
Bases for Conditionally Positive De�nite KernelsMaryam Pazoukia,1, Robert S
haba
kaaInstitut für Numeris
he und Angewandte MathematikUniversität GöttingenLotzestraÿe 16-18D�37073 GöttingenGermanyAbstra
tThis paper extends a previous one [4℄ to the important 
ase of 
onditionallypositive kernels su
h as thin�plate splines or polyharmoni
 kernels. The goalis to 
onstru
t well�behaving bases for interpolation on a �nite set X ⊂ R
dby translates K(·, x) for x ∈ X of a �xed kernel K : Ω × Ω → R whi
h is
onditionally positive de�nite of order m > 0. Parti
ularly interesting 
asesare bases of Lagrange or Newton type, and bases whi
h are orthogonal or or-thonormal either dis
retely (i.e. via their fun
tion values on X) or as elementsof the underlying �native� spa
e for the given kernel, whi
h is a dire
t sum ofa Hilbert spa
e with the spa
e Pd

m of d�variate polynomials of order up to m.All of these 
ases are 
onsidered, and relations between them are established.It turns out that there are many more possibilities for basis 
onstru
tion thanin the un
onditionally positive de�nite situation m = 0, and these possibilitiesare sorted out systemati
ally. Some numeri
al examples are provided.Keywords: kernels, radial basis fun
tions, 
onditionally positive de�nitekernels, unisolvent set.AMS 
lassi�
ation: 41A05,41063, 41065, 65D05, 65D151. Introdu
tionIf interpolation on a �nite set X ⊂ R
d of 
enters is done by translates K(·, x)for x ∈ X of a �xed positive de�nite kernel K : Ω × Ω → R, it is well�knownthat the basis spanned by the translates often is badly 
onditioned, while theinterpolation is a well�behaving map [1℄ in fun
tion spa
e. This 
alls for other
hoi
es of bases for the spa
e

S(X) := span {K(·, x) : x ∈ X} (1)Email addresses: m.pazouki�math.uni-goettingen.de (Maryam Pazouki),s
haba
k�math.uni-goettingen.de (Robert S
haba
k)1Sponsored by Deuts
he Fors
hungsgemeins
haft via Graduiertenkolleg 1023Preprint submitted to Elsevier June 21, 2012



1 INTRODUCTION 2and the paper [4℄ provides various useful solutions. This 
overs kernels like
• the Gaussian K(x, y) = exp(−‖x− y‖22),
• inverse multiquadri
s K(x, y) = (1 + ‖x− y‖22)

−n, n > 0,
• and Wendland's 
ompa
tly supported kernels like
K(x, y) = (1− ‖x− y‖2)

4
+(1 + 4‖x− y‖2).But there are other kernels, e.g.

• multiquadri
s K(x, y) = (−1)⌈β/2⌉(1 + ‖x− y‖22)
β/2, β ∈ (0,∞) \ 2Z,,

• powers K(x, y) = (−1)⌈β/2⌉‖x− y‖β2 , β ∈ (0,∞) \ 2Z, or
• thin�plate splines K(x, y) = (−1)1+β/2‖x− y‖β2 log ‖x− y‖2, β ∈ 2Zthat are not 
overed by [4℄ be
ause the kernels are not positive de�nite, butonly 
onditionally positive de�nite of some positive order m = ⌈β/2⌉, ⌈β/2⌉,and m = 1 + β/2 in the above three 
ases, respe
tively.To introdu
e this notion, we �rst need the spa
e Pd

m of d�variate real�valuedpolynomials of order at most m whi
h has the dimension Q :=
(

m−1+d
d

), andwe have to restri
t the admissible point sets byDe�nition 1. A subset X = {x1, . . . , xN} ⊂ Ω ⊂ R
d is 
alled Pd

m�unisolvent,if the only fun
tion in Pd
m that vanishes on X is zero.De�nition 2. A kernel K : Ω × Ω → R

d on a set Ω ⊆ R
d is 
onditionallypositive (semi�) de�nite of order m ≥ 0, if for all point sets X = {x1, . . . , xN} ⊂

Ω that are Pd
m�unisolvent, the quadrati
 forms

Q(c) :=

N
∑

j,k=1

cjckK(xj , xk), c ∈ R
N (2)are positive (semi�) de�nite on the subspa
es

M :=







c ∈ R
N :

