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1 INTRODUCTION 2and the paper [4℄ provides various useful solutions. This overs kernels like
• the Gaussian K(x, y) = exp(−‖x− y‖22),
• inverse multiquadris K(x, y) = (1 + ‖x− y‖22)

−n, n > 0,
• and Wendland's ompatly supported kernels like
K(x, y) = (1− ‖x− y‖2)

4
+(1 + 4‖x− y‖2).But there are other kernels, e.g.

• multiquadris K(x, y) = (−1)⌈β/2⌉(1 + ‖x− y‖22)
β/2, β ∈ (0,∞) \ 2Z,,

• powers K(x, y) = (−1)⌈β/2⌉‖x− y‖β2 , β ∈ (0,∞) \ 2Z, or
• thin�plate splines K(x, y) = (−1)1+β/2‖x− y‖β2 log ‖x− y‖2, β ∈ 2Zthat are not overed by [4℄ beause the kernels are not positive de�nite, butonly onditionally positive de�nite of some positive order m = ⌈β/2⌉, ⌈β/2⌉,and m = 1 + β/2 in the above three ases, respetively.To introdue this notion, we �rst need the spae Pd

m of d�variate real�valuedpolynomials of order at most m whih has the dimension Q :=
(

m−1+d
d

), andwe have to restrit the admissible point sets byDe�nition 1. A subset X = {x1, . . . , xN} ⊂ Ω ⊂ R
d is alled Pd

m�unisolvent,if the only funtion in Pd
m that vanishes on X is zero.De�nition 2. A kernel K : Ω × Ω → R

d on a set Ω ⊆ R
d is onditionallypositive (semi�) de�nite of order m ≥ 0, if for all point sets X = {x1, . . . , xN} ⊂

Ω that are Pd
m�unisolvent, the quadrati forms

Q(c) :=

N
∑

j,k=1

cjckK(xj , xk), c ∈ R
N (2)are positive (semi�) de�nite on the subspaes

M :=







c ∈ R
N :

N
∑

j=1

cjp(xj) = 0 for all p ∈ Pd
m







(3)of oe�ients satisfying disrete moment onditions of order m on X.The spae (1) must now be replaed by
S := Pd

m +







∑

xj∈X

cjK(xj , ·) : X is Pd
m − unisolvent, c ∈ M







, (4)and this oinides with (1) for m = 0. For the rest of the paper, we alwaysassume X to be Pd
m�unisolvent and the kernel K to be onditionally positive



2 NOTATION AND BASIC FACTS 3de�nite of order m, suppressing X and m in the notation. To avoid the unin-teresting speial ase of pure polynomial interpolation on Q points forming anunisolvent set, we also assume N > Q throughout.The goal of this paper is to provide useful bases for S and to exhibit relationsbetween these bases. Due to their dependene on the given unisolvent set X ,we all these bases data�dependent. The ase m = 0 of [4℄ will serve as a guide-line, but it will turn out that it does not generalize in a straightforward way,sine there are many possibilities to proeed. For instane, one an preselet apolynomial basis and omplete it by N−Q other funtions, or let all basis fun-tions ontain some polynomial part. Another option is to preselet a minimalunisolvent subset of Q points �rst and then use a �redued� kernel. Finally, onean try to redue the onditional positive de�nite ase to the unonditionallypositive de�nite ase by a suitable hange of the kernel, but even this hangean be done in di�erent ways. These di�erent approahes sometimes lead to thesame result.The paper starts with a reolletion of basi notation and results, and thenlooks at bases from a general point of view, i.e. not assigning a speial r�le topolynomials, and not reordering points. We then speialize to bases indued by�projeting polynomials away� and go over to bases that are partially orthonor-mal in the semi�Hilbert spaes behind onditionally positive de�nite kernels.In partiular, we shall onstrut bases related to Cholesky and SVD deom-positions of ertain matries generated via the polynomial projetors of theprevious setion. A speial lass of �points and polynomials �rst� bases arisesif basis funtions and points are reordered to let the �rst Q = dimPd
m pointsform a minimal Pd

m�unisolvent set, and let the basis start with a basis of Pd
m.We analyze these bases and �nally onsider an important speial ase, i.e. theNewton basis that an be alulated adaptively and e�etively. It is a naturalgeneralization of the Newton basis in [3, 4℄.The paper loses with numerial examples illustrating the results.2. Notation and Basi FatsWe �rst �x a basis p1, . . . , pQ of Pd

m and Q :=
(

m−1+d
d

)

