w;loo-
=0

Note that this way of bounding the interpolation operator is basis—dependent.
But since we assume that actual calculations proceed via the coefficients a;,
the above argument describes the error behavior when evaluating the inter-
polant (1). In fact, the absolute error of evaluating (1) on a machine with
precision € will have a worst—case bound

n
€ lalllwjllo
7=0
< ELXMHA;(,leHOO,OOHfXHOO'

This means that the instability of evaluation using the basis functions w; and
the formula (1) can be measured by the quantity

Sxaw = Ll Ax .o (3)



Note that this is not the condition of the interpolation process as a whole, as
considered in early papers of W. Gautschi [5]. We plan to treat the Gautschi
condition in a forthcoming paper.

Let us look at two typical cases. If we use a symmetric positive definite kernel
K : Q) xQ — R and the basis

Wy = K("xj)> 0<j<n,

it is well-known [8,7] that the smallest eigenvalue of Ax ,, gets very small if n
gets large, even if the data points are placed nicely, and the effect gets worse
when the smoothness of the kernel is increased. This instability has been
observed by plenty of authors, and there were many attempts to overcome
it. For instance, local Lagrange bases have been successfully used for certain
preconditioning techniques [6,1,2].

But let us look at an opposite case guided by the cited papers. Theoretically,
one can go over to a full Lagrange basis uy, . .., u, of the space

Ux kn:= Span {K(-,z¢),...,K(-,z,)} (4)

satisfying u;(zx) = 65, 0 < j,k < n. Then one has Ax, = I and the
instability is governed solely by the classical Lebesgue constant

n
Lxu =) llujllco-
j=0

The paper [3| proves that this constant grows only like /n for reasonably
distributed interpolation points and any fixed smoothness of the kernel.

These two examples show that the interpolants behave well in function space
though the coefficients in the standard basis tend to be untolerably large
in absolute value. This was also observed by many authors. Within certain
limits, the quality of the interpolant as a function is not seriously affected by
the instability of the basis or the bad condition of the matrix Ay, of the
linear system.

Consequently, one should look for better bases.

This paper constructs a new type of basis halfway between the Lagrange case
and the standard kernel basis. We shall do this by mimicking the Newton in-
terpolation formula. In terms of classical polynomial interpolation, this means



that we prefer the Newton form of the interpolant over solving the linear sys-
tem with a Vandermonde matrix or using the Lagrange basis. As a byproduct,
we get an orthogonal basis in the “native” Hilbert space in which the kernel
is reproducing, and we can show that the basis is complete, if infinitely many
data locations are reasonably chosen. The stability properties of the new basis
are shown to lie right between those of the standard and the Lagrange basis,
and some numerical examples support our theory.

2 Newton Bases

As is well-known, polynomial interpolation to a real-valued function f on R
using values on n 4+ 1 data locations

To<T1 < ...<xp

on the real line can be done by Newton’s formula

pulz) = z (7o, . ,xj]f§<x )

=X (f) %T
Z:Uj X

where [zg, ..., z;]f stands for the divided difference of order j applied to f at
the data locations xg, ..., x;. Note that this takes the form

pal@) = 3 (o) (5)

J=0

splitting the formula in a sum of products of an f—independent basis function
v; and an f-dependent data functional A;(f), quite like any other quasi-
interpolation formula. This representation has the characteristic properties

'U](ZEZ)ZO,OSZ<j
vi(x;) # 0,0 < (6)
)\j(’UZ):O,OS’l<j

and the simple error representation

f(z) — pu(z) = Vg1 (x) [z, 20y . . ., ] f for all z € R.

We now turn to general multivariate interpolation on a set X := {xo,...,z,}
of scattered data locations g, ..., x, in some bounded domain 2 C R¢, and



we assume a symmetric positive definite kernel K to be given on ). In view of
(6), we define a basis for the space (4) via “triangular” Lagrange conditions.

Definition 2.1 We define the Newton basis {v; i_o on the sequence X, =
(5)j=o for the kernel K by

vi(z;)) =0,0<i<j<mn
, (7)
’Uj(.l’j) = 1, OS] Sn
and the requirement
v; € Ux kj = Span {K(-,z0),...,K(-,z;)}, 0<j<n. (8)
Remark 1 The functions v; are well-defined because of the positive definite-
ness of the kernel K [8,7]. From the definition one can also see easily the

linear independence of the v;.

Definition 2.2 For f € N we define the coefficient functionals \;(f), 0 <
Jj <mn similar to (5) recursively by the equation

fz;) = Z M(Puele;), 0<j<n. )

For convenience we use the notation
j .
fi@) =" Xe(Hoe(z), 0 <5 <n. (10)
k=0

Remark 2 A permutation of the points in X will change the functionals
Ni(f), 0 < j < n. But for a given sequence of points these functionals are
unique due to the recursive stucture of (9).