N
∑

j=1

cjp(xj) = 0 for all p ∈ Pd
m







(3)of 
oe�
ients satisfying dis
rete moment 
onditions of order m on X.The spa
e (1) must now be repla
ed by
S := Pd

m +







∑

xj∈X

cjK(xj , ·) : X is Pd
m − unisolvent, c ∈ M







, (4)and this 
oin
ides with (1) for m = 0. For the rest of the paper, we alwaysassume X to be Pd
m�unisolvent and the kernel K to be 
onditionally positive



2 NOTATION AND BASIC FACTS 3de�nite of order m, suppressing X and m in the notation. To avoid the unin-teresting spe
ial 
ase of pure polynomial interpolation on Q points forming anunisolvent set, we also assume N > Q throughout.The goal of this paper is to provide useful bases for S and to exhibit relationsbetween these bases. Due to their dependen
e on the given unisolvent set X ,we 
all these bases data�dependent. The 
ase m = 0 of [4℄ will serve as a guide-line, but it will turn out that it does not generalize in a straightforward way,sin
e there are many possibilities to pro
eed. For instan
e, one 
an presele
t apolynomial basis and 
omplete it by N−Q other fun
tions, or let all basis fun
-tions 
ontain some polynomial part. Another option is to presele
t a minimalunisolvent subset of Q points �rst and then use a �redu
ed� kernel. Finally, one
an try to redu
e the 
onditional positive de�nite 
ase to the un
onditionallypositive de�nite 
ase by a suitable 
hange of the kernel, but even this 
hange
an be done in di�erent ways. These di�erent approa
hes sometimes lead to thesame result.The paper starts with a re
olle
tion of basi
 notation and results, and thenlooks at bases from a general point of view, i.e. not assigning a spe
ial r�le topolynomials, and not reordering points. We then spe
ialize to bases indu
ed by�proje
ting polynomials away� and go over to bases that are partially orthonor-mal in the semi�Hilbert spa
es behind 
onditionally positive de�nite kernels.In parti
ular, we shall 
onstru
t bases related to Cholesky and SVD de
om-positions of 
ertain matri
es generated via the polynomial proje
tors of theprevious se
tion. A spe
ial 
lass of �points and polynomials �rst� bases arisesif basis fun
tions and points are reordered to let the �rst Q = dimPd
m pointsform a minimal Pd

m�unisolvent set, and let the basis start with a basis of Pd
m.We analyze these bases and �nally 
onsider an important spe
ial 
ase, i.e. theNewton basis that 
an be 
al
ulated adaptively and e�e
tively. It is a naturalgeneralization of the Newton basis in [3, 4℄.The paper 
loses with numeri
al examples illustrating the results.2. Notation and Basi
 Fa
tsWe �rst �x a basis p1, . . . , pQ of Pd

m and Q :=
(

m−1+d
d

)

= dim Pd
m. If

X = {x1, . . . , xN} ⊂ R
d is a Pd

m�unisolvent set, the N×Qmatrix P with entries
pi(xj), j = 1, . . . , N, i = 1, . . . , Q has full rank Q, and this implies N ≥ Q.Enlarging unisolvent sets will not destroy unisolven
y, and ea
h unisolvent set
ontains a subset of Q points whi
h is unisolvent itself. We de�ne the symmetri
kernel matrix

A := (K(xi, xj))1≤i,j≤N (5)and we know that it de�nes a positive de�nite quadrati
 form (2) on the subspa
e(3).Lemma 1 ([6℄). The (N +Q)× (N +Q) matrix
A :=

(

A P
PT 0Q×Q

) (6)



3 GENERAL BASES 4is nonsingular, and interpolation of data on X is uniquely possible.If data on X are supplied as a ve
tor f ∈ R
N , solving the system

A

(

c
b

)

=

(

A P
PT 0Q×Q

)(

c
b

)

=

(

f
0Q×1

)yields ve
tors c ∈ M ⊆ R
N and b ∈ R

Q with moment 
onditions PT c = 0. Withsu
h ve
tors, we de�ne
sc :=

∑

xj∈X

cjK(xj , ·), pb :=

Q
∑

i=1

bipi ∈ Pd
m (7)to get the interpolant s := sc+ pb ∈ S to the given data. Now Lemma 1 impliesLemma 2. In (4), the sum is dire
t, and the spa
e S has dimension N =

|X |.For later use, we need that the bilinear forms
(c, c′) := cTAc′

=: (sc.sc′)
(8)on M and the fun
tions of the form sc are inner produ
ts, due to (c, c) = Q(c).We shall use the same notation for these inner produ
ts, sin
e there is no possible
onfusion. Constru
tions of orthogonal or orthonormal bases will use these innerprodu
ts later.3. General BasesWe now 
olle
t ne
essary properties of general data�dependent bases w =