= dim Pd
m. If

X = {x1, . . . , xN} ⊂ R
d is a Pd

m�unisolvent set, the N×Qmatrix P with entries
pi(xj), j = 1, . . . , N, i = 1, . . . , Q has full rank Q, and this implies N ≥ Q.Enlarging unisolvent sets will not destroy unisolveny, and eah unisolvent setontains a subset of Q points whih is unisolvent itself. We de�ne the symmetrikernel matrix

A := (K(xi, xj))1≤i,j≤N (5)and we know that it de�nes a positive de�nite quadrati form (2) on the subspae(3).Lemma 1 ([6℄). The (N +Q)× (N +Q) matrix
A :=

(

A P
PT 0Q×Q

) (6)



3 GENERAL BASES 4is nonsingular, and interpolation of data on X is uniquely possible.If data on X are supplied as a vetor f ∈ R
N , solving the system

A

(

c
b

)

=

(

A P
PT 0Q×Q

)(

c
b

)

=

(

f
0Q×1

)yields vetors c ∈ M ⊆ R
N and b ∈ R

Q with moment onditions PT c = 0. Withsuh vetors, we de�ne
sc :=

∑

xj∈X

cjK(xj , ·), pb :=

Q
∑

i=1

bipi ∈ Pd
m (7)to get the interpolant s := sc+ pb ∈ S to the given data. Now Lemma 1 impliesLemma 2. In (4), the sum is diret, and the spae S has dimension N =

|X |.For later use, we need that the bilinear forms
(c, c′) := cTAc′

=: (sc.sc′)
(8)on M and the funtions of the form sc are inner produts, due to (c, c) = Q(c).We shall use the same notation for these inner produts, sine there is no possibleonfusion. Construtions of orthogonal or orthonormal bases will use these innerproduts later.3. General BasesWe now ollet neessary properties of general data�dependent bases w =

(w1, . . . , wN ) for a given Pd
m�unisolvent set X of N ≥ Q points. There will beno speial r�le of polynomials, and no reordering of the points of X .De�nition 3. The value matrix of a basis w = (w1, . . . , wN ) is the N × Nmatrix

Vw = (wi(xj))1≤i,j≤N ∈ R
N×Nwhere j is the row and i is the olumn index.Clearly, this matrix is neessarily nonsingular beause the basis must allowunique interpolation on X . The value matrix Vw de�nes a basis w uniquely. Toonstrut the basis funtions from the values, onsider the system

(

A P
PT 0

)(

Cw

Bw

)

=

(

Vw

0

) (9)that expresses the N × N matrix Cw and the Q × N matrix Bw uniquely interms of Vw. The moment onditions are employed via PTCw = 0, while theoe�ient matries Cw and Bw satisfy
ACw + PBw = Vw. (10)



3 GENERAL BASES 5The assoiated basis w is then determined by the olumns of Cw and Bw via
wk =

N
∑

j=1

cjkK(xk, ·) +

Q
∑

i=1

bikpi, 1 ≤ k ≤ N (11)where we omitted w in the notation of the matrix elements.We derive a few simple fats from (9):Theorem 1. The N × N matrix Cw has rank N − Q, and the (N + Q) × Nmatrix
(

Cw

Bw

)

= A−1

(

Vw

0

)has rank N .A basis w is uniquely de�ned by either a nonsingular N × N value matrix
Vw or by a N × N matrix Cw and a Q × N matrix Bw suh that PTCw = 0holds and (

