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Abstract

This paper extends a previous one [4] to the important case of conditionally
positive kernels such as thin—plate splines or polyharmonic kernels. The goal
is to construct well-behaving bases for interpolation on a finite set X C R?
by translates K(-,x) for € X of a fixed kernel K : Q x Q — R which is
conditionally positive definite of order m > 0. Particularly interesting cases
are bases of Lagrange or Newton type, and bases which are orthogonal or or-
thonormal either discretely (i.e. via their function values on X) or as elements
of the underlying “native” space for the given kernel, which is a direct sum of
a Hilbert space with the space P¢, of d-variate polynomials of order up to m.
All of these cases are considered, and relations between them are established.
It turns out that there are many more possibilities for basis construction than
in the unconditionally positive definite situation m = 0, and these possibilities
are sorted out systematically. Some numerical examples are provided.

Keywords: kernels, radial basis functions, conditionally positive definite
kernels, unisolvent set.
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1. Introduction

If interpolation on a finite set X C R of centersis done by translates K (-, x)
for x € X of a fixed positive definite kernel K : Q x Q — R, it is well-known
that the basis spanned by the translates often is badly conditioned, while the
interpolation is a well-behaving map [1] in function space. This calls for other
choices of bases for the space

S(X):= span {K(-,z) : z€ X} (1)
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and the paper |4] provides various useful solutions. This covers kernels like
e the Gaussian K (x,y) = exp(—|z — y3),
e inverse multiquadrics K (z,y) = (1 + ||z — y||3)™", n > 0,

e and Wendland’s compactly supported kernels like
K(z,y) = (1= [lz = yll2)3 (1 + 4llz = y]l2).

But there are other kernels, e.g.
e multiquadrics K (z,y) = (=1)!3/21(1 + ||z — y[|3)%/2, B € (0, ) \ 2Z,,
e powers K (z,y) = (=1)[8/21||z —y||5, B € (0,0) \ 2Z, or
e thin-plate splines K (z,y) = (=1)"+5/2||z — y||5 log ||z — y|2, B € 2Z

that are not covered by [4] because the kernels are not positive definite, but
only conditionally positive definite of some positive order m = [5/2], [5/2],
and m = 1+ /2 in the above three cases, respectively.

To introduce this notion, we first need the space P of d-variate real-valued
polynomials of order at most m which has the dimension Q := (m7;+d), and
we have to restrict the admissible point sets by

Definition 1. A subset X = {x1,...,2x} C Q C R? is called P —unisolvent,
if the only function in P2, that vanishes on X is zero.

Definition 2. A kernel K : Q. x Q — R on a set Q C R? is conditionally
positive (semi-) definite of order m > 0, if for all point sets X = {x1,...,an} C
Q that are P2 —~unisolvent, the quadratic forms

N
Q(c) == Z cjceK (xj,21), c € RY (2)
Jik=1

are positive (semi—) definite on the subspaces

N
M:=<LceRVN . chp(xj) =0 for all p € P2 (3)

j=1
of coefficients satisfying discrete moment conditions of order m on X.

The space ([Il) must now be replaced by
S =Pl + Z ¢;jK(zj,-) : X is P% — unisolvent, c€ M 3,  (4)
r;€X

and this coincides with () for m = 0. For the rest of the paper, we always
assume X to be P¢ -unisolvent and the kernel K to be conditionally positive
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definite of order m, suppressing X and m in the notation. To avoid the unin-
teresting special case of pure polynomial interpolation on () points forming an
unisolvent set, we also assume N > () throughout.

The goal of this paper is to provide useful bases for S and to exhibit relations
between these bases. Due to their dependence on the given unisolvent set X,
we call these bases data—dependent. The case m = 0 of [4] will serve as a guide-
line, but it will turn out that it does not generalize in a straightforward way,
since there are many possibilities to proceed. For instance, one can preselect a
polynomial basis and complete it by N — @ other functions, or let all basis func-
tions contain some polynomial part. Another option is to preselect a minimal
unisolvent subset of @ points first and then use a “reduced” kernel. Finally, one
can try to reduce the conditional positive definite case to the unconditionally
positive definite case by a suitable change of the kernel, but even this change
can be done in different ways. These different approaches sometimes lead to the
same result.