(w1, . . . , wN ) for a given Pd
m�unisolvent set X of N ≥ Q points. There will beno spe
ial r�le of polynomials, and no reordering of the points of X .De�nition 3. The value matrix of a basis w = (w1, . . . , wN ) is the N × Nmatrix

Vw = (wi(xj))1≤i,j≤N ∈ R
N×Nwhere j is the row and i is the 
olumn index.Clearly, this matrix is ne
essarily nonsingular be
ause the basis must allowunique interpolation on X . The value matrix Vw de�nes a basis w uniquely. To
onstru
t the basis fun
tions from the values, 
onsider the system

(

A P
PT 0

)(

Cw

Bw

)

=

(

Vw

0

) (9)that expresses the N × N matrix Cw and the Q × N matrix Bw uniquely interms of Vw. The moment 
onditions are employed via PTCw = 0, while the
oe�
ient matri
es Cw and Bw satisfy
ACw + PBw = Vw. (10)



3 GENERAL BASES 5The asso
iated basis w is then determined by the 
olumns of Cw and Bw via
wk =

N
∑

j=1

cjkK(xk, ·) +

Q
∑

i=1

bikpi, 1 ≤ k ≤ N (11)where we omitted w in the notation of the matrix elements.We derive a few simple fa
ts from (9):Theorem 1. The N × N matrix Cw has rank N − Q, and the (N + Q) × Nmatrix
(

Cw

Bw

)

= A−1

(

Vw

0

)has rank N .A basis w is uniquely de�ned by either a nonsingular N × N value matrix
Vw or by a N × N matrix Cw and a Q × N matrix Bw su
h that PTCw = 0holds and (

Cw

Bw

) has rank N .Theorem 2. Given a nonsingular value matrix Vw, the 
orresponding basis
w is uniquely de�ned and independent of basis 
hanges in Pd

m. In parti
ular,the 
oe�
ient matrix Cw is unique, while the Bw matrix and the polynomials
hange.Proof: Ea
h basis 
hange in Pd
m is given by the transition Q := P · C with anonsingular Q ×Q matrix C. Then, by easy 
al
ulations, the matrix Bw goesover to C−1Bw while Cw is un
hanged. In (11), the basis fun
tions wj are not
hanged, be
ause the matrix C 
hanges both the bik and the pi in a way that
an
els out.At this point we 
an already de�ne the unique Lagrange basis L by requiringthat the value matrix VL is the identity matrix. Its 
onstru
tion matri
es arethen uniquely de�ned by

(

CL

BL

)

=

(

A P
PT 0

)−1 (
IN×N

0

)

,and (11) 
an be used to evaluate the basis everywhere.Using (10) and PTCw = 0 we see that the matrix
CT

wACw = CT
wVwis symmetri
. If we use the inner produ
t (8), we 
an form the Gramian matrix

Gw := CT
wACw = CT

w Vw (12)of the inner produ
ts of the sc parts of the basis fun
tions. Now Theorem 1yieldsCorollary 1. The Gramian Gw is symmetri
 and positive semide�nite withrank N −Q. In parti
ular, it is impossible to have a full orthonormal basis of
N fun
tions of S if Q > 0.



4 POLYNOMIAL PROJECTORS 6We shall later 
onsider bases with N −Q orthonormal fun
tions.The matrix of dis
rete ℓ2 inner produ
ts on X is
H = V T

w Vw,sin
e the rows of Vw 
orrespond to points, while the 
olumns 
orrespond tofun
tions. Clearly, this matrix is positive de�nite, and there are plenty of ℓ2�orthonormal bases of S, in parti
ular the Lagrange basis. For 
ompleteness, wenote the simple fa
tTheorem 3. All ℓ2�orthonormal bases w on X arise from orthogonal valuematri
es Vw.4. Polynomial Proje
torsWe now want to get rid of the polynomial part in (10). To this end, we needa N ×N matrix Π with ΠP = 0 and full rank N −Q. There are many ways toget su
h a matrix.Sin
e P has rank Q, the Q×Q matrix PTP is invertible, and we 
an pro
eedfrom (9) via
PTACw + PTPBw = PTVw ,