Cw

Bw

) has rank N .Theorem 2. Given a nonsingular value matrix Vw, the orresponding basis
w is uniquely de�ned and independent of basis hanges in Pd

m. In partiular,the oe�ient matrix Cw is unique, while the Bw matrix and the polynomialshange.Proof: Eah basis hange in Pd
m is given by the transition Q := P · C with anonsingular Q ×Q matrix C. Then, by easy alulations, the matrix Bw goesover to C−1Bw while Cw is unhanged. In (11), the basis funtions wj are nothanged, beause the matrix C hanges both the bik and the pi in a way thatanels out.At this point we an already de�ne the unique Lagrange basis L by requiringthat the value matrix VL is the identity matrix. Its onstrution matries arethen uniquely de�ned by

(

CL

BL

)

=

(

A P
PT 0

)−1 (
IN×N

0

)

,and (11) an be used to evaluate the basis everywhere.Using (10) and PTCw = 0 we see that the matrix
CT

wACw = CT
wVwis symmetri. If we use the inner produt (8), we an form the Gramian matrix

Gw := CT
wACw = CT

w Vw (12)of the inner produts of the sc parts of the basis funtions. Now Theorem 1yieldsCorollary 1. The Gramian Gw is symmetri and positive semide�nite withrank N −Q. In partiular, it is impossible to have a full orthonormal basis of
N funtions of S if Q > 0.



4 POLYNOMIAL PROJECTORS 6We shall later onsider bases with N −Q orthonormal funtions.The matrix of disrete ℓ2 inner produts on X is
H = V T

w Vw,sine the rows of Vw orrespond to points, while the olumns orrespond tofuntions. Clearly, this matrix is positive de�nite, and there are plenty of ℓ2�orthonormal bases of S, in partiular the Lagrange basis. For ompleteness, wenote the simple fatTheorem 3. All ℓ2�orthonormal bases w on X arise from orthogonal valuematries Vw.4. Polynomial ProjetorsWe now want to get rid of the polynomial part in (10). To this end, we needa N ×N matrix Π with ΠP = 0 and full rank N −Q. There are many ways toget suh a matrix.Sine P has rank Q, the Q×Q matrix PTP is invertible, and we an proeedfrom (9) via
PTACw + PTPBw = PTVw ,

Bw = (PTP )−1PT (Vw −ACw)to get
ΠACw = ΠVw (13)with the symmetri projetor

Π := I − P (PTP )−1PT (14)that arises naturally here. Note that equation (13) generalizes the identity
ACw = Vw obtained in the unonditionally positive de�nite ase.Another way to get an N ×N matrix Π with ΠP = 0 and full rank N −Qis to reorder the points of X to let the set XQ := {x1, . . . , xQ} be unisolventand to let the polynomial basis be a Lagrange basis on XQ. Then we have
P =

(

IQ×Q

P2

) and an de�ne
Π =

(

0Q×Q 0Q×N−Q

−P2 IN−Q×N−Q

)

. (15)If seen as ations on data vetors, Π of (14) replaes the data by the error of the
ℓ2�optimal polynomial reovery on X , while (15) replaes the data by the errorof interpolation in XQ. In both ases, the data of polynomials are mapped tozero, i.e. ΠP = 0 holds. However, the matrix Π of (14) has the advantage tobe symmetri, idempotent, and independent of the hoie of basis in Pd

m.In all ases, the maximal rank of Π and the property ΠP = 0 imply



5 PARTIALLY ORTHONORMAL BASES 7Theorem 4. 1. For any vetor z ∈ R
N , the vetor ΠT z satis�es the momentonditions.2. For all vetors c satisfying the moment onditions there is a representationas c = ΠT z for some z ∈ R