Remark 3 If we use the uniqueness of the representation in the special case
f = v; we get the third equation of (6) in the strengthened form

)\j(’Ui) = (Sij, 0 S Z S j
Lemma 4 The functions f; have the interpolation property

filrg) = flag), 0< k<

Proof: This follows directly for j = 0 and then by induction from



fi(x)=X;(f)vj(x) + fi—i(x) and
vi(zr) =0, 0<k<j.

Lemma 5 The coefficient functionals X\;(f) can be computed by the equations

)‘O(f):fo(l’o),
N(f)=fxg) = fima(zy), 1<j<n

Proof:

f(xs) = fi(x;) |
=X\ (f)v;(z;) + 1; Ae(f)vr(2;)

=N (f) + fi=1(zy).
O
Now we are looking for a way to calculate the v;. Later, we shall see that the

basis has some hidden orthogonality property, but we can do the calculation
also in a direct and straightforward way using a representation

Bivi(x) = K(z,x;) Zﬁgkvk , Bir€R0<SELSj<n, (11)

and applying v;(z;) = 0,5, 0 <4 < j from (7). The result is

69’2‘ waxj Zﬁ]kvk 372 OSZS]SH,
69’2':07 fOI‘Z>j.

One can store the 3;; and the v;(zy) together in a matrix or compute them
directly via LR-decomposition.

B11 0 vi(w1) -+ vi(z))
(K(@i,zj)); =1 & I . (12)
Bjv -+ Bjj 0 v ()

But we do not claim that the above calculation is best possible.



3 Orthogonality

It is a basic fact of kernel based methods [8,7] that functions of the form

Za] z, ;) (13)

have a norm given by

n
Ipll == > oK (x, k)
k=0

which arises from the inner product

(iajK Zib:ﬁkK )) :ii Qi kK x],yk)

Under this inner product, the span of functions (13) can be completed to form
a “native” Hilbert space N for the given kernel, and the kernel is “reproducing”
in \V in the sense

g(z) = (9, K(x,)) forall z € RY, g € N.

This reproduction formula proves

Theorem 6 Forp e N, p(x) := X a;K(x,x;), the following orthogonality
relation holds:

(p,g)xk =0 for all g € N with g(x;) =0, 0 < j <n.

Proof: (p,9)k = Xj=0 o (K (-, 25), 9)x = Xj—oj gla;) = 0. O
=0

Consequently, (7) and (8) imply orthogonality between the functions of the
Newton basis.

Corollary 7 Using the definition (2.1) we have
(vj, )k =0, 0 <k <j<n.
Proof: The proof follows directly from Theorem (6) together with
vp € Span {K(-,z0),..., K(-,zx)}

and vj(z;) =0, for 0 <i<j. O



Remark 8 The functions vy, 0 < j < n, are not orthonormal. However from
(11) one can read off that

-1
v ll5 = (K (-, 25) = Biwvw, v;)/ By
k=0

= (K (-, 7;),v5)/Bj;
=v;(z;)/Bjj
=1/0j;

holds, using Corollary (7) and the reproduction formula.

From Corollary (7) and Definition (10) we see that \;(f)||vj||x is the j-th
expansion coefficient of f; in the orthogonal basis {vj}7_,. Therefore we can
conclude:

Theorem 9 The coefficients \;(f), 0 < j < n have the representations

Aj(f)Z(wa)K

lv; 1%
U.
(F )
il &
/l)‘
:(.fna 2

oI

)r 0<i<n.

Proof:

Since the v; are orthogonal we get from f;(z) = >7_ Me(f)vr () the equation

The second and third equation of the theorem follow from

0=(fi— ) =i = fu)lar), 0<k<j<n

and Theorem (6). O



Furthermore, we get from Parseval’s identity together with
(fns vaﬁ)K = 0 for 5 > n the equation
J

2
<f"’ [ J||K>2
U
o<f ’ ijnK)

A5 ()l 1%

I full7e =

M: ] M:

J

I

<
Il
o

Since the interpolants to functions f from the native space always are norm
minimal [8,7], we get

1 falle = ZV ;I

< ||f||K

proving that one can take the limit n — oo without problems, if there are
infinitely many points.

4 Stability

But before we consider completeness questions and n — oo in detail, we want
to show a bound like (2) for the Newton basis.

Theorem 10 For the representation (5) there is the bound

Z_: vi(@)] < Cvn+ 1|k, (14)

if we assume that the native space N is continuously embedded into the space
of continuous functions via

9(@)| < Clgllx for all g€ N, z €. (15)
Proof:
Z Plvi(z
Z lvslix



<OViTI sz )l 1%
<Cvn+1|f|x- O

The above result shows that both the coefficients and the functions in the
representation of the interpolant by the Newton basis cannot grow exceedingly
fast for n — oo. However, this does not mean that the actual values \;(f)
and v;(z) are calculated stably. Like in the standard Newton representation
of polynomial interpolants, the calculation of divided differences from purely
pointwise data is necessarily unstable.

