
Creating Surfaces from Scattered DataUsing Radial Basis FunctionsR. SchabackAbstract. This paper gives an introduction to certain techniques for theconstruction of geometric objects from scattered data. Special emphasisis put on interpolation methods using compactly supported radial basisfunctions. x1. IntroductionWe assume a sample of multivariate scattered data to be given as a set X =fx1; : : : ; xNg of N pairwise distinct points x1; : : : ; xN in IRd, called centers,together with N points y1; : : : ; yN in IRD. An interpolating curve, surface, orsolid to these data will be the range of a smooth function s : IRd � 
 ! IRDwith s(xk) = yk; 1 � k � N: (1)Likewise, an approximating curve, surface, or solid will make the di�erencess(xj ) � yj small, for instance in the discrete L2 sense, i.e.NXk=1 ks(xk) � ykk22should be small. Curves, surfaces, and solids will only di�er by their appro-priate value of d = 1; 2, or 3. We use the term (geometric) objects to standfor curves, surfaces, or solids. Note that we assume objects to be de�ned viaexplicit representations. For implicit representations we refer the reader toSection 4.The main goal of this contribution is to describe a 
exible class of objectsthat allows construction from scattered data in a very general way. Specialemphasis is put on practical aspects, while theoretical background informationwill be contained in a forthcoming survey, as far as it is not contained in earliersurveys on similar topics [6, 7, 8, 9, 15, 17, 18, 23, 26]. To keep the paperMathematical Methods in CAGD III 1M. D�hlen, T. Lyche, and L. L. Schumaker (eds.), pp. 1{21.Copyright oc 1995 by xxxISBN xxx.All rights of reproduction in any form reserved.



2 R. Schabackdigestible for readers working in CAGD applications, we refrained from usingadvanced techniques like Fourier or Hankel transforms, distributions, or Besselfunctions. Furthermore, we refer the reader to the cited surveys for obtainingadditional references or historical remarks.The theory of optimal recovery provides good theoretical reasons to as-sume s to be of the form s(x) := NXj=1 bj�(x � xj) (2)with control points b1; : : : ; bN 2 IRD and a function � : IRd ! IR that ispositive de�nite on IRd in the following sense: For all sets X = fx1; : : : ; xNgof �nitely many distinct points x1; : : : ; xN in IRd the matrixA = (�(xk � xj))1�j;k�N (3)is positive de�nite. We write � 2 PDd as shorthand for this property, and itis clear that it guarantees solvability of the systems(xk) = NXj=1 bj�(xk � xj) = yk; 1 � k � N; (4)de�ning an interpolating object. Of course it would su�ce to require that (3)is nonsingular for each x = fx1; : : : ; xNg � IRd, but so far there is no theoryto handle this generalization, while there is a long history of positive (semi{)de�nite functions (see [35], but note the slightly di�erent de�nition there).Another good reason to consider objects de�ned by (2) with s 2 PDd willbe completely ignored in this contribution: all such objects minimize certain\energy functionals" over a large set of objects admissible for interpolation.Furthermore, there is a probabilistic background to this approach which hasbeen exploited in detail by authors working on geophysical applications, usingthe term Kriging [2, 19, 37].For geometric applications it would be very convenient if the solution ofthe interpolation conditions (1) were independent of Euclidean transforma-tions of the data. This can be achieved if the function � : IRd ! IR is radialin the sense �(x) = �(kxk2); x 2 IRd (5)with a univariate function � : IR�0 ! IR and the Euclidean norm k:k2 on IRd.Furthermore, (5) often simpli�es the evaluation of � due to the reduction toa univariate function �. For convenience, we restrict ourselves from now onto radial basis functions � de�ned by some � via (5).There is an important extension to the class of objects de�ned by (2).First, one adds polynomials from the space IPdm of d{variate polynomials oforder at most m to generalize (2) tos(x) = NXj=1 bj�(x � xj) + MX̀=1 c`p`(x) (6)