The paper starts with a recollection of basic notation and results, and then
looks at bases from a general point of view, i.e. not assigning a special role to
polynomials, and not reordering points. We then specialize to bases induced by
“projecting polynomials away” and go over to bases that are partially orthonor-
mal in the semi-Hilbert spaces behind conditionally positive definite kernels.
In particular, we shall construct bases related to Cholesky and SVD decom-
positions of certain matrices generated via the polynomial projectors of the
previous section. A special class of “points and polynomials first’ bases arises
if basis functions and points are reordered to let the first Q = dim P2 points
form a minimal PZ—unisolvent set, and let the basis start with a basis of PZ.
We analyze these bases and finally consider an important special case, i.e. the
Newton basis that can be calculated adaptively and effectively. It is a natural
generalization of the Newton basis in |3, l4].

The paper closes with numerical examples illustrating the results.

2. Notation and Basic Facts

We first fix a basis p1,...,pg of P4 and Q = (", = dim PZL. If

X = {z1,...,2n} C R%is a P4 —unisolvent set, the N x Q matrix P with entries

pi(z;), j=1,...,N,i=1,...,Q has full rank @, and this implies N > Q.

Enlarging unisolvent sets will not destroy unisolvency, and each unisolvent set

contains a subset of () points which is unisolvent itself. We define the symmetric
kernel matriz

A= (K(zi,z5))1<ij<n (5)

and we know that it defines a positive definite quadratic form (2] on the subspace
@.

Lemma 1 ([6]). The (N + Q) x (N + Q) matriz

A::<Pé1 OQ]ZQ ) ©)
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is nonsingular, and interpolation of data on X is uniquely possible. O

If data on X are supplied as a vector f € RY, solving the system

A0 )= (At e ) ()= (ol )

yields vectors c € M C RY and b € R? with moment conditions PT¢ = 0. With
such vectors, we define

Q
Se 1= Z CjK('rja ')a P = Zblpz € Pﬁﬂ (7)

r;€X 1=1
to get the interpolant s := s.+p, € S to the given data. Now Lemma [Ilimplies

Lemma 2. In (), the sum is direct, and the space S has dimension N =
| X]. O

For later use, we need that the bilinear forms

(e,c) = cTA
=: (8c-8¢)

(8)

on M and the functions of the form s, are inner products, due to (¢, ¢) = Q(c).
We shall use the same notation for these inner products, since there is no possible
confusion. Constructions of orthogonal or orthonormal bases will use these inner
products later.

3. General Bases

We now collect necessary properties of general data—dependent bases w =
(w1, ...,wy) for a given P —unisolvent set X of N > @Q points. There will be
no special role of polynomials, and no reordering of the points of X.

Definition 3. The value matrix of a basis w = (w1,...,wy) is the N x N
matriz
Vio = (wi(z;))1<ij<n € RN

where j is the row and v is the column indez.

Clearly, this matrix is necessarily nonsingular because the basis must allow
unique interpolation on X. The value matrix V,, defines a basis w uniquely. To
construct the basis functions from the values, consider the system

(o o) ()= (%) ®

that expresses the N x N matrix C,, and the Q x N matrix B, uniquely in
terms of V,,. The moment conditions are employed via PTC,, = 0, while the
coefficient matrices C,, and B,, satisfy

AC,, + PB,, = V. (10)
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The associated basis w is then determined by the columns of C,, and B,, via

N Q
W = chkK(Wm ) + Zbikpiu 1<kE<N (11)

=1 i=1

where we omitted w in the notation of the matrix elements.
We derive a few simple facts from (@):

Theorem 1. The N x N matriz Cy, has rank N — Q, and the (N + Q) x N
matric o
w _ —1 Vw
(5 )= (%)
has rank N.

