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1 Stability of Evaluation of InterpolantsWe onsider multivariate interpolation on a set X := {x0, . . . , xn} of sattereddata loations x0, . . . , xn in some bounded domain Ω ⊂ R

d. Given values
f(x0), . . . , f(xn) of a real�valued funtion f there, we want to reonstrut fby a linear ombination

sX,f(x) :=
n∑

j=0

αjwj(x) (1)
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of ertain basis funtions w0, . . . , wn on Ω. The oe�ients α0, . . . , αn resultfrom solving a linear system
n∑

j=0

αjwj(xk) = f(xk), 0 ≤ k ≤ nwith the oe�ient matrix AX,w = (wj(xk))0≤j,k≤n whih we assume to beinvertible.We now look at the norm of the interpolation projetor taking the data vetor
fX := (f(x0), . . . , f(xn))

T ∈ R
n+1into the interpolant as an element of C(Ω) under the L∞ norm. We get

‖sX,f‖∞ ≤
n∑

j=0

|αj |‖wj‖∞

≤ ‖α‖∞
n∑

j=0

‖wj‖∞

= LX,w‖α‖∞
≤ LX,w‖A−1

X,w‖∞,∞‖fX‖∞

(2)
with the generalized Lebesgue onstant

LX,w =
n∑

j=0

‖wj‖∞.Note that this way of bounding the interpolation operator is basis�dependent.But sine we assume that atual alulations proeed via the oe�ients αj ,the above argument desribes the error behavior when evaluating the inter-polant (1). In fat, the absolute error of evaluating (1) on a mahine withpreision ǫ will have a worst�ase bound
ǫ

n∑

j=0

|αj |‖wj‖∞

≤ ǫLX,w‖A−1
X,w‖∞,∞‖fX‖∞.This means that the instability of evaluation using the basis funtions wj andthe formula (1) an be measured by the quantity

SX,w := LX,w‖A−1
X,w‖∞,∞. (3)2



Note that this is not the ondition of the interpolation proess as a whole, asonsidered in early papers of W. Gautshi [5℄. We plan to treat the Gautshiondition in a forthoming paper.Let us look at two typial ases. If we use a symmetri positive de�nite kernel
K : Ω × Ω → R and the basis

wj := K(·, xj), 0 ≤ j ≤ n,it is well�known [8,7℄ that the smallest eigenvalue of AX,w gets very small if ngets large, even if the data points are plaed niely, and the e�et gets worsewhen the smoothness of the kernel is inreased. This instability has beenobserved by plenty of authors, and there were many attempts to overomeit. For instane, loal Lagrange bases have been suessfully used for ertainpreonditioning tehniques [6,1,2℄.But let us look at an opposite ase guided by the ited papers. Theoretially,one an go over to a full Lagrange basis u0, . . . , un of the spae
UX,K,n := Span {K(·, x0), . . . , K(·, xn)} (4)satisfying uj(xk) = δjk, 0 ≤ j, k ≤ n. Then one has AX,u = I and theinstability is governed solely by the lassial Lebesgue onstant

LX,u :=
n∑

j=0

‖uj‖∞.The paper [3℄ proves that this onstant grows only like √
n for reasonablydistributed interpolation points and any �xed smoothness of the kernel.These two examples show that the interpolants behave well in funtion spaethough the oe�ients in the standard basis tend to be untolerably largein absolute value. This was also observed by many authors. Within ertainlimits, the quality of the interpolant as a funtion is not seriously a�eted bythe instability of the basis or the bad ondition of the matrix AX,w of thelinear system.Consequently, one should look for better bases.This paper onstruts a new type of basis halfway between the Lagrange aseand the standard kernel basis. We shall do this by mimiking the Newton in-terpolation formula. In terms of lassial polynomial interpolation, this means3



that we prefer the Newton form of the interpolant over solving the linear sys-tem with a Vandermonde matrix or using the Lagrange basis. As a byprodut,we get an orthogonal basis in the �native� Hilbert spae in whih the kernelis reproduing, and we an show that the basis is omplete, if in�nitely manydata loations are reasonably hosen. The stability properties of the new basisare shown to lie right between those of the standard and the Lagrange basis,and some numerial examples support our theory.2 Newton BasesAs is well-known, polynomial interpolation to a real�valued funtion f on Rusing values on n + 1 data loations
x0 < x1 < . . . < xnon the real line an be done by Newton's formula

pn(x) =
n∑

j=0

[x0, . . . , xj ]f
︸ ︷︷ ︸

:=λj(f)

j−1
∏

i=0

(x − xi)