Surfaces from Scattered Data 3with M = dimIPdm, additional control points c1; : : : ; cM 2 IRD, and a basisp1; : : : ; pM of IPdm. Then � usually is required to be conditionally positivede�nite of order m on IRd, i.e. the matrix A of (3) only needs to be positivede�nite on the space of vectors � = (�1; : : : ; �N ) 2 IRN satisfyingNXj=1 �jp`(xj ) = 0; 1 � ` �M: (7)The solution of the interpolation problem (1) for the augmented function (6)then requires the additional conditionNXj=1 bjp`(xj) = 0; 1 � ` �Mcorresponding to (7). This condition looks strange at �rst sight, but it occursnaturally if one considers minimization of certain error functionals.Up to now, conditionally positive de�nite functions provided the mostimportant cases of radial basis functions (see Table 1), and they have provento be highly useful in multivariate scattered data analysis [12]. Form > 0 theyusually behave like a positive power of kxk2 for large kxk2. Thus the matrixA of (3) will not be sparse, and there will be no o�{diagonal decay unless A issuitably preconditioned [16]. Techniques for preconditioning are available butnot easy to implement for scattered multivariate data [10]. Furthermore,the sum in (2) will be costly to evaluate for large N unless some rathercomplicated, but very e�cient acceleration techniques are used [24, 25].Multiquadrics: �(r) = (c2 + r2)�=2 for � 2 IR>�d n2ZZ and 2m > �Thin-plate splines: �(r) = r� for � 2 IR>0 n2ZZ and 2m > �Thin-plate splines: �(r) = (�1)�=2+1r� log r for � 2 2IN, 2m > �Sobolev splines: �(r) = 2�k�(k)Kk�d=2(2�r) � rk�d=2 for k > d=2 and m � 0using the Macdonalds (or spherical Bessel) function K� ,Gaussians: �(r) = e�cr2 for c > 0 and m � 0.Table 1. Conditionally positive de�nite functions of order m.For these reasons we shall concentrate here on compactly supported posi-tive de�nite radial functions �(�) = �(k�k2). They will lead to a sparse matrixin (3) and to an easy evaluation of (2), if implemented properly (see Section5). However, such functions were discovered only very recently, and we givea fairly complete summary of their construction in Section 2. Examples canbe found in Sections 3 and 4, while the computational complexity is treatedin Section 5.



4 R. Schabackx2. Compactly Supported Positive De�nite Radial FunctionsA straightforward technique for generation of compactly supported positivede�nite radial functions simply uses a d{variate convolution�(kxk2) = Zy2IRd  (kyk2) �  (kx � yk2)dy (8)of a continuous compactly supported nonzero function  : IR�0 ! IR withitself. By Fourier transform arguments [34] the result is a radial function, andit is compactly supported by construction. Positive de�niteness follows fromNXj;k=1�j�k�(kxj � xkk2) = ZIRd 0@ NXj=1 �j (kxj � yk2)1A2 dyand the linear independence of �nitely many distinct translates of a nonzerocompactly supported continuous function.By convolution (8) one can generate abundantly many nonnegative com-pactly supported, continuous, and positive de�nite radial functions. The mainproblem, however, is that for d > 1 there were no explicit constructions ofsmooth examples until recently.To our knowledge the �rst nondi�erentiable example was provided byAskey [3], as cited by Micchelli in [21]. However, [21] contained a typograph-ical error that caused Iske [13] to �nd Askey's examples�(r) = (1 � r)�+ 2 PDd for � � (d+ 1)=2independently. A di�erent class of functions was constructed in 1993 by H.Wendland [36], using the characteristic function  = �[0;1] and convolution inIR2. We include the recipe here, because it is quite instructive.The univariate hat function �2(t) = (1 � jtj)+ is a second-order sym-metric univariate B-spline with knots �1; 0; 1. It is the convolution �2 =�[�1=2;1=2]��[�1=2;1=2] of two instances of the characteristic function �[�1=2;1=2]on [�1=2; 1=2]. If this approach is generalized to the multivariate setting, theresult is a radial function only if convolutions of characteristic functions ofEuclidean balls are taken. Using the unit balls of the Chebyshev or L1 normyields the tensor product of instances of �2, i.e., a 2d-sided pyramid that couldbe called Chebyshev's hat and that has knot lines joining the center with thecorners of the domain.We now proceed to calculate Euclid's hat by convolution �2;d := �Bd ��Bdwhere Bd is the Euclidean unit ball in IRd. This involves calculating thevolume of the cap of the unit ball in IRd which is cut o� by a plane at distancet � 1 to the origin. Thus, for t 2 [0; 1], we have�2;d(2t) = 2Z 1t vol(p1� s2Bd�1)ds= 2!d�1Z 1t (1� s2)(d�1)=2ds;