N .Theorem 5. The matrix ΠAΠT is symmetri and positive semide�nite withrank N −Q.Proof: The symmetri quadrati form z 7→ zTΠAΠT z is positive semide�nite,beause the vetors ΠT z satisfy the moment onditions. Its kernel is the kernelof Π and thus equal to the range of P , i.e. of dimension Q.If we multiply (10) from the left by Π, we get (13) also for the generalsituation. Furthermore, Theorem 4 implies that we an fatorize
Cw = ΠTFw (16)with a nonunique but nonsingular N × N matrix Fw . In partiular, a verynatural andidate for a basis w∗ is de�nable by
Cw∗ := ΠTdue to the properties of Π. In the two speial ases for Π provided above, thematrix (

ΠT

PT

) has rank N , and thus Theorem 1 is appliable, yielding a basis inboth ases.5. Partially Orthonormal BasesFollowing Corollary 1, we now an ask for all bases whih have Gramians
Go of (12) whih are N ×N diagonal matries with Q zeros and N −Q ones onthe diagonal. With an N ×N matrix Π of (14) with rank N −Q and ΠP = 0,we an use (16) and write down the neessary equation

CT
wACw = FT

wΠAΠTFw = Go = G2
o.Sine Fw is nonsingular (but also nonunique), we get the deomposition

ΠAΠT = (FT
w )−1G2

oF
−1
w = ET

wEwwith the matrix
Ew := GoF

−1
w .Theorem 6. All partially orthonormal bases of S arise from fatorizations

ΠAΠT = ET E (17)with N ×N matries E of rank N −Q that have the property that E = GoF
−1with a nonsingular N ×N matrix F , and where Go is a N ×N diagonal matrixwith Q zeros and N −Q ones on the diagonal.



6 POINTS AND POLYNOMIALS FIRST 8Proof: We have just seen that the onditions are neessary. To prove su�-ieny, we start with E and F and de�ne a basis w via Cw := ΠTF . Then
CT

wACw = FTΠAΠTF
= FTET EF

= FTFT−1
GT

o GoF
−1F

= Go.Corollary 2. These partially orthonormal bases are not unique. Even if Cw is�xed along the above lines, the matries Bw for appliation of Theorem 1 arestill free.We now onsider partially orthonormal bases that arise from pivoted Choleskydeompositions of the symmetri positive semide�nite N × N matrix ΠAΠTof rank N − Q. We assume that after reordering of points and N steps of theCholesky algorithm, we get
ΠAΠT = LGo L

Twith a nonsingular lower triangular matrix L and a diagonal matrix Go withthe �rst N −Q diagonal elements being one and the �nal Q diagonal elementsbeing zero.Then, in the above ontext, F = (LT )−1 and C = ΠT (LT )−1 and Go = CTV =
L−1ΠV leading to

ΠV = LG0,generalizing what we had in [4, Setion 6℄ for the Newton ase for unonditionallypositive de�nite kernels.If we deompose in SVD style
ΠAΠT = U Go U

Twith an N ×N orthogonal matrix U and a nonngegative matrix Go of singularvalues with exatly N −Q positive ones, then
C = ΠTU, ΠV = UG0,again generalizing what we have in the standard ase [4, Setion 6℄.6. Points and Polynomials FirstDe�nition 4. Let the points of a Pd

m�unisolvent set X = {x1, . . . , xN} beordered in suh a way that the �rst Q points form a Pd
m�unisolvent subset XQ =

{x1, . . . , xQ} ⊆ X, and assume that p1, . . . , pQ are a basis of Pd
m. Then anydata�dependent basis w onsisting of w1 = p1, . . . , wQ = pQ and N − Q otherbasis funtions wQ+1, . . . , wN is alled a points and polynomials �rst (PPF)basis.