A basis w is uniquely defined by either a nonsingular N X N wvalue matriz
Vw or by a N x N matriz Cy, and a Q x N matriz B,, such that PTC,, =0
holds and (gz) has rank N. O
Theorem 2. Given a nonsingular value matrix Vy,, the corresponding basis
w is uniquely defined and independent of basis changes in PL. In particular,
the coefficient matriz Cy, is unique, while the B,, matriz and the polynomials
change.

Proof: Each basis change in P2 is given by the transition Q := P - C with a
nonsingular @ x @ matrix C. Then, by easy calculations, the matrix B,, goes
over to C~1B,, while C,, is unchanged. In (I), the basis functions w; are not
changed, because the matrix C' changes both the b;; and the p; in a way that
cancels out. O

At this point we can already define the unique Lagrange basis L by requiring
that the value matrix V7, is the identity matrix. Its construction matrices are
then uniquely defined by

(5)=(at 0) (")

and ([II) can be used to evaluate the basis everywhere.
Using ([I0) and PTC,, = 0 we see that the matrix

crac, =Cctv,
is symmetric. If we use the inner product (8), we can form the Gramian matrix
G, :=Crac, =ctv, (12)

of the inner products of the s. parts of the basis functions. Now Theorem [II
yields

Corollary 1. The Gramian G, is symmetric and positive semidefinite with
rank N — Q. In particular, it is impossible to have a full orthonormal basis of
N functions of S if Q@ > 0. O
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We shall later consider bases with N — @ orthonormal functions.
The matrix of discrete /5 inner products on X is

H=V’V,,

since the rows of V,, correspond to points, while the columns correspond to
functions. Clearly, this matrix is positive definite, and there are plenty of ¢o—
orthonormal bases of S, in particular the Lagrange basis. For completeness, we
note the simple fact

Theorem 3. All {s—orthonormal bases w on X arise from orthogonal value
matrices V. O

4. Polynomial Projectors

We now want to get rid of the polynomial part in (IQ). To this end, we need
a N x N matrix IT with ITP = 0 and full rank N — @Q. There are many ways to
get such a matrix.

Since P has rank @, the Q x Q matrix P” P is invertible, and we can proceed
from (@) via

pPTAC, + P"PB, = PTV,,
B, = (PTP)*lPT(Vw — ACy)
to get
nAC, =11V, (13)

with the symmetric projector
I:=1-PPTp)~1pPT (14)

that arises naturally here. Note that equation (I3) generalizes the identity
AC,, =V, obtained in the unconditionally positive definite case.

Another way to get an N x N matrix II with IIP = 0 and full rank N — @
is to reorder the points of X to let the set X¢g := {x1,...,2¢0} be unisolvent
and to let the polynomial basis be a Lagrange basis on Xq. Then we have
P= (I%D;Q) and can define

0gx@  Ogxn—@ >
Il = . 15
( —P, In_gxNn-Q (15)

If seen as actions on data vectors, IT of (I4) replaces the data by the error of the
£o—optimal polynomial recovery on X, while (I3) replaces the data by the error
of interpolation in Xg. In both cases, the data of polynomials are mapped to
zero, i.e. IIP = 0 holds. However, the matrix IT of (I4) has the advantage to
be symmetric, idempotent, and independent of the choice of basis in PZ,.

In all cases, the maximal rank of IT and the property IIP = 0 imply



5 PARTIALLY ORTHONORMAL BASES 7

Theorem 4. 1. For any vector z € RV, the vector I17 z satisfies the moment
conditions.

2. For all vectors c satisfying the moment conditions there is a representation
as ¢ = I1"z for some z € RN, O

Theorem 5. The matriz ITAIIT s symmetric and positive semidefinite with
rank N — Q.

Proof: The symmetric quadratic form z — 27 TIAII” 2 is positive semidefinite,
because the vectors II” z satisfy the moment conditions. Its kernel is the kernel
of IT and thus equal to the range of P, i.e. of dimension Q. O

If we multiply (I0) from the left by II, we get ([I3) also for the general
situation. Furthermore, Theorem [4] implies that we can factorize

C, =1"F, (16)

with a nonunique but nonsingular N x N matrix F,,. In particular, a very
natural candidate for a basis w* is definable by

Cpe := 17

due to the properties of II. In the two special cases for II provided above, the

matrix (g;) has rank N, and thus Theorem [l is applicable, yielding a basis in
both cases.