Surfaces from Scattered Data 5where !d�1 is the volume of the unit ball Bd�1 in IRd�1. We substitutet = cos ; s = cos' and get�2;d(2 cos ) = 2!d�1 Z  0 sind 'd'; 0 �  � �=2:An easy integration by parts yields the recursiondFd( ) = (d� 1)Fd�2( ) � cos sind�1  ; d � 2for Fd( ) = Z  0 sind 'd':Clearly, F0( ) =  ;F1( ) = 12( � sin cos );and all F2k+1 are odd polynomials in cos due to the recursion. This impliesthat in spaces of odd dimension d = 2k + 1 the Euclidean hat function is anodd polynomial�2;2k+1(2t) = 2!2kF2k(arccos t)= 2!2k 2k2k + 1F2k�1(arccos t)� 12k + 1 t(1� t2)k= 12k + 1(2��2;2k�1(2t) � t(1 � t2)k)for t 2 [0; 1] with �2;1(2t) = 2(1 � t). In spaces with even dimension d = 2kwe similarly get�2;2k(2t) = 12k (2��2;2k�2(2t) � tp1� t2(1 � t2)k�1)with �2;2(2t) = 2(arccos t� tp1� t2):This will always generate a function of t that can be written as a linearcombination of arccos t=2 and an odd polynomial in tmultiplied byp1� t2=4.In these formulae we made use of !n=!n�2 = 2�=n. Figure 1 shows the graphsof �2;d(r) for dimensions d = 1; 2; 3; 5, and 100, while Figure 2 shows a three-dimensional plot of �2;2 after rescaling.Note that the functions of Wendland are only continuous, but very easyto calculate for large space dimensions. To generate the �rst instance ofcompactly supported di�erentiable positive de�nite functions, we provide asecond example. Let �2m be the univariate B-spline of order 2m with uniformknot set [�m;m] \ ZZ. We do not need to specify the normalization here. Itwould be convenient to use �2m(kxk2) on IRd, but due to results of Wu [40],



6 R. Schaback
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Fig. 1. Pro�le of Euclid's hats for dimensions d = 1; 2; 3; 4; 10; 100 from right to left.
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Fig. 2. Wendland's function �2;2.the plain B{Spline �2m is not positive de�nite on any IRd for d > 1 whenused as a radial d{variate function. This is why we now radialize the d-foldtensor product of �2m in IRd to get a radial function �2m;d which is positivede�nite on IRd, because its d-variate Fourier transform is positive, being theradialization of the d-variate tensor product of sinc2m.This approach yields the function�2m;d(r) := 1�d ZSd dYj=1�2m(ryj )dy; r � 0;where �d is the surface area of the unit sphere Sd � IRd. For d = 2 weparametrize Sd in the usual way and get, by use of symmetry,�2m;2(r) = 82� Z �=40 �2m(r sin')�2m(r cos')d':