6 POINTS AND POLYNOMIALS FIRST 9We now proeed to haraterize all PPF bases. We de�ne PT = (PT
1 , PT

2 )with matries P1 ∈ R
Q×Q, P2 ∈ R

(N−Q)×Q using our ordering, and let thevalue matrix of the omplete basis take the form
Vw :=

(

P1 VP

P2 VR

) (18)with matries VP ∈ R
Q×(N−Q), VR ∈ R

(N−Q)×(N−Q). By onstrution, thematrix P1 is nonsingular. Splitting the matries A and A similarly, we get
A =





A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 .Note that sine we hose a �xed polynomial basis �rst, the matries P1 and P2are determined by this basis hoie. When taking a polynomial Lagrange basison XQ to start with, we get P1 = I.Theorem 7. The identity (9) neessarily is of the form




A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 ·





0 CP

0 CR

I B



 =





P1 VP

P2 VR

0 0



 (19)with a Q× (N −Q) matrix B and a nonsingular (N −Q)× (N −Q) matrix CR.If CR is �xed, all hoies of either B or VP are possible, and eah suh hoiede�nes a PPF basis.Proof: For a PPF basis, the system (9) has the general form




A11 A12 P1

AT
12 A22 P2

PT
1 PT

2 0



 ·





R CP

S CR

T B



 =





P1 VP

P2 VR

0 0



and onsequently
A11R + A12S + P1T = P1,
AT

12R + A22S + P2T = P2,
PT
1 R + PT

2 S = 0.A simple elimination then yields ÃS = 0 with the matrix
Ã := A22 −AT

12(P
T
1 )−1PT

2 − P2P
−1
1 A12 + P2P

−1
1 A11(P

T
1 )−1PT

2 , (20)whih is nonsingular due to Theorem 8 below. Thus S = 0, and nonsingularityof P1 then implies R = 0 and T = I, proving (19) to be neessary.



6 POINTS AND POLYNOMIALS FIRST 10By elimination in (19), we get neessary equations
CP = −(PT

1 )−1PT
2 CR,

B = P−1
1

(

VP + (A11(P
T
1 )−1PT

2 −A12)CR

)

,

VR = ÃCR + P2P
−1
1 VP ,

(21)with the symmetri positive de�nite (N − Q) × (N − Q) matrix Ã from (20).The nonsingularity of the value matrix implies that VR − P2P
−1
1 VP must benonsingular, and sine this is ÃCR, we get that CR neessarily is nonsingular.The above arguments an be pursued bakwards to show that eah nonsingular

CR and arbitrary hoies of either B or VP yield a PPF basis.Theorem 8. The matrix Ã is positive de�nite, and it is independent of thepolynomial basis hosen.Proof: For an arbitrary vetor z ∈ R
N−Q we get moment onditions

(PT
1 , PT

2 )

(

−(PT
1 )−1PT

2 z
z

)

= 0and thus
(

−(PT
1 )−1PT

2 z
z

)T

A

(

−(PT
1 )−1PT

2 z
z

)

= zT Ãz ≥ 0by onditional positive de�niteness of the kernel. If the quadrati form is zero,then z = 0. A basis hange in Pd
m will not hange P2P

−1
1 , beause P1 and P2go over to P1C and P2C with a nonsingular Q×Q matrix C.For the split (18) of the orresponding value matrix and

Ṽw := VR − P2P
−1
1 VPwe have

ÃCR = Ṽw. (22)There is a partiularly simple speial situation:De�nition 5. A PPF basis is alled anonial, if it satis�es VP = 0.For anonial PPF bases, we have the simple identity
ÃCR = VR (23)between nonsingular (N − Q) × (N − Q) matries. Either VR or CR an bepresribed for a anonial PPF basis to de�ne it uniquely.The identities (22) and (23) generalize what we had in the unonditionallypositive de�nite ase. It will turn out later that anonial PPF bases arise fromusing a �redued� kernel.In priniple, one may put B := 0, and CR := I. This speial ase of a PPFbasis will be treated in the next setion after a short detour.