︸ ︷︷ ︸

:=vj(x)where [x0, . . . , xj ]f stands for the divided di�erene of order j applied to f atthe data loations x0, . . . , xj . Note that this takes the form
pn(x) =

n∑

j=0

λj(f)vj(x) (5)splitting the formula in a sum of produts of an f�independent basis funtion
vj and an f�dependent data funtional λj(f), quite like any other quasi�interpolation formula. This representation has the harateristi properties

vj(xi) = 0, 0 ≤ i < j

vj(xj) 6= 0, 0 ≤ j

λj(vi) = 0, 0 ≤ i < j

(6)
and the simple error representation

f(x) − pn(x) = vn+1(x)[x, x0, . . . , xn]f for all x ∈ R.We now turn to general multivariate interpolation on a set X := {x0, . . . , xn}of sattered data loations x0, . . . , xn in some bounded domain Ω ⊂ R
d, and4



we assume a symmetri positive de�nite kernel K to be given on Ω. In view of(6), we de�ne a basis for the spae (4) via �triangular� Lagrange onditions.De�nition 2.1 We de�ne the Newton basis {vj}n
j=0 on the sequene Xn :=

(xj)
n
j=0 for the kernel K by
vj(xi) = 0, 0 ≤ i < j ≤ n

vj(xj) = 1, 0 ≤ j ≤ n
(7)and the requirement

vj ∈ UX,K,j := Span {K(·, x0), . . . , K(·, xj)}, 0 ≤ j ≤ n . (8)Remark 1 The funtions vj are well-de�ned beause of the positive de�nite-ness of the kernel K [8,7℄. From the de�nition one an also see easily thelinear independene of the vj.De�nition 2.2 For f ∈ N we de�ne the oe�ient funtionals λj(f), 0 ≤
j ≤ n similar to (5) reursively by the equation

f(xj) =
j
∑

k=0

λk(f)vk(xj) , 0 ≤ j ≤ n . (9)For onveniene we use the notation
fj(x) :=

j
∑

k=0

λk(f)vk(x), 0 ≤ j ≤ n. (10)Remark 2 A permutation of the points in X will hange the funtionals
λj(f), 0 ≤ j ≤ n. But for a given sequene of points these funtionals areunique due to the reursive stuture of (9).Remark 3 If we use the uniqueness of the representation in the speial ase
f = vi we get the third equation of (6) in the strengthened form

λj(vi) = δij, 0 ≤ i ≤ j.Lemma 4 The funtions fj have the interpolation property
fj(xk) = f(xk) , 0 ≤ k ≤ j.Proof: This follows diretly for j = 0 and then by indution from5



fj(x) = λj(f)vj(x) + fj−1(x) and
vj(xk)= 0, 0 ≤ k < j.Lemma 5 The oe�ient funtionals λj(f) an be omputed by the equations
λ0(f) = f0(x0),

λj(f) = f(xj) − fj−1(xj), 1 ≤ j ≤ n.Proof:
f(xj)= fj(xj)

= λj(f)vj(xj) +
j−1
∑

k=0

λk(f)vk(xj)

= λj(f) + fj−1(xj).

2Now we are looking for a way to alulate the vj . Later, we shall see that thebasis has some hidden orthogonality property, but we an do the alulationalso in a diret and straightforward way using a representation
βjjvj(x) = K(x, xj) −

j−1
∑

k=0

βjkvk(x) , βjk ∈ R, 0 ≤ k ≤ j ≤ n, (11)and applying vj(xi) = δij , 0 ≤ i ≤ j from (7). The result is
βji = K(xi, xj) −

i−1∑

k=0

βjkvk(xi), 0 ≤ i ≤ j ≤ n ,

βji = 0 , for i > j .One an store the βjk and the vj(xk) together in a matrix or ompute themdiretly via LR-deomposition.
(K(xi, xj))ij =








β11 0... . . .
βj1 · · · βjj















v1(x1) · · · v1(xj). . . ...
0 vj(xj)








. (12)
But we do not laim that the above alulation is best possible.6



3 OrthogonalityIt is a basi fat of kernel�based methods [8,7℄ that funtions of the form
p(x) :=

n∑

j=0

αjK(x, xj) (13)have a norm given by
‖p‖2

K :=
n∑

j,k=0

αjαkK(xj , xk)whih arises from the inner produt




n∑

j=1

αjK(·, xj),
m∑

k=1

βkK(·, yk)





K

:=
n∑

j=1

m∑

k=1

αjβkK(xj , yk) .Under this inner produt, the span of funtions (13) an be ompleted to forma �native� Hilbert spae N for the given kernel, and the kernel is �reproduing�in N in the sense
g(x) = (g, K(x, ·))K for all x ∈ R

d, g ∈ N .This reprodution formula provesTheorem 6 For p ∈ N , p(x) :=
∑n

j=0 αjK(x, xj), the following orthogonalityrelation holds:
(p, g)K = 0 for all g ∈ N with g(xj) = 0, 0 ≤ j ≤ n.Proof: (p, g)K =