Surfaces from Scattered Data 7For positive arguments we represent �2m as a piecewise polynomial via�2m(r) = mXj=1�[j�1;j](r) 2m�1Xk=0 cjkrkand evaluate �2m;2 explicitly by application of the formulae�2m;2(r) = 4� mXj;`=1 2m�1Xk;n=0 cjkclnrk+nF (r; j; `; k; n); (9)F (r; j; `; k; n) := Z �=40 �[j�1;j](r cos')�[`�1;`](r sin') cosk ' sinn 'd'= Z '2(r;j;`)'1(r;j;`) cosk ' sinn 'd';where the limits of integration can be explicitly calculated and programmed.Since we want a precise evaluation without truncation errors, we make use ofthe fact that integrals of the formZ '2'1 cosk ' sinn 'd' =: Hk;n('1; '2)are explicitly known and numerically available without integration. We usesin2(x) = 1� cos2(x) to get the recursionHk;n = Hk;n�2 �Hk+2;n�2that reduces everything to Hk;1 and Hk;0, and thenHk;1('1; '2) = 1k + 1(cosk+1 '1 � cosk+1 '2)kHk;0('1; '2) = sin'2 cosk�1 '2 � sin'1 cosk�1 '1 + (k � 1)Hk�2;0('1; '2);while H1;0 and H0;0 are elementary. Though (9) contains O(m4) terms,there can be only O(m) pairs (j; `) that yield nonzero contributions for aspeci�c value of r, because the arc (r cos'; r sin') meets only O(m) cubes[j � 1; j] � [` � 1; `]. For each such pair (j; `) we calculate '1(r; j; `) and'2(r; j; `) such that the interval ['1; '2] precisely describes the set of valuesfor ' that satisfy 0@ j � 1 � r cos' � j`� 1 � r sin' � `0 � ' � �=4:1AThis can be done in a straightforward way, using arcsin and arccos functionsappropriately. Once '1 and '2 are found, we calculate the whole set of valuesF (r; j; `; k; n) for 0 � k; n � 2m� 1 using the recursions.



8 R. Schaback
-1.5

-1
-0.5

0
0.5

1
1.5

-1.5
-1

-0.5
0

0.5
1

0

0.2

0.4

0.6

0.8

1

Fig. 3. Radialized cubic tensor product B-spline �4(r).This still is not a particularly e�cient method to get �2m;2(r) for a givenvalue of r. For large-scale applications one would prepare a su�ciently goodpiecewise polynomial or rational approximation to �2m;2 beforehand, using theabove method to generate precise values. We include Figure 3 for illustration.A rather neat construction due to Wu [39] starts withf`(x) = (1� x2)+̀; x 2 IR; ` � 0;then takes univariate convolutions�`;0(x) = (f` � f`)(x)and univariate derivatives�`;k = Dk�`;0; D = � 1x ddx (10)for 0 � k � `. Curiously enough, this approach generates compactly sup-ported functions �`;k 2 PD2k+1 \ C2`�2k(IR�0)which are nice piecewise polynomials of degree at most 4` � 2k + 1 with astable evaluation, having breakpoints only at zero and at the boundary of thesupport. See Table 2 for explicit formulae of �`;k(r) for the argument r = k:k2and with support normalized to [0; 1]. Figure 4 provides a visualization ofWu's radial positive de�nite B{spline �2;1 with C2 smoothness. The C0function �1;1 looks very much like Wendland's function in Figure 2, whilethe other functions from Wu's class look similar to �2;1 when plotted in IR3.Details are in [39], and the general theory will be contained in [33]. Note that:= means equality up to a normalization factor in Table 2.
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Fig. 4. Wu's function �2;1 in IR2.�0;0 = (1 � r)+ 2 C0 \ PD1�1;0 := (1 � r)3+(1 + 3r + r2) 2 C2 \PD1�1;1 = D�1;0 := (1� r)2+(2 + r) 2 C0 \ PD3�2;0 := (1 � r)5+(1 + 5r + 9r2 + 5r3 + r4) 2 C4 \PD1�2;1 = D�2;0 := (1� r)4+(4 + 16r + 12r2 + 3r3) 2 C2 \PD3�2;2 = D2�2;0 := (1 � r)3+(8 + 9r + 3r2) 2 C0 \PD5�3;0 := (1 � r)7+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) 2 C6 \PD1�3;1 = D�3;0 := (1� r)6+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) 2 C4 \PD3�3;2 = D2�3;0 := (1 � r)5+(8 + 40r + 48r2 + 25r3 + 5r4) 2 C2 \ PD5�3;3 = D3�3;0 := (1 � r)4+(16 + 29r + 20r2 + 5r3) 2 C0 \ PD7Table 2. Wu's compactly supported positive de�nite functionsWe close this section by pointing at a remarkable property of Wu'sfunctions �`;k. They are in C2`�2k around zero, but in C2`�k at the boundaryof their support. For k > 0 the singularities at zero will outweigh thoseat the boundary of the support. When superimposed for construction ofinterpolants, there will be C2`�2k singularities at the data locations, whilethere are C2`�k singularities on spheres around the data locations. As thenext section will show, this property has a very positive e�ect on the visualappearance of the solutions.x3. Some Preliminary ExamplesBefore turning to more specialized applications, we �rst want to show someexamples of surface generation from scattered data using Wu's functions. To