6 POINTS AND POLYNOMIALS FIRST 11Theorem 9. All PPF bases w with orthonormal funtions wQ+1, . . . , wN arisefrom a fatorization
Ã = (CT

R)
−1(CR)

−1 = ETE,where E := C−1
R . Then the value matrix is

Ṽw = (CT
R)

−1and for a anonial PPF basis we have VR = (CT
R)

−1.Proof: By a simple realulation of (12) using
Cw =

(

0 CP

0 CR

)

.we get the Gramian of a PPF basis w to be
Gw = CT

RÃCR.If this is the identity, the �rst assertion follows. The rest is a onsequene of(22) and (23).This is similar to the results in [4, Setion 6℄ for the unonditionally positivede�nite ase. There, di�erent deompositions like Cholesky and SVD were usedto onstrut orthonormal bases. Here, partially orthonormal PPF bases arisefrom SVD or Cholesky deompositions of the matrix Ã.We now want to determine the disretely orthonormal PPF bases, and we splitthe value matrix Vw like in (18) by reordering the Q unisolvent points. Thenwe start from H = V T
w Vw = I and get

PT
1 P1 + PT

2 P2 = I
V T
P VP + V T

R VR = I
PT
1 VP + PT

2 VR = 0,
(24)where P1 is nonsingular. Then from (22) we get

ÃCR = (I + P2(P1)
−1(PT

1 )−1PT
2 )VR,whih is another generalization of what we know in the unonditionally positivede�nite ase.Theorem 10. Canonial PPF bases are not disretely orthonormal.Proof: Canonial PPF bases have VP = 0. By (18), the matrix VR then mustbe nonsingular, and the third equation in (24) shows that P2 must be zero.Thus all polynomials in Pd

m vanish on all points in the nonempty set X \XQ,whih is a ontradition sine onstants are in Pd
m.



7 STANDARD BASIS 127. Standard BasisIn a straightforward attempt to onstrut a basis, we would like to use the
K(x, xj) diretly, but this is not allowed sine we have to obey the momentonditions. Assume p1, . . . , pQ be a Lagrange basis of polynomial interpolationon x1, . . . , xQ. Then we an reprodue

p(y) =

Q
∑

m=1

p(xm)pm(y) for all p ∈ Pd
m, y ∈ Ω,and for the set {y} ∪ {x1, . . . , xQ} we have a oe�ient vetor

1,−p1(y), . . . ,−pQ(y)that satis�es the moment onditions on that set, i.e.
1 · p(y)−

Q
∑

m=1

p(xm)pm(y) = 0 for all p ∈ Pd
m.This allows to de�ne the funtions

sy(x) := K(x, y)−

Q
∑

m=1

pm(y)K(x, xm), x ∈ Ωfor all y ∈ Ω \ {x1, . . . , xQ}, whih are in S.Then a standard basis generalizing the translatesK(x, xj) onsists of p1, . . . , pQand of simple linear ombinations of translates of K, i.e.
sj(x) := K(x, xj)−

Q
∑

m=1

pm(xj)K(x, xm), Q+ 1 ≤ j ≤ N.If we add sj := pj for 1 ≤ j ≤ Q, we have N funtions and need to prove linearindependene. De�ne PT = (IQ×Q, P
T
2 ) due to the Lagrange property on the�rst Q points. We split A and A to get

A =





A11 A12 I
AT

12 A22 P2

I PT
2 0



 .The value matrix has P as its left N × Q submatrix. The right N × (N − Q)submatrix is
(

A12

A22

)

−

(

A11

AT
12

)

· PT
2due to the de�nition of the basis. The identity (9) then is





A11 A12 I
AT

12 A22 P2

I PT
2 0



 ·





0 −PT
2

0 I
I 0



 =





I A12 −A11 P
T
2

P2 A22 −AT
12 P

T
2

0 0







8 BACK TO LAGRANGE BASES 13and we see that we have got a PPF basis with B = 0 and CR = I.The Gramian follows from (12) and takes the form
(

0 0

0 Ã

)with the symmetri matrix
Ã = P2A11P

T
2 − P2A12 −AT

12P
T
2 +A22that we know from (20) in a more general form. This generalizes the fat that thekernel matrix A itself is the Gramian of the standard basis in the unonditionallypositive de�nite ase.8. Bak to Lagrange BasesStarting from a general Pd

m�unisolvent set X , the standard Lagrange basis
u1(x), . . . , uN (x) has the value matrix Vu = I and is de�ned via