Bw = (PTP )−1PT (Vw −ACw)to get
ΠACw = ΠVw (13)with the symmetri
 proje
tor

Π := I − P (PTP )−1PT (14)that arises naturally here. Note that equation (13) generalizes the identity
ACw = Vw obtained in the un
onditionally positive de�nite 
ase.Another way to get an N ×N matrix Π with ΠP = 0 and full rank N −Qis to reorder the points of X to let the set XQ := {x1, . . . , xQ} be unisolventand to let the polynomial basis be a Lagrange basis on XQ. Then we have
P =

(

IQ×Q

P2

) and 
an de�ne
Π =

(

0Q×Q 0Q×N−Q

−P2 IN−Q×N−Q

)

. (15)If seen as a
tions on data ve
tors, Π of (14) repla
es the data by the error of the
ℓ2�optimal polynomial re
overy on X , while (15) repla
es the data by the errorof interpolation in XQ. In both 
ases, the data of polynomials are mapped tozero, i.e. ΠP = 0 holds. However, the matrix Π of (14) has the advantage tobe symmetri
, idempotent, and independent of the 
hoi
e of basis in Pd

m.In all 
ases, the maximal rank of Π and the property ΠP = 0 imply



5 PARTIALLY ORTHONORMAL BASES 7Theorem 4. 1. For any ve
tor z ∈ R
N , the ve
tor ΠT z satis�es the moment
onditions.2. For all ve
tors c satisfying the moment 
onditions there is a representationas c = ΠT z for some z ∈ R

N .Theorem 5. The matrix ΠAΠT is symmetri
 and positive semide�nite withrank N −Q.Proof: The symmetri
 quadrati
 form z 7→ zTΠAΠT z is positive semide�nite,be
ause the ve
tors ΠT z satisfy the moment 
onditions. Its kernel is the kernelof Π and thus equal to the range of P , i.e. of dimension Q.If we multiply (10) from the left by Π, we get (13) also for the generalsituation. Furthermore, Theorem 4 implies that we 
an fa
torize
Cw = ΠTFw (16)with a nonunique but nonsingular N × N matrix Fw . In parti
ular, a verynatural 
andidate for a basis w∗ is de�nable by
Cw∗ := ΠTdue to the properties of Π. In the two spe
ial 
ases for Π provided above, thematrix (

ΠT

PT

) has rank N , and thus Theorem 1 is appli
able, yielding a basis inboth 
ases.5. Partially Orthonormal BasesFollowing Corollary 1, we now 
an ask for all bases whi
h have Gramians
Go of (12) whi
h are N ×N diagonal matri
es with Q zeros and N −Q ones onthe diagonal. With an N ×N matrix Π of (14) with rank N −Q and ΠP = 0,we 
an use (16) and write down the ne
essary equation

CT
wACw = FT

wΠAΠTFw = Go = G2
o.Sin
e Fw is nonsingular (but also nonunique), we get the de
omposition

ΠAΠT = (FT
w )−1G2

oF
−1
w = ET

wEwwith the matrix
Ew := GoF

−1
w .Theorem 6. All partially orthonormal bases of S arise from fa
torizations

ΠAΠT = ET E (17)with N ×N matri
es E of rank N −Q that have the property that E = GoF
−1with a nonsingular N ×N matrix F , and where Go is a N ×N diagonal matrixwith Q zeros and N −Q ones on the diagonal.



6 POINTS AND POLYNOMIALS FIRST 8Proof: We have just seen that the 
onditions are ne
essary. To prove su�-
ien
y, we start with E and F and de�ne a basis w via Cw := ΠTF . Then
CT

wACw = FTΠAΠTF
= FTET EF

= FTFT−1
GT

o GoF
−1F

= Go.Corollary 2. These partially orthonormal bases are not unique. Even if Cw is�xed along the above lines, the matri
es Bw for appli
ation of Theorem 1 arestill free.We now 
onsider partially orthonormal bases that arise from pivoted Choleskyde
ompositions of the symmetri
 positive semide�nite N × N matrix ΠAΠTof rank N − Q. We assume that after reordering of points and N steps of theCholesky algorithm, we get
ΠAΠT = LGo L

Twith a nonsingular lower triangular matrix L and a diagonal matrix Go withthe �rst N −Q diagonal elements being one and the �nal Q diagonal elementsbeing zero.Then, in the above 
ontext, F = (LT )−1 and C = ΠT (LT )−1 and Go = CTV =
L−1ΠV leading to

ΠV = LG0,generalizing what we had in [4, Se
tion 6℄ for the Newton 
ase for un
onditionallypositive de�nite kernels.If we de
ompose in SVD style
ΠAΠT = U Go U