10 R. Schaback
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1
2

4

6

8

10

12

14

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
2

4

6

8

10

12

14

Fig. 5 and 6. Franke's function and Thin-plate spline interpolant on 5� 5 points.
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Fig. 7 and 8. Wu's C0 interpolant on 5� 5 points and Wu's C2 interpolanton 5 � 5 points.
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Fig. 9 and 10. Wu's C4 interpolant on 5 � 5 points, support 0.499 and 1.5.be compatible with earlier numerical experiments, we concentrate on the well-known function (Figure 5) introduced by Franke, scaled here to the domain[0; 1]2. We take 5 � 5 data points on a regular grid in [0; 1]2 and start withthin{plate splines (Figure 6) for comparison.



Surfaces from Scattered Data 11It is essential to note that the following examples with Wu's functionshave a support radius of 0.499. This means that there are only 9 interpolationpoints at most in each support, and even less points in supports near theboundary. Enlarging the support always improves the quality of the results,but this is not intended here, because we want to illustrate what happensfor reasonably small supports. The C0 peaks of the interpolant with �1;1 areclearly visible in Figure 7, but the reproduction in the 
at areas is comparablygood, and for larger supports the 
atness improves. Figures 8 and 9 show C2and C4 interpolants, but the di�erentiability is C3 and C5 except at the datapoints. These are not visible. Note that for support radius = 0:499 there is acertain degradation near the boundary due to lack of points in the supports.Figure 10 shows how a larger support irons out the boundary wiggles.We do not directly intend to beat thin{plate splines in accuracy of repro-duction at low numbers of data points. Our main goal is to show that com-parable accuracy can be obtained by compactly supported functions whosesupport covers only a minor part of the data. If this works, one can treatextremely large problems very e�ciently, making full use of sparsity of thesystem and locality of the representation. Thus the �gures should be inter-preted as local portions of much larger problems. For those the compactlysupported radial basis functions will pay o� with respect to computationale�ciency, maintaining a comparable level of accuracy of reproduction. Inparticular, the pictures show local reproductions with supports containing atmost 9 points, and the corresponding matrices will have maximally 9 entriesin each row or column, while the reproduction quality is comparable to thatof nonlocal radial basis functions like the thin-plate spline.x4. Additional FeaturesIn this section we give some hints to possible extensions and applications.These are mainly in statu nascendi, but the reader is invited to experimentwith them and to accumulate further practical experience with compactlysupported radial basis functions.A widespread application of multivariate interpolation is identi�cation,comparison, morphing or warping of images or other geometric objects. Thebasic idea is that an object O1 is to be linked to an object O2 via a trans-formation F : O1 ! O2 such that for certain corresponding points xj 2 O1and yj 2 O2 one has F (xj) = yj . This multivariate interpolation problemcan rather easily be implemented and solved using radial basis functions, andthe locality provided by a compactly supported function should pay o� incomputational e�ciency. See Section 5 for e�ciency considerations.Another application arises from the �rst-stage construction of geomet-ric objects from scattered measurements. An explicit representation can becomputed directly via multivariate interpolation, if parameter values are as-signed in some way or other. The calculation of implicit representations fromscattered data will be treated at the end of this section. In both cases, theCAGD user will convert the objects in a second computation stage to someother representation which the underlying system readily accepts.