5. Partially Orthonormal Bases

Following Corollary [Il we now can ask for all bases which have Gramians
G, of (I2) which are N x N diagonal matrices with ) zeros and N — () ones on
the diagonal. With an N x N matrix IT of (I4) with rank N — @ and IIP =0,
we can use ([I6) and write down the necessary equation

crac, = Frnan’r, = G, = G2
Since F3, is nonsingular (but also nonunique), we get the decomposition
nAn® = (FH-'G*r,;' = ELE,

with the matrix
By, = G,F,* .

Theorem 6. All partially orthonormal bases of S arise from factorizations
nAn® =g’ E (17)

with N x N matrices E of rank N — Q that have the property that E = G, F~!
with a nonsingular N x N matriz F', and where G, is a N x N diagonal matriz
with Q zeros and N — Q ones on the diagonal.
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Proof: We have just seen that the conditions are necessary. To prove suffi-
ciency, we start with E and F and define a basis w via Cy, := II” F. Then

CTAC, = FTHANTF

FTET EF
FTFT'GTG,F~'F
= G,

O

Corollary 2. These partially orthonormal bases are not unique. Even if Cy, is
fized along the above lines, the matrices By, for application of Theorem [ are
still free. O

We now consider partially orthonormal bases that arise from pivoted Cholesky
decompositions of the symmetric positive semidefinite N x N matrix II ATI”
of rank N — ). We assume that after reordering of points and N steps of the
Cholesky algorithm, we get

nAur = LG, L*

with a nonsingular lower triangular matrix L and a diagonal matrix G, with
the first N — @ diagonal elements being one and the final @) diagonal elements
being zero.

Then, in the above context, F' = (LT)"' and C = I (LT)~' and G, = CTV =
LIV leading to
IIV = LG,

generalizing what we had in [4, Section 6] for the Newton case for unconditionally
positive definite kernels.
If we decompose in SVD style

nAu” =vG,u”

with an N x N orthogonal matrix U and a nonngegative matrix G, of singular
values with exactly N — @) positive ones, then

Cc=1"U, IV = UG,,

again generalizing what we have in the standard case [4, Section 6].

6. Points and Polynomials First

Definition 4. Let the points of a P2 -unisolvent set X = {z1,...,zn} be
ordered in such a way that the first Q points form a PZ —unisolvent subset X¢q =
{z1,...,29} C X, and assume that p1,...,pg are a basis of P . Then any
data—dependent basis w consisting of w1 = pi1,...,wq = pg and N — Q) other
basis functions wg41,...,wn s called a points and polynomials first (PPF)
basis.
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We now proceed to characterize all PPF bases. We define PT = (PI, Pf)
with matrices P, € RO*Q P, ¢ RIN-@)*Q ysing our ordering, and let the
value matrix of the complete basis take the form

(P Vp
o (v ) (15)

with matrices Vp € ROX(N-Q) y, ¢ RIWW-Q)x(N-Q) = By construction, the
matrix P; is nonsingular. Splitting the matrices A and A similarly, we get

An A P
A= A,{; Asy Py
Pl PI 0

Note that since we chose a fixed polynomial basis first, the matrices P, and P»
are determined by this basis choice. When taking a polynomial Lagrange basis
on Xg to start with, we get P, = I.

Theorem 7. The identity (9) necessarily is of the form

A A P 0 Cp P Vp
A{Q Ay Py . 0 Cgr = P, Vg (19)
Pl Pl 0 I B 0 0

with a Q X (N — Q) matriz B and a nonsingular (N — Q) x (N — Q) matriz Cg.
If Cg is fized, all choices of either B or Vp are possible, and each such choice
defines a PPF basis.