(

A P
PT 0

)(

u(x)
v(x)

)

=

(

KX(x)
p(x)

)with
KX(x)T := (K(x1, x), . . . ,K(xQ, x)) ∈ R

N ,
p(x)T := (p1(x), . . . , pQ(x)) ∈ R

Q,
u(x)T := (u1(x), . . . , uN (x)) ∈ R

N ,
v(x)T := (v1(x), . . . , vQ(x)) ∈ R

Q.The onstrution matries of the Lagrange basis follow from Theorem 1 bysetting Vw = I.It is tempting to ask for PPF Lagrange bases. But:Theorem 11. For N > Q there is no PPF Lagrange basis.Proof: If there were a PPF Lagrange basis, we must have P2 = 0 in (19). Butthen all polynomials inluding 1 must vanish on xQ+1, . . . , xN .But there learly is a anonial PPF basis that is partially Lagrange in the sensethat VR = I and VP = 0. It has CR = Ã−1 by (23), and the equations (21) yield
B and CP for this ase. Sine not neessarily P2 = 0, the basis is not Lagrangein the true sense.



9 NEWTON BASIS, ITERATIVE CONSTRUCTION 149. Newton Basis, Iterative ConstrutionWe start with XQ := {x1, . . . , xQ} to be unisolvent, and there we take thestandard Lagrange polynomial basis p1, . . . , pQ on XQ. We need all values
pi(xj), 1 ≤ j ≤ N, 1 ≤ i ≤ Q for further alulation, and we shall extend thisbasis to a full basis v1, . . . , vN , setting vj = pj , 1 ≤ j ≤ Q. We already have
vi(xj) = 0 for 1 ≤ i < j ≤ Q. We shall need the de�nition of the redued kernel

KQ(x, y) := K(x, y)−

Q
∑

j=1

pj(x)K(y, xj)−

Q
∑

k=1

pk(y)K(x, xk)

−

Q
∑

j=1

Q
∑

k=1

pj(x)pk(y)K(xj , xk)whih is symmetri and unonditionally positive de�nite on Ω\XQ and vanishesif one of the arguments is in XQ. The seond fat follows by diret evaluation,and the �rst follows from Theorem 8 and observing that the matrix Ã of (20)is the kernel matrix for KQ on X \XQ.We store the atual values of the power funtion
P 2
Q(x) := KQ(x, x)on the points of X . They are zero on XQ. For what follows, we start with

m := Q.Now, for indution, we assume that we already have a onstrution of a basis
v1, . . . , vm for some Q ≤ m < N with the orthonormality properties

(vi, vj) = δij , Q+ 1 ≤ i, j ≤ m.Formally, we also assume that we have the values of the power funtion Pm(x)on X . Note that the assoiated power kernel satis�es the reursion
Km(x, y) = Km−1(x, y) −

Km−1(x, xm)Km−1(y, xm)

Km−1(xm, xm)for m > Q (see [5, 2℄) and has the properties
Km(xj , y) = Km(x, xj) = 0, 1 ≤ j ≤ m, P 2

m(x) = Km(x, x) for all x, y ∈ Ω.Then we de�ne
xm+1 := arg max {P 2

m(x) : x ∈ X}and stop if Pm(xm+1) is zero or very small, beause then we are done. Now weformally de�ne
vm+1(x) :=

Km(x, xm+1)
√

Km(xm+1, xm+1)
for all x ∈ Ω



9 NEWTON BASIS, ITERATIVE CONSTRUCTION 15to get that
vm+1(xj) = 0, 1 ≤ j ≤ m,as required. But we have to show how vm+1 and Pm+1 an be alulated e�-iently on X .We see immediately that