12 R. SchabackUnfortunately, interpolants of the form (2) do not satisfy the convex hullproperty with respect to their control points. This can be remedied by goingover to rational representations of the forms(x) = PNj=1 !jbj�(kx� xjk2)PNj=1 !j�(kx� xjk2) (11)with positive weights !1; : : : ; !N 2 IR>0. One can use (11) for constructionof free{form objects, and (11) itself can be called a Non{Uniform RadialRational B{Spline.To handle L2{approximation problems one must be able to compute innerproducts (�(k � �xjk2); �(k � �xkk2))L2(IRd) (12)e�ciently. Due to compact supports, the Gramian with entries (12) willbe sparse again, but it is necessary to circumvent the complicated d{variateintegral. Fortunately, the inner product (12), when written as a value(� �d �)(kxj � xkk2)of the d{variate convolution of �(k:k2) with itself, can be easily evaluated if��d� is explicitly available as a univariate function. Due to a theorem in [33]it is possible to boil a d{variate convolution recursively down to a univariateconvolution. More precisely, if D is the di�erential operator occuring in (10)with inverse (IF )(r) = Z 1r sf(s)ds;then f �d+2 g = D(If �d Ig)holds whenever both sides of this identity make sense for certain univariatefunctions f; g : IR�0 ! IR. A similar but more complicated formula holds forrecursion from IRd+1 to IRd, but we skip over details here and refer the readerto [33]. As a simple example we provide the trivariate convolution 2;1 = �2;1 �3 �2;1 = D(�2;0 �1 �2;0)of Wu's function �2;1, which is a two-piece univariate rational splines(x) = 8<: (85� 720x2 + 3528x4 � 3780x5 � 960x6++2160x7 + 192x9)=85; x 2 [0; 1=2]4(x � 1)6(16x4 + 96x3 + 156x2 + 56x � 9)=(85x); x 2 [1=2; 1]:Multivariate interpolation can also serve to generate implicitly de�ned geomet-ric objects that �t through a set of scattered data y1; : : : ; yN 2 IRD. If one



Surfaces from Scattered Data 13takes a radial function � of compact support and interpolates 1 at y1; : : : ; yNby solving the systemNXj=1 bj�(kyk � yjk2) = 1; 1 � k � N (13)for bj 2 IR1, one can form the objectO = 8<:y 2 IRD : NXj=1 bj�(ky � yjk2) = 19=;which de�nitely contains the points y1; : : : ; yN and is compact. Note thatsome clipping will be required, because the object will be a closed planarcurve (D = 2) or a closed surface (D = 3), possibly with several connectedcomponents. The interior of O is8<:y 2 IRd : NXj=1 bj�(ky � yjk2) > 19=;and one can �x certain additional interpolation points yk as being interior orexterior points by incorporating them into the interpolation using a value > 1or < 1 instead of 1 in (13).We include some preliminary tests for low numbers of data points in theplane. The four points (1,0), (0,1), (-1,0), (0,-1) are picked up by a closedcurve which is the contour line ofs(y) = NXj=1 bj�(ky � yjk2)at level 1 (see Figures 11, 12, and 13).Again, the implicit curves are much smoother than expected, since themajor de�ciency of smoothness occurs only at the data locations.If we place 5 points on each edge of the square [�1; 1]2 we get Figures14, 15, and 16.It would be interesting to see how the method behaves in 3D for largenumbers of data points. However, it should only be used as an intermediatestage to produce input data for other representations of the same object. Forthis purpose it will be su�cient to do local evaluation, clipping will not berequired.Another remarkable property of positive de�nite radial functions � 2C2 \PDd is ��d� 2 C0 \PDdfor the d{variate Laplacian �d applied to � as �(k � k2), resulting again in aunivariate positive de�nite radial function��d�. Furthermore, this operation
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 1Fig. 11. Contour lines for Wu's C0 function �1;1.
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Fig. 12. Contour lines for Wu's C2 function �2;1.
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Fig. 13. Contour lines for Wu's C4 function �3;1.
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Fig. 16. Contour lines for Wu's C4 function �3;1.