Twith an N ×N orthogonal matrix U and a nonngegative matrix Go of singularvalues with exa
tly N −Q positive ones, then
C = ΠTU, ΠV = UG0,again generalizing what we have in the standard 
ase [4, Se
tion 6℄.6. Points and Polynomials FirstDe�nition 4. Let the points of a Pd

m�unisolvent set X = {x1, . . . , xN} beordered in su
h a way that the �rst Q points form a Pd
m�unisolvent subset XQ =

{x1, . . . , xQ} ⊆ X, and assume that p1, . . . , pQ are a basis of Pd
m. Then anydata�dependent basis w 
onsisting of w1 = p1, . . . , wQ = pQ and N − Q otherbasis fun
tions wQ+1, . . . , wN is 
alled a points and polynomials �rst (PPF)basis.



6 POINTS AND POLYNOMIALS FIRST 9We now pro
eed to 
hara
terize all PPF bases. We de�ne PT = (PT
1 , PT

2 )with matri
es P1 ∈ R
Q×Q, P2 ∈ R

(N−Q)×Q using our ordering, and let thevalue matrix of the 
omplete basis take the form
Vw :=

(

P1 VP

P2 VR

) (18)with matri
es VP ∈ R
Q×(N−Q), VR ∈ R

(N−Q)×(N−Q). By 
onstru
tion, thematrix P1 is nonsingular. Splitting the matri
es A and A similarly, we get
A =





A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 .Note that sin
e we 
hose a �xed polynomial basis �rst, the matri
es P1 and P2are determined by this basis 
hoi
e. When taking a polynomial Lagrange basison XQ to start with, we get P1 = I.Theorem 7. The identity (9) ne
essarily is of the form




A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 ·





0 CP

0 CR

I B



 =





P1 VP

P2 VR

0 0



 (19)with a Q× (N −Q) matrix B and a nonsingular (N −Q)× (N −Q) matrix CR.If CR is �xed, all 
hoi
es of either B or VP are possible, and ea
h su
h 
hoi
ede�nes a PPF basis.Proof: For a PPF basis, the system (9) has the general form




A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 ·





R CP

S CR

T B



 =





P1 VP

P2 VR

0 0



and 
onsequently
A11R + A12S + P1T = P1,
AT

12R + A22S + P2T = P2,
PT
1 R + PT

2 S = 0.A simple elimination then yields ÃS = 0 with the matrix
Ã := A22 −AT

12(P
T
1 )−1PT

2 − P2P
−1
1 A12 + P2P

−1
1 A11(P

T
1 )−1PT

2 , (20)whi
h is nonsingular due to Theorem 8 below. Thus S = 0, and nonsingularityof P1 then implies R = 0 and T = I, proving (19) to be ne
essary.



6 POINTS AND POLYNOMIALS FIRST 10By elimination in (19), we get ne
essary equations
CP = −(PT

1 )−1PT
2 CR,

B = P−1
1

(

VP + (A11(P
T
1 )−1PT

2 −A12)CR

)

,

VR = ÃCR + P2P
−1
1 VP ,

(21)with the symmetri
 positive de�nite (N − Q) × (N − Q) matrix Ã from (20).The nonsingularity of the value matrix implies that VR − P2P
−1
1 VP must benonsingular, and sin
e this is ÃCR, we get that CR ne
essarily is nonsingular.The above arguments 
an be pursued ba
kwards to show that ea
h nonsingular

CR and arbitrary 
hoi
es of either B or VP yield a PPF basis.Theorem 8. The matrix Ã is positive de�nite, and it is independent of thepolynomial basis 
hosen.Proof: For an arbitrary ve
tor z ∈ R
N−Q we get moment 
onditions

(PT
1 , PT

2 )

(

−(PT
1 )−1PT

2 z
z

)

= 0and thus
(

−(PT
1 )−1PT

2 z
z

)T

A

(

−(PT
1 )−1PT

2 z
z

)

= zT Ãz ≥ 0by 
onditional positive de�niteness of the kernel. If the quadrati
 form is zero,then z = 0. A basis 
hange in Pd
m will not 
hange P2P

−1
1 , be
ause P1 and P2go over to P1C and P2C with a nonsingular Q×Q matrix C.For the split (18) of the 
orresponding value matrix and

Ṽw := VR − P2P
−1
1 VPwe have

ÃCR = Ṽw. (22)There is a parti
ularly simple spe
ial situation:De�nition 5. A PPF basis is 
alled 
anoni
al, if it satis�es VP = 0.For 
anoni
al PPF bases, we have the simple identity
ÃCR = VR (23)between nonsingular (N − Q) × (N − Q) matri
es. Either VR or CR 
an bepres
ribed for a 
anoni
al PPF basis to de�ne it uniquely.The identities (22) and (23) generalize what we had in the un
onditionallypositive de�nite 
ase. It will turn out later that 
anoni
al PPF bases arise fromusing a �redu
ed� kernel.In prin
iple, one may put B := 0, and CR := I. This spe
ial 
ase of a PPFbasis will be treated in the next se
tion after a short detour.