P 2
m+1(x) = P 2

m(x)− v2m+1(x) = P 2
Q(x) −

m+1
∑

j=Q+1

v2j (x)holds by onstrution and indution. Thus we only need vm+1 on X . Weonsider the reursion
Kj(x, y) = Kj−1(x, y)−

Kj−1(x, xj)Kj−1(y, xj)

Kj−1(xj , xj)
= Kj−1(x, y)− vj(x)vj(y)that boils down to

Km(x, xm+1) = KQ(x, xm+1)−

m
∑

j=Q+1

vj(xm+1)vj(x)whih is omputable from the values KQ(x, xm+1) for all x ∈ X . But these areobtainable from
KQ(x, xm+1) = K(x, xm+1)−

Q
∑

j=1

pj(x)K(xm+1, xj)−

Q
∑

k=1

pk(xm+1)K(x, xk)

−

Q
∑

j=1

Q
∑

k=1

pj(x)pk(xm+1)K(xj , xk)at reasonable ost.It remains to show
(vm+1, vj) = 0, Q+ 1 ≤ j ≤ m,and this follows from

(KQ(x, xm+1), vj) = vj(xm+1), Q+ 1 ≤ j ≤ mbeause these vj vanish on x1, . . . , xQ. Furthermore,
P 2
m(xm+1)(vm+1, vm+1) = (Km(x, xm+1),Km(x, xm+1))

= Km(xm+1, xm+1)
= P 2

m(xm+1)by what is known for power kernels from [2℄. This proves orthonormality.



10 NUMERICAL EXAMPLES 16The value matrix of this anonial PPF basis is
(

I 0
P2 L

)with a lower triangular value matrix L = VR, and we have orthonormalityof vQ+1, . . . , vN . Now Theorem 9 implies that we have CR = (L−1)T and aCholesky deomposition Ã = LLT . This provesTheorem 12. The above onstrution generates the anonial PPF basis with
P1 = I, whih oinides with the extension of the Lagrange basis of Pd

m by theNewton basis for X \XQ and the redued kernel.10. Numerial ExamplesLike in [4℄, we fous on the domain Ω de�ned as the unit irle with the thirdquadrant taken away. There, we take a �ne set of points and selet a subset of 15points whih is unisolvent for P2
5 . This is done by a pivoted QR deompositionof the value matrix of the 15 basis funtions of P2

5 on the �ne grid. The leftpart of Figure 1 shows the seleted points and the grid. For omparison, theright�hand part shows the 15 points seleted by the greedy Newton strategy ofsetion 9 when applied to the full grid.
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Figure 1: Seleted 15 points, left: by unisolveny, right: by greedy Newton basis alulationThe following plots always show the basis funtion # 15 for most of the basesonstruted in this paper. Figure 2 starts with the standard basis of setion 7and the basis using the projetor Π of (15). Then Figure 3 provides the Choleskyand SVD bases of setion 5. Finally, Figure 4 shows the adaptive Newton basisfuntion v15 of setion 9 with the assoiated Power Funtion P15.[1℄ St. De Marhi and R. Shabak. Stability of kernel-based interpolation. Adv.in Comp. Math., 32:155�161, 2010.
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Figure 2: Basis funtion 15, left: standard basis, right: projetion basis (15)
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Figure 3: Basis funtion 15, left: Cholesky basis, right: SVD basis[2℄ M. Mouattamid and R. Shabak. Reursive kernels. Analysis in Theoryand Appliations, 25:301�316, 2009.[3℄ St. Müller and R. Shabak. A Newton basis for kernel spaes. Journal ofApproximation Theory, 161:645�655, 2009. doi:10.1016/j.jat.2008.10.014.[4℄ M. Pazouki and R. Shabak. Bases for kernel-based spaes. Computationaland Applied Mathematis, 236:575�588, 2011.[5℄ R. Shabak. Reonstrution of multivariate funtions from sat-tered data. Manusript, available via http://www.num.math.uni-goettingen.de/shabak/researh/group.html, 1997.[6℄ H. Wendland. Sattered Data Approximation. Cambridge University Press,2005.
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