16 R. Schabackpreserves compact supports and generalizes to other elliptic operators whenapplying Fourier transform techniques. This allows collocation for ellipticboundary value problems of the form��ds = f on G � IRds = ' on @Gusing scalar{valued representations of the forms(x) = NXj=1 bj (��d)�(kx � xjk2) + MXm=1 cm�(kx� ymk2)for collocation points x1; : : : ; xN 2 G and y1; : : : ; yM 2 @G. The underlyingtheory can be found in [38]. So far there were no practical tests carried outwith this method. This collocation technique is simpler to implement than�nite elements, but a thorough error analysis is still missing.x5. E�ciency ConsiderationsIf a representation (2) uses a radial function �(�) = �(k �k2) with � compactlysupported on [0; �] � IR�0, the evaluation of s(x) for a given x 2 IRd requiresquick access to all xj with kx�xjk2 � �. This is a variation of the \k nearestneighbors" problem of computational geometry [27]. If evaluation of s(x) fora very large number of points x of a compact set 
 � IRd is required, a prepro-cessing step using a space decomposition technique should be implemented.Such things are common practice in Computer Graphics software, for instanceto speed up ray tracing algorithms [11]. For completeness, we add a sketchof the basic technique and relate it to the computational e�ciency of solvingthe underlying sparse linear system.Assume 
 to be contained in a large L1 box B0 � IRd which in turn issplit into smaller L1 boxes B1; : : : ; BM . For each Bm our preprocessing stepshould produce a list Lm satisfyingLm � fj : 1 � j � N; K�(xj ) \Bm 6= ;g;where we used K�(x) := fy 2 IRd : ky � xk2 � �g. If the lists L1; : : : ; LM areavailable, the evaluation of s(x) for any given x 2 
 � B0 � IRd consists ofthe steps1) Find some m with x 2 Bm.2) Evaluate (2) with j running over Lm.Note that step 1 can be done very e�ciently for regular gridded structureslaid over 
 or for hierarchical space decompositions by median splits, forinstance. Note that we do allow the Bm to overlap and to be of di�erent size.It remains to indicate how to build up the lists L1; : : : ; LM by prepro-cessing. This can be done by the following algorithm:



Surfaces from Scattered Data 17Let all Lm be empty.for 1 � j � IN do�nd all m with Bm \K�(xj ) 6= ; andadd j to Lm for these m.end do.For regular splittings of B0 into boxes B1; : : : ; BM the �nd part of thisalgorithm can be implemented very e�ectively. For hierarchical splittings werecommendmore sophisticated techniques that recursively construct the boxestogether with the lists by splitting boxes B that contain \too many" entriesin the list L(B) � fj : 1 � j � N; B \K�(xj ) 6= ;g:This can be started with L(B0) = f1; : : : ;Ng and carried out by median splits[11]. We leave details to the experienced graphics programmers among thereaders, but we add some hints on the proper choice of the parameters � andM for large N .This is a rather delicate problem because small values of � will have disas-trous e�ects on the reproduction quality of geometric objects while leading tovery e�cient evaluation algorithms and stable solutions of the equations (4).Details on this intrinsic relation between interpolation errors and conditionnumbers can be found in [31].After some practical experience we found the following guidelines to beuseful:a) First �x a function � by consideration of smoothness requirements for sin (2). This is a crucial step, because from a theoretical point of view (see[8, 9, 20, 28]) each � is an optimal choice for a speci�c space of smoothobjects.b) If N is small, say N � 200 for a standard 1994 workstation, then don'tcare about compact supports. Depending on smoothness requirements,try thin{plate splines or multiquadrics, but for the latter make sure thatthe constant c in �(r) = (c2 + r2)�=2 is roughly proportional to theminimum distance of interpolation points in the sample. Otherwise thecondition of A in (3) causes problems.c) If N is large and if the data set is very unevenly distributed, try ahierarchical approach or di�erent supports for � around each xj . Detailsof this will be given at the end of this section.d) If N is large and if the data set is well distributed, one can �x the supportradius � in such a way that each K�(xi) contains roughly the samenumber, say n, of data points from X = fx1; : : : ; xNg. Small valuesof n and � will increase e�ciency and decrease reproduction quality.Furthermore, the proper choice of n and � will depend on �, becausesmooth functions � will have a rapid decrease towards the boundary oftheir support. Thus, they behave practically like functions with a muchsmaller support. Anyway, preprocessing should be done that each list Lmcontains O(n) points. This will imply that a large number M = O(N)of boxes is required.
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Fig. 17. System time in seconds versus N .If preprocessing has been done an evaluation of s(x) will then requireO(n) instead of O(N) operations. Preprocessing itself needs O(N � n) opera-tions for regular splits. Furthermore, there is an O(M �n) = O(N �n) storagerequirement for the lists, and special precautions should be made to guaranteedata locality when doing very many evaluations of s at nearby points x 2 IRd.In these considerations, we regard N;M , and n as large when compared to dand D.The solution of the system induced by (4) should make use of sparsity.Each matrix{vector multiplication requiresO(N �n) operations. If a conjugategradient method is used, the number of such multiplications to reach a �xedprecision will be dependent on the condition number � of the matrix. Thiscondition number � in turn depends on n, not on N , if � is scaled with N suchthat there are O(n) elements in each K�(xj ). In particular, �(n) behaves likea power n
 of n if � is of limited smoothness, and the exponent 
 increaseswith �'s smoothness. Details of the analysis of condition numbers for matricesarising from radial basis functions can be found, for instance in [4,5,14,22,30].For practical purposes it will su�ce to keep n bounded by, say, a numberbetween 5 and 50 for standard applications, even if N is very large. Recallthat the examples of Section 3 were carried out with n = 9. Then theconjugate gradient method for solving (4) up to a �xed precision will needO(N) operations, keeping the whole complexity at O(N) operations. SeeFigure 17 for mean values of 3 test runs with n �xed and N increasing,where the results for preprocessing (dashdotted line) varied wildly because offrequent heap access, but clearly stayed at O(N) for large N . The dashed lineis the time for the conjugate gradient method, while the dotted line representsthe computation of N values of s(x) at random locations. Note, however, thatthese e�ciency considerations hold only for �xed precision requirements andvarying sample sizes. It is much more involved to vary the required precisionand to calculate the necessary values of N;n, and � in terms of the precision,provided that a �xed compact domain 
 � IRd is gradually �lled up with data