Proof: For a PPF basis, the system (Q)) has the general form

A A P R Cp P Vp
A?Q Asy Py . S Cg = P, Vg
pr pr o T B 0 0

and consequently

AnR + ApS + PT = P,
ALR + AnS + PRT = P,
P'R + PIS = 0.

A simple elimination then yields AS = 0 with the matrix
A= Agy — AL(P) ' P] — PoP7 Ay + PP AL (PE)LPT, (20)

which is nonsingular due to Theorem [§ below. Thus S = 0, and nonsingularity
of Py then implies R =0 and T = I, proving (I9) to be necessary.
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By elimination in ([[9), we get necessary equations

OP = _(PF)71P2TOR5
B = Pil_l (Vp + (All(PlT)il,PQT - Alz)CR) , (21)
Vi = ACg+ PP 'Vp,

with the symmetric positive definite (N — Q) x (N — Q) matrix A from (20).
The nonsingularity of the value matrix implies that Vi — P2P1_1VP must be
nonsingular, and since this is ACR, we get that C'r necessarily is nonsingular.
The above arguments can be pursued backwards to show that each nonsingular
Cr and arbitrary choices of either B or Vp yield a PPF basis. O

Theorem 8. The matriz A is positive definite, and it is independent of the
polynomial basis chosen.

Proof: For an arbitrary vector z € RY~® we get moment conditions
T\—1 pT
T pT —(Pr)" Pz _
(Pl 7P2 ) < 2 =0

and thus

_ T _
(DY (SO s

by conditional positive definiteness of the kernel. If the quadratic form is zero,
then z = 0. A basis change in P¢, will not change PP ! because P, and P,
go over to PC and P,C with a nonsingular ¢ x @ matrix C. O

For the split (I8) of the corresponding value matrix and
Vi := Vg — PP Vp
we have

ACRr =V, (22)

There is a particularly simple special situation:

Definition 5. A PPF basis is called canonical, if it satisfies Vp = 0.

For canonical PPF bases, we have the simple identity
ACr = Vg (23)
between nonsingular (N — Q) x (N — Q) matrices. Either Vi or Cg can be

prescribed for a canonical PPF basis to define it uniquely.

The identities [22) and (23) generalize what we had in the unconditionally
positive definite case. It will turn out later that canonical PPF bases arise from
using a ‘“reduced” kernel.

In principle, one may put B := 0, and Cg := I. This special case of a PPF
basis will be treated in the next section after a short detour.
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Theorem 9. All PPF bases w with orthonormal functions wg41,...,wWN arise

from a factorization 5
A= (Cr) ' (Cr) ' =E"E,

where E := C’gl. Then the value matriz is
Vw = (C£)71

and for a canonical PPF basis we have Vg = (C%)71. O

Proof: By a simple recalculation of (I2) using

(0 Cp
Cw_(ocR)'

we get the Gramian of a PPF basis w to be
Gw =CEACE.

If this is the identity, the first assertion follows. The rest is a consequence of

22) and (23)). O

This is similar to the results in [4, Section 6] for the unconditionally positive
definite case. There, different decompositions like Cholesky and SVD were used
to construct orthonormal bases. Here, partially orthonormal PPF bases arise
from SVD or Cholesky decompositions of the matrix A.

We now want to determine the discretely orthonormal PPF bases, and we split
the value matrix V,, like in (I8) by reordering the @ unisolvent points. Then
we start from H = V,.I'V,, = I and get

P1TP1 + P2TP2 = 1
Vng + VgVR = 1 (24)
PlTVp + P2TVR = 0,

where P; is nonsingular. Then from (22]) we get
ACR = (I+ Po(P1) " (P[) ™ P )V,

which is another generalization of what we know in the unconditionally positive
definite case.

Theorem 10. Canonial PPF bases are not discretely orthonormal.