∑n
j=0 αj(K(·, xj), g)K =

∑n
j=0 αj g(xj)

︸ ︷︷ ︸

=0

= 0. 2Consequently, (7) and (8) imply orthogonality between the funtions of theNewton basis.Corollary 7 Using the de�nition (2.1) we have
(vj , vk)K = 0, 0 ≤ k < j ≤ n.Proof: The proof follows diretly from Theorem (6) together with

vk ∈ Span {K(·, x0), . . . , K(·, xk)}and vj(xi) = 0, for 0 ≤ i < j. 2 7



Remark 8 The funtions vj , 0 ≤ j ≤ n, are not orthonormal. However from(11) one an read o� that
‖vj‖2

K = (K(·, xj) −
j−1
∑

k=0

βjkvk, vj)/βjj

= (K(·, xj), vj)/βjj

= vj(xj)/βjj

= 1/βjjholds, using Corollary (7) and the reprodution formula.From Corollary (7) and De�nition (10) we see that λj(f)‖vj‖K is the j-thexpansion oe�ient of fj in the orthogonal basis {vk}n
k=0. Therefore we anonlude:Theorem 9 The oe�ients λj(f), 0 ≤ j ≤ n have the representations

λj(f)=
(

fj,
vj

‖vj‖2
K

)

K

=
(

f,
vj

‖vj‖2
K

)

K

=
(

fn,
vj

‖vj‖2
K

)

K
, 0 ≤ j ≤ n.

Proof:Sine the vj are orthogonal we get from fj(x) =
∑j

k=0 λk(f)vk(x) the equation
λj(f)vj =

(

fj ,
vj

‖vj‖K

)

K
.The seond and third equation of the theorem follow from

0 = (fj − f)(xk) = (fj − fn)(xk) , 0 ≤ k ≤ j ≤ nand Theorem (6). 2 8



Furthermore, we get from Parseval's identity together with
(fn,

vj

‖vj‖K
)K = 0 for j > n the equation

‖fn‖2
K =

n∑

j=0

(

fn,
vj

‖vj‖K

)2

K

=
n∑

j=0

(

f,
vj

‖vj‖K

)2

K

=
n∑

j=0

λ2
j(f)‖vj‖2

K .Sine the interpolants to funtions f from the native spae always are norm�minimal [8,7℄, we get
‖fn‖2

K =
n∑

j=0

λ2
j(f)‖vj‖2

K

≤ ‖f‖2
Kproving that one an take the limit n → ∞ without problems, if there arein�nitely many points.4 StabilityBut before we onsider ompleteness questions and n → ∞ in detail, we wantto show a bound like (2) for the Newton basis.Theorem 10 For the representation (5) there is the bound

n∑

j=0

|λj(f)||vj(x)| ≤ C
√

n + 1‖f‖K , (14)if we assume that the native spae N is ontinuously embedded into the spaeof ontinuous funtions via
|g(x)| ≤ C‖g‖K for all g ∈ N , x ∈ Ω. (15)Proof:

n∑

j=0

|λj(f)||vj(x)|

≤C
n∑

j=0

|λj(f)|‖vj‖K 9



≤C
√

n + 1

√
√
√
√

n∑

j=0

λ2
j(f)‖vj‖2

K

≤C
√

n + 1‖f‖K . 2The above result shows that both the oe�ients and the funtions in therepresentation of the interpolant by the Newton basis annot grow exeedinglyfast for n → ∞. However, this does not mean that the atual values λj(f)and vj(x) are alulated stably. Like in the standard Newton representationof polynomial interpolants, the alulation of divided di�erenes from purelypointwise data is neessarily unstable.For su�iently dense and well-distributed data in bounded domains, we haveuniform boundedness of ‖vj‖∞ beause eah suh funtion is part of a Lagrangebasis [3℄. Due to Theorem 9, the divided di�erene funtionals λj(f) havebounds
|λj(f)| =