Surfaces from Scattered Data 19points.For cases with very unevenly distributed data points one can try toreplace (2) by s(x) = NXj=1 bj��j (x � xj);where ��(x) = �(� � kxk) allows to scale each radial basis function by somepositive quantity �j that should be roughly proportional to the distance ofxj to its nearest n neighbors. If � is compactly supported, this approach willagain lead to an N by N sparse matrix with O(n) entries per row or column,but so far there is no general proof of the nonsingularity of the matrix.Another possibility for unevenly distributed points will be a split of X =fx1; : : : ; xNg into an evenly distributed X(1) and the rest X(2) = X nX(1).One can then interpolate f on X(1) by some s(1) using a function �(1) and thestandard technique. For interpolation of f � s(1) on X one can now choose a�(2) with smaller support and make use of the the fact that f � s(1) alreadyvanishes at points of X(1). The �nal result will then be s(1)+ s(2). If the dataare dense in certain areas and well distributed elsewhere, this hierarchicalapproach will be easily applicable. Similar techniques are common practicein multivariate data analysis [2]. Large{scale \trends" are handled �rst and\details" are added on by rapidly varying local functions. The overall analysisof such an hierarchical approach still is missing.Acknowledgements. The author gratefully appreciates help with referencesby C.A. Micchelli, in proofreading by A. Iske, and in typesetting by P. Trapp.References1. Abramowitz, M., and Stegun, I.A.,Handbook of Mathematical Functions,Dover, New York, 1970.2. Agterberg, F. P Geomathematics. Mathematical Background and Geo{Sciences Applications, Elsevier, New York, 1974.3. Askey, R., Radial characteristic functions, MRC Technical Sum. Report1262, Univ. of Wisconsin, 1973.4. Ball, K., Eigenvalues of Euclidean Distance Matrices, J. Approx. Th. 68(1992), 74{82.5. Baxter, B.J.C., Norm estimates for inverses of Distance Matrices,Mathe-matical Methods in Computer Aided Geometric Design, Academic Press,New York, T. Lyche and L.L. Schumaker (eds.), 1989, 13{18.6. Buhmann, M.D., New Developments in the Theory of radial basisfunction interpolation, Multivariate Approximations: From CAGD toWavelets, K. Jetter and F.I. Utreras (eds), World Scienti�c, London, 1993,35{75.7. Buhmann, M., and Ron, A., Radial basis functions Lp{approximationorders with scattered centres, Wavelets, Images, and Surface Fitting, P.{J. Laurent and A. Le M�ehaut�e and L.L. Schumaker (eds.), AKPeters,Boston, 1994, 93{112.
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