Proof: Canonical PPF bases have Vp = 0. By (I8), the matrix Vg then must
be nonsingular, and the third equation in (24) shows that P, must be zero.
Thus all polynomials in P¢, vanish on all points in the nonempty set X \ Xq,
which is a contradiction since constants are in PZ,. O
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7. Standard Basis

In a straightforward attempt to construct a basis, we would like to use the
K(z,z;) directly, but this is not allowed since we have to obey the moment
conditions. Assume py,...,pg be a Lagrange basis of polynomial interpolation
on z1,...,2q. Then we can reproduce

Q
p(y) =Y p(@m)pm(y) forallpe P, y € Q,

m=1

and for the set {y} U{z1,...,20} we have a coefficient vector

17 _pl(y)7 R _pQ(y)
that satisfies the moment conditions on that set, i.e.

Q
1-p(y) = > plm)pm(y) = 0 for all p € PL.

m=1

This allows to define the functions

sy(z) = K(z,y) — > pm(y)K (v, 2), 2 € Q

Me

m=1

for all y € @\ {x1,...,2¢}, which are in S.

Then a standard basis generalizing the translates K (x, x;) consists of p1,...,pg
and of simple linear combinations of translates of K, i.e.

Q
Sj(x) = K(IE,:EJ‘) - Z pm(ij)K(I,Im), Q +1< .] < N.
m=1

If we add s; :=p; for 1 < j < @Q, we have N functions and need to prove linear
independence. Define PT = (Igxq, P{) due to the Lagrange property on the
first @@ points. We split A and A to get

A A 1
A= A,{; AQQ P2
I Pl 0

The value matrix has P as its left N x @ submatrix. The right N x (N — Q)

submatrix is
Az ) _(Au )\ pr
A A 2

due to the definition of the basis. The identity (@) then is

A11 A12 I 0 _P2T 1 A12 - All P2T
Aly Ay P || O T =| P An-ALPS

I Pr o I 0 0 0
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and we see that we have got a PPF basis with B =0 and Cr = I.

The Gramian follows from ([I2) and takes the form
0 0
0 A

A = P2A11P2T - P2A12 - Aclr2P2T + A22

with the symmetric matrix

that we know from (20)) in a more general form. This generalizes the fact that the
kernel matrix A itself is the Gramian of the standard basis in the unconditionally
positive definite case.

8. Back to Lagrange Bases

Starting from a general P% —unisolvent set X, the standard Lagrange basis
u1(x),...,un(x) has the value matrix V,, = I and is defined via

(o 0)(06)-(58)

with
Kx(z)' = (K(z1,2),...,K(zq,z)) € RY,
p@)t = (pi(2),...,pg(x)) € RY,
U(I)T = (’U,l(.f), ,UN(ZE)) € RN,
o) = (v (2),... ,00(x)) € R@

The construction matrices of the Lagrange basis follow from Theorem [ by
setting V,, = I.

It is tempting to ask for PPF Lagrange bases. But:

Theorem 11. For N > @ there is no PPF Lagrange basis.

Proof: If there were a PPF Lagrange basis, we must have P, = 0 in (I9)). But
then all polynomials including 1 must vanish on zg41,...,ZN. O

But there clearly is a canonical PPF basis that is partially Lagrange in the sense
that Vg = I and Vp = 0. It has Cr = A~! by (23), and the equations (ZI) yield
B and Cp for this case. Since not necessarily P, = 0, the basis is not Lagrange
in the true sense.
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9. Newton Basis, Iterative Construction

We start with X¢q = {x1,...,2¢0} to be unisolvent, and there we take the
standard Lagrange polynomial basis pi1,...,pg on Xg. We need all values
pi(z;), 1 <j < N,1<i<Q for further calculation, and we shall extend this
basis to a full basis v1,...,vn, setting v; = p;, 1 < j < Q. We already have
vi(z;) =0for 1 <14 < j < Q. We shall need the definition of the reduced kernel

Q Q
Kq(wy) = K,y) =Y pi@) Ky z)— Y pr(y)K (2, 2)
k=1

j=1

Q Q
_Z ij(x)pk(y)K(xj, Tk)

Jj=1k=1

which is symmetric and unconditionally positive definite on Q\ X¢ and vanishes
if one of the arguments is in Xg. The second fact follows by direct evaluation,
and the first follows from Theorem [ and observing that the matrix A of (20)
is the kernel matrix for Ko on X \ Xgq.