For sufficiently dense and well-distributed data in bounded domains, we have
uniform boundedness of ||v;|| because each such function is part of a Lagrange
basis [3]. Due to Theorem 9, the divided difference functionals A;(f) have

bounds
vopy = vk lfalle [ fllx
A () = 53
[0l % ||U]||K [onirs
but these bounds are weaker than the summability implied by (14).

5 Stability for the Lagrange Basis

In this section we want to show that the bound (14) holds also for the La-
grange basis. The proof again uses the fact that the elements of the basis are
orthogonal with respect to (-, -)x.

Theorem 11 For the Lagrange basis {u fany

uj(z;) = 0y, uj €span{K(-,xy) : xp € Xp}, 7 € Xy, (16)

there is the bound

n

3. (@)l )] < VR F TSl (17)

if we assume that the native space N is continuously embedded into the space
of continuous functions via

l9(@)] < Clgllx for all g €N, z € Q. (18)

Proof: With the definition sy x, (z) 1= X7_, f(x;)u} () we get

10



£ > Nlsgx 1

n n

U 2
= (Sfx0, 7o)
20150 o
S (g 2
=0 H gHK
n
f(xj)z 2
& Tl (5
n
=3 Flay) 2
=0

Thus we can conclude

io |f ()| ()] SCZn: | (@)l x

J=0

<Cvn+ 14 > flap)? gl
j=0
<CVn+1|flx. O

6 Convergence and Completeness

As we saw before, it is no problem to let n tend to infinity, but one cannot
expect to have a good reproduction quality of interpolants without making
further assumptions on the placement of the data locations.

We deal in this section with an f independent setting. Let Q& C R? be a
bounded Lipschitz domain with an interior cone condition. Then we assume
an infinite sequence xg, z1,... of quasi-uniform data locations such that the
consecutive fill distances

h; := sup min — Zklo
) = sup min y —
tend to zero for j — oo, and at the same time the separation distances

4 == OSIZ%?S]. |7 — zi]|2

are bounded below by
q; >c- hj> ] >0

11



by some positive constant ¢. We call such sequences quasi-uniformly space-
filling and remark that there are various ways to get such sequences, for ex-
ample by a special greedy method [4].

If N points fill the domain in a quasi—uniform way, the volume of the domain
must roughly be covered by N balls of radius hy, such that

hy ~c- N~Y/4

must be expected. If this is done by refinement of regular grids by a factor of
1/2, one still gets

hj~c-2¢. 5714, (19)

If the kernel is such that its native Hilbert space is a subspace of W3 (R?), one
can expect a convergence like

B (19) .
If = fulloo < CRITY2||fllx < OnM* 71| f|x

when using interpolants f,, based on n + 1 quasi-uniformly distributed points.
Furthermore, one has norm convergence ||f — f,||x — 0 for n — oo. if the
sequence of data points is quasi-uniformly space-filling.

Thus we have a series representation

- i&(f)vj (20)

which is at least convergent in || - ||, and our error bound shows that the
partial sums are convergent in the L., norm at the given rate.

These considerations prove the following

Theorem 12 For quasi-uniformly space-filling sequences and for kernels gen-
erating “native” subspaces of Wi (RY) for 7 > d/2, the orthogonal system con-
sisting of the Newton basis functions v; is complete in the native Hilbert space
of the kernel, and we can represent each function there as

foUJ 0

Tosl% ™

This result will surely have applications elsewhere, because it is a first case of
an orthogonal expansion of functions from reproducing kernel Hilbert spaces
into a convergent series of interpolants.

12



7 Examples

In this section we provide numerical examples to support our theoretical re-
sults. The data points were quasi uniformly space filling in [—3,3]? by the
greedy method of [4]. We used the Gaussian kernel K (x,y) = exp(—||z — y||?/25)
throughout.

The graphs show that there are big differences between the three bases (kernel,
Lagrange, and Newton) as far as evaluation stability is concerned. Figure 1
displays the stability constant Sx,, of (3) for the three bases as a function of
the number of data points used.

To compare conditions of interpolation matrices, see Figure 2. The Lagrange
basis always has condition 1, and thus it is not displayed.

If the MATLAB peaks function is interpolated, one can calculate the bound of
(2) based on the available coefficients. It cannot exceed the stability constant
Sx.w up to the factor ||fx|lo, and Figure 3 shows that the stability bound
Sx w 1s not unrealistic.

A MATLABO program package is available via
http://www.num.math.uni-goettingen.de/schaback/research/group.html

16

10 T T
O Kernel basis ®©
+ Newton basis
14
100 % Lagrange basis COOdp il
10"} o i
Cssssssssssy
2
U)X— 10 O
S wor esse) T
5 CCCC(M
3 .
S 10°} .
2 le%
= 6 | @) i
g 10 9o
0p] od:O
4| o i
10 o
o8 FENEEEEERENE
2 X W++++H+++WH+W
w0 &P A B
+%+H% v . Lw LK RO
ett ik R R RIRTERITT el ™
+ % *%@9@’3@‘*%’6
10° il ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70

Number of points

Fig. 1. Stability bound Sx ,, of (3)
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