6 POINTS AND POLYNOMIALS FIRST 11Theorem 9. All PPF bases w with orthonormal fun
tions wQ+1, . . . , wN arisefrom a fa
torization
Ã = (CT

R)
−1(CR)

−1 = ETE,where E := C−1
R . Then the value matrix is

Ṽw = (CT
R)

−1and for a 
anoni
al PPF basis we have VR = (CT
R)

−1.Proof: By a simple re
al
ulation of (12) using
Cw =

(

0 CP

0 CR

)

.we get the Gramian of a PPF basis w to be
Gw = CT

RÃCR.If this is the identity, the �rst assertion follows. The rest is a 
onsequen
e of(22) and (23).This is similar to the results in [4, Se
tion 6℄ for the un
onditionally positivede�nite 
ase. There, di�erent de
ompositions like Cholesky and SVD were usedto 
onstru
t orthonormal bases. Here, partially orthonormal PPF bases arisefrom SVD or Cholesky de
ompositions of the matrix Ã.We now want to determine the dis
retely orthonormal PPF bases, and we splitthe value matrix Vw like in (18) by reordering the Q unisolvent points. Thenwe start from H = V T
w Vw = I and get

PT
1 P1 + PT

2 P2 = I
V T
P VP + V T

R VR = I
PT
1 VP + PT

2 VR = 0,
(24)where P1 is nonsingular. Then from (22) we get

ÃCR = (I + P2(P1)
−1(PT

1 )−1PT
2 )VR,whi
h is another generalization of what we know in the un
onditionally positivede�nite 
ase.Theorem 10. Canonial PPF bases are not dis
retely orthonormal.Proof: Canoni
al PPF bases have VP = 0. By (18), the matrix VR then mustbe nonsingular, and the third equation in (24) shows that P2 must be zero.Thus all polynomials in Pd

m vanish on all points in the nonempty set X \XQ,whi
h is a 
ontradi
tion sin
e 
onstants are in Pd
m.



7 STANDARD BASIS 127. Standard BasisIn a straightforward attempt to 
onstru
t a basis, we would like to use the
K(x, xj) dire
tly, but this is not allowed sin
e we have to obey the moment
onditions. Assume p1, . . . , pQ be a Lagrange basis of polynomial interpolationon x1, . . . , xQ. Then we 
an reprodu
e

p(y) =

Q
∑

m=1

p(xm)pm(y) for all p ∈ Pd
m, y ∈ Ω,and for the set {y} ∪ {x1, . . . , xQ} we have a 
oe�
ient ve
tor

1,−p1(y), . . . ,−pQ(y)that satis�es the moment 
onditions on that set, i.e.
1 · p(y)−

Q
∑

m=1

p(xm)pm(y) = 0 for all p ∈ Pd
m.This allows to de�ne the fun
tions

sy(x) := K(x, y)−

Q
∑

m=1

pm(y)K(x, xm), x ∈ Ωfor all y ∈ Ω \ {x1, . . . , xQ}, whi
h are in S.Then a standard basis generalizing the translatesK(x, xj) 
onsists of p1, . . . , pQand of simple linear 
ombinations of translates of K, i.e.
sj(x) := K(x, xj)−

Q
∑

m=1

pm(xj)K(x, xm), Q+ 1 ≤ j ≤ N.If we add sj := pj for 1 ≤ j ≤ Q, we have N fun
tions and need to prove linearindependen
e. De�ne PT = (IQ×Q, P
T
2 ) due to the Lagrange property on the�rst Q points. We split A and A to get

A =





A11 A12 I
AT

12 A22 P2

I PT
2 0



 .The value matrix has P as its left N × Q submatrix. The right N × (N − Q)submatrix is
(

A12

A22

)

−

(

A11

AT
12

)

· PT
2due to the de�nition of the basis. The identity (9) then is





A11 A12 I
AT

12 A22 P2

I PT
2 0



 ·





0 −PT
2

0 I
I 0



 =





I A12 −A11 P
T
2

P2 A22 −AT
12 P

T
2

0 0







8 BACK TO LAGRANGE BASES 13and we see that we have got a PPF basis with B = 0 and CR = I.The Gramian follows from (12) and takes the form
(