We store the actual values of the power function
Pé(:z:) = Kg(z,x)

on the points of X. They are zero on Xg. For what follows, we start with

m = Q.

Now, for induction, we assume that we already have a construction of a basis
V1, ..., Uy for some Q < m < N with the orthonormality properties

(vi,vj):(sij, Q—I—IS’L,] Sm

Formally, we also assume that we have the values of the power function P,,(x)
on X. Note that the associated power kernel satisfies the recursion

Km_l(.’li, xm)Km—l(yu xm)
Kmfl(xma zm)

Km(x,y) = Km—l(xuy) -

for m > @ (see [, 12]) and has the properties
Kp(2,y) = Kpn(z,2) =0, 1 < j <m, P3(z) = Ky (z,x) for all z,y € Q.
Then we define
Tyy1 = arg max {P2(z) : » € X}
and stop if Py, (zm41) is zero or very small, because then we are done. Now we
formally define

Km »rm
Umt1(x) == (@ Tm+1) for all x € Q

B \/Km (Ierl; Ierl)
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to get that
Um+1(z;) =0, 1 <j<m,

as required. But we have to show how v,,+1 and P,,+1 can be calculated effi-
ciently on X.

We see immediately that

m—+1
P (@) = Po(@) — vpp (@) = P3(a) — Y v3(a)
J=Q+1
holds by construction and induction. Thus we only need v,,41 on X. We
consider the recursion

y) — vj(z)v;(y)

Kj(z,y) = K

= K

x?
z,
that boils down to

m

Ko (2, Tmy1) = KQ(2, Tm1) — Z 0 (Tm+1)v;(2)
J=Q+1

which is computable from the values Kq(z, £pm41) for all z € X. But these are
obtainable from

@ Q
Ko, omy1) = K(o,Tmy1) — ZPj(:E)K(;EmH,xj) N (@) K (2, 21
Q Q = k=1
_Z ZpJ (I)pk ($m+1)K(Ij, Ik)

j=1k=1

at reasonable cost.

It remains to show
(Um-‘rluvj) = 07 Q+ 1 S] S m,

and this follows from

(KQ(anfEerl),Uj) = Uj(xm-i-l)u Q+-1<jij<m

because these v; vanish on 1, ...,zg. Furthermore,
Pgn(xm-i-l)(vm-i-lvvm-‘rl) = (Kn(z,2m11), Km(z,Zm11))
= Km($m+17$m+1)
= an(Ierl)

by what is known for power kernels from [2]. This proves orthonormality.
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The value matrix of this canonical PPF basis is

I 0
P, L
with a lower triangular value matrix L = Vg, and we have orthonormality

of vg+1,...,vn. Now Theorem [ implies that we have Cr = (L™1)T and a
Cholesky decomposition A = LLT. This proves

Theorem 12. The above construction generates the canonical PPF basis with
P, = I, which coincides with the extension of the Lagrange basis of P, by the
Newton basis for X \ X¢g and the reduced kernel. O

10. Numerical Examples

Like in M], we focus on the domain 2 defined as the unit circle with the third
quadrant taken away. There, we take a fine set of points and select a subset of 15
points which is unisolvent for P2. This is done by a pivoted QR decomposition
of the value matrix of the 15 basis functions of P2 on the fine grid. The left
part of Figure [l shows the selected points and the grid. For comparison, the
right-hand part shows the 15 points selected by the greedy Newton strategy of
section [@ when applied to the full grid.

Figure 1: Selected 15 points, left: by unisolvency, right: by greedy Newton basis calculation

The following plots always show the basis function # 15 for most of the bases
constructed in this paper. Figure [2] starts with the standard basis of section [l
and the basis using the projector I of ([I3)). Then Figure[provides the Cholesky
and SVD bases of section Bl Finally, Figure [ shows the adaptive Newton basis
function vq5 of section [@ with the associated Power Function P;5.
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Greedy-selected Newton Basis Function 15 Power Function 15
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Figure 4: Newton basis function v1s5 and corresponding Power Function Pi5
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