(fn, vj)K

‖vj‖2
K

≤ ‖fn‖K

‖vj‖K
≤ ‖f‖K

‖vj‖K
,but these bounds are weaker than the summability implied by (14).5 Stability for the Lagrange BasisIn this setion we want to show that the bound (14) holds also for the La-grange basis. The proof again uses the fat that the elements of the basis areorthogonal with respet to (·, ·)K.Theorem 11 For the Lagrange basis {un

j }n
j=0 ,

un
j (xi) = δij , un

j ∈ span{K(·, xk) : xk ∈ Xn}, xi ∈ Xn , (16)there is the bound
n∑

j=0

|f(xj)||un
j (x)| ≤ C

√
n + 1‖f‖K , (17)if we assume that the native spae N is ontinuously embedded into the spaeof ontinuous funtions via

|g(x)| ≤ C‖g‖K for all g ∈ N , x ∈ Ω. (18)Proof: With the de�nition sf,Xn
(x) :=

∑n
j=0 f(xj)u

n
j (x) we get10



‖f‖2
K ≥‖sf,Xn

‖2
K

=
n∑

j=0

(sf,Xn
,

un
j

‖un
j ‖K

)2
K

=
n∑

j=0

(f(xj)uj,
un

j

‖un
j ‖K

)2
K

=
n∑

j=0

f(xj)
2

‖un
j ‖2

K

(un
j , u

n
j )

2
K

=
n∑

j=0

f(xj)
2‖un

j ‖2
K .Thus we an onlude

n∑

j=0

|f(xj)||un
j (x)| ≤C

n∑

j=0

|f(xj)|‖un
j ‖K

≤C
√

n + 1

√
√
√
√

n∑

j=0

f(xj)2‖un
j ‖2

K

≤C
√

n + 1‖f‖K . 26 Convergene and CompletenessAs we saw before, it is no problem to let n tend to in�nity, but one annotexpet to have a good reprodution quality of interpolants without makingfurther assumptions on the plaement of the data loations.We deal in this setion with an f�independent setting. Let Ω ⊂ R
d be abounded Lipshitz domain with an interior one ondition. Then we assumean in�nite sequene x0, x1, . . . of quasi-uniform data loations suh that theonseutive �ll distanes

hj := sup
y∈Ω

min
0≤k≤j

‖y − xk‖2tend to zero for j → ∞, and at the same time the separation distanes
qj := min

0≤i<k≤j
‖xi − xk‖2are bounded below by

qj ≥ c · hj , j ≥ 011



by some positive onstant c. We all suh sequenes quasi-uniformly spae-�lling and remark that there are various ways to get suh sequenes, for ex-ample by a speial greedy method [4℄.If N points �ll the domain in a quasi�uniform way, the volume of the domainmust roughly be overed by N balls of radius hN , suh that
hN ≈ c · N−1/dmust be expeted. If this is done by re�nement of regular grids by a fator of1/2, one still gets

hj ≈ c · 2d · j−1/d. (19)If the kernel is suh that its native Hilbert spae is a subspae of W τ
2 (Rd), onean expet a onvergene like

‖f − fn‖∞ ≤ Chτ−d/2
n ‖f‖K

(19)

≤ Cn1/2−τ/d‖f‖Kwhen using interpolants fn based on n+1 quasi-uniformly distributed points.Furthermore, one has norm onvergene ‖f − fn‖K → 0 for n → ∞. if thesequene of data points is quasi-uniformly spae-�lling.Thus we have a series representation
f =

∞∑

j=0

λj(f)vj (20)whih is at least onvergent in ‖ · ‖K , and our error bound shows that thepartial sums are onvergent in the L∞ norm at the given rate.These onsiderations prove the followingTheorem 12 For quasi-uniformly spae-�lling sequenes and for kernels gen-erating �native� subspaes of W τ
2 (Rd) for τ > d/2, the orthogonal system on-sisting of the Newton basis funtions vj is omplete in the native Hilbert spaeof the kernel, and we an represent eah funtion there as

f =
∞∑

j=0

(f, vj)K

‖vj‖2
K

vj. 2This result will surely have appliations elsewhere, beause it is a �rst ase ofan orthogonal expansion of funtions from reproduing kernel Hilbert spaesinto a onvergent series of interpolants.12



7 ExamplesIn this setion we provide numerial examples to support our theoretial re-sults. The data points were quasi�uniformly spae��lling in [−3, 3]2 by thegreedy method of [4℄. We used the Gaussian kernel K(x, y) = exp(−‖x − y‖2/25)throughout.The graphs show that there are big di�erenes between the three bases (kernel,Lagrange, and Newton) as far as evaluation stability is onerned. Figure 1displays the stability onstant SX,w of (3) for the three bases as a funtion ofthe number of data points used.To ompare onditions of interpolation matries, see Figure 2. The Lagrangebasis always has ondition 1, and thus it is not displayed.If the MATLAB peaks funtion is interpolated, one an alulate the bound of(2) based on the available oe�ients. It annot exeed the stability onstant
SX,w up to the fator ‖fX‖∞, and Figure 3 shows that the stability bound
SX,w is not unrealisti.A MATLAB © program pakage is available viahttp://www.num.math.uni-goettingen.de/shabak/researh/group.html
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Fig. 1. Stability bound SX,w of (3)13
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Fig. 3. Bound (2) for stability of evaluation
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