0 0

0 Ã

)with the symmetri
 matrix
Ã = P2A11P

T
2 − P2A12 −AT

12P
T
2 +A22that we know from (20) in a more general form. This generalizes the fa
t that thekernel matrix A itself is the Gramian of the standard basis in the un
onditionallypositive de�nite 
ase.8. Ba
k to Lagrange BasesStarting from a general Pd

m�unisolvent set X , the standard Lagrange basis
u1(x), . . . , uN (x) has the value matrix Vu = I and is de�ned via

(

A P
PT 0

)(

u(x)
v(x)

)

=

(

KX(x)
p(x)

)with
KX(x)T := (K(x1, x), . . . ,K(xQ, x)) ∈ R

N ,
p(x)T := (p1(x), . . . , pQ(x)) ∈ R

Q,
u(x)T := (u1(x), . . . , uN (x)) ∈ R

N ,
v(x)T := (v1(x), . . . , vQ(x)) ∈ R

Q.The 
onstru
tion matri
es of the Lagrange basis follow from Theorem 1 bysetting Vw = I.It is tempting to ask for PPF Lagrange bases. But:Theorem 11. For N > Q there is no PPF Lagrange basis.Proof: If there were a PPF Lagrange basis, we must have P2 = 0 in (19). Butthen all polynomials in
luding 1 must vanish on xQ+1, . . . , xN .But there 
learly is a 
anoni
al PPF basis that is partially Lagrange in the sensethat VR = I and VP = 0. It has CR = Ã−1 by (23), and the equations (21) yield
B and CP for this 
ase. Sin
e not ne
essarily P2 = 0, the basis is not Lagrangein the true sense.



9 NEWTON BASIS, ITERATIVE CONSTRUCTION 149. Newton Basis, Iterative Constru
tionWe start with XQ := {x1, . . . , xQ} to be unisolvent, and there we take thestandard Lagrange polynomial basis p1, . . . , pQ on XQ. We need all values
pi(xj), 1 ≤ j ≤ N, 1 ≤ i ≤ Q for further 
al
ulation, and we shall extend thisbasis to a full basis v1, . . . , vN , setting vj = pj , 1 ≤ j ≤ Q. We already have
vi(xj) = 0 for 1 ≤ i < j ≤ Q. We shall need the de�nition of the redu
ed kernel

KQ(x, y) := K(x, y)−

Q
∑

j=1

pj(x)K(y, xj)−

Q
∑

k=1

pk(y)K(x, xk)

−

Q
∑

j=1

Q
∑

k=1

pj(x)pk(y)K(xj , xk)whi
h is symmetri
 and un
onditionally positive de�nite on Ω\XQ and vanishesif one of the arguments is in XQ. The se
ond fa
t follows by dire
t evaluation,and the �rst follows from Theorem 8 and observing that the matrix Ã of (20)is the kernel matrix for KQ on X \XQ.We store the a
tual values of the power fun
tion
P 2
Q(x) := KQ(x, x)on the points of X . They are zero on XQ. For what follows, we start with

m := Q.Now, for indu
tion, we assume that we already have a 
onstru
tion of a basis
v1, . . . , vm for some Q ≤ m < N with the orthonormality properties

(vi, vj) = δij , Q+ 1 ≤ i, j ≤ m.Formally, we also assume that we have the values of the power fun
tion Pm(x)on X . Note that the asso
iated power kernel satis�es the re
ursion
Km(x, y) = Km−1(x, y) −

Km−1(x, xm)Km−1(y, xm)

Km−1(xm, xm)for m > Q (see [5, 2℄) and has the properties
Km(xj , y) = Km(x, xj) = 0, 1 ≤ j ≤ m, P 2

m(x) = Km(x, x) for all x, y ∈ Ω.Then we de�ne
xm+1 := arg max {P 2

m(x) : x ∈ X}and stop if Pm(xm+1) is zero or very small, be
ause then we are done. Now weformally de�ne
vm+1(x) :=

Km(x, xm+1)
√

Km(xm+1, xm+1)
for all x ∈ Ω



9 NEWTON BASIS, ITERATIVE CONSTRUCTION 15to get that
vm+1(xj) = 0, 1 ≤ j ≤ m,as required. But we have to show how vm+1 and Pm+1 
an be 
al
ulated e�-
iently on X .We see immediately that

P 2
m+1(x) = P 2

m(x)− v2m+1(x) = P 2
Q(x) −

m+1
∑

j=Q+1

v2j (x)holds by 
onstru
tion and indu
tion. Thus we only need vm+1 on X . We
onsider the re
ursion
Kj(x, y) = Kj−1(x, y)−

Kj−1(x, xj)Kj−1(y, xj)

Kj−1(xj , xj)
= Kj−1(x, y)− vj(x)vj(y)that boils down to

Km(x, xm+1) = KQ(x, xm+1)−

m
∑

j=Q+1

vj(xm+1)vj(x)whi
h is 
omputable from the values KQ(x, xm+1) for all x ∈ X . But these areobtainable from
KQ(x, xm+1) = K(x, xm+1)−

Q
∑

j=1

pj(x)K(xm+1, xj)−

Q
∑

k=1

pk(xm+1)K(x, xk)

−

Q
∑

j=1

Q
∑

k=1

pj(x)pk(xm+1)K(xj , xk)at reasonable 
ost.It remains to show
(vm+1, vj) = 0, Q+ 1 ≤ j ≤ m,and this follows from

(KQ(x, xm+1), vj) = vj(xm+1), Q+ 1 ≤ j ≤ mbe
ause these vj vanish on x1, . . . , xQ. Furthermore,
P 2
m(xm+1)(vm+1, vm+1) = (Km(x, xm+1),Km(x, xm+1))

= Km(xm+1, xm+1)
= P 2

m(xm+1)by what is known for power kernels from [2℄. This proves orthonormality.



10 NUMERICAL EXAMPLES 16The value matrix of this 
anoni
al PPF basis is
(

I 0
P2 L

)with a lower triangular value matrix L = VR, and we have orthonormalityof vQ+1, . . . , vN . Now Theorem 9 implies that we have CR = (L−1)T and aCholesky de
omposition Ã = LLT . This provesTheorem 12. The above 
onstru
tion generates the 
anoni
al PPF basis with
P1 = I, whi
h 
oin
ides with the extension of the Lagrange basis of Pd

m by theNewton basis for X \XQ and the redu
ed kernel.10. Numeri
al ExamplesLike in [4℄, we fo
us on the domain Ω de�ned as the unit 
ir
le with the thirdquadrant taken away. There, we take a �ne set of points and sele
t a subset of 15points whi
h is unisolvent for P2
5 . This is done by a pivoted QR de
ompositionof the value matrix of the 15 basis fun
tions of P2

5 on the �ne grid. The leftpart of Figure 1 shows the sele
ted points and the grid. For 
omparison, theright�hand part shows the 15 points sele
ted by the greedy Newton strategy ofse
tion 9 when applied to the full grid.
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Figure 1: Sele
ted 15 points, left: by unisolven
y, right: by greedy Newton basis 
al
ulationThe following plots always show the basis fun
tion # 15 for most of the bases
onstru
ted in this paper. Figure 2 starts with the standard basis of se
tion 7and the basis using the proje
tor Π of (15). Then Figure 3 provides the Choleskyand SVD bases of se
tion 5. Finally, Figure 4 shows the adaptive Newton basisfun
tion v15 of se
tion 9 with the asso
iated Power Fun
tion P15.[1℄ St. De Mar
hi and R. S
haba
k. Stability of kernel-based interpolation. Adv.in Comp. Math., 32:155�161, 2010.
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Figure 2: Basis fun
tion 15, left: standard basis, right: proje
tion basis (15)
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Figure 3: Basis fun
tion 15, left: Cholesky basis, right: SVD basis[2℄ M. Mouattamid and R. S
haba
k. Re
ursive kernels. Analysis in Theoryand Appli
ations, 25:301�316, 2009.[3℄ St. Müller and R. S
haba
k. A Newton basis for kernel spa
es. Journal ofApproximation Theory, 161:645�655, 2009. doi:10.1016/j.jat.2008.10.014.[4℄ M. Pazouki and R. S
haba
k. Bases for kernel-based spa
es. Computationaland Applied Mathemati
s, 236:575�588, 2011.[5℄ R. S
haba
k. Re
onstru
tion of multivariate fun
tions from s
at-tered data. Manus
ript, available via http://www.num.math.uni-goettingen.de/s
haba
k/resear
h/group.html, 1997.[6℄ H. Wendland. S
attered Data Approximation. Cambridge University Press,2005.
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tion v15 and 
orresponding Power Fun
tion P15
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