Creating Surfaces from Scattered Data
Using Radial Basis Functions

R. Schaback

Abstract. This paper gives an introduction to certain techniques for the
construction of geometric objects from scattered data. Special emphasis
is put on interpolation methods using compactly supported radial basis
functions.

§1. Introduction

We assume a sample of multivariate scattered data to be given as a set X =
{z1,...,2n} of N pairwise distinct points xy,...,2x in R?, called centers,
together with N points y1,...,yx in R”. An interpolating curve, surface, or
solid to these data will be the range of a smooth function s : R 5 @ — R”
with

s(er) =yr, 1<k <N, (1)

Likewise, an approzimating curve, surface, or solid will make the differences
s(x;) —y; small, for instance in the discrete L, sense, i.e.

2

> llser) = yxll3

k=1

should be small. Curves, surfaces, and solids will only differ by their appro-
priate value of d = 1,2, or 3. We use the term (geometric) objects to stand
for curves, surfaces, or solids. Note that we assume objects to be defined via
explicit representations. For implicit representations we refer the reader to
Section 4.

The main goal of this contribution is to describe a flexible class of objects
that allows construction from scattered data in a very general way. Special
emphasis is put on practical aspects, while theoretical background information
will be contained in a forthcoming survey, as far as it is not contained in earlier
surveys on similar topics [6, 7, 8, 9, 15, 17, 18, 23, 26]. To keep the paper

Mathematical Methods in CAGD III 1
M. Dehlen, T. Lyche, and L. L. Schumaker (eds.), pp. 1-21.

Copyright @ 1995 by xxx

ISBN xxx.

All rights of reproduction in any form reserved.



2 R. Schaback

digestible for readers working in CAGD applications, we refrained from using
advanced techniques like Fourier or Hankel transforms, distributions, or Bessel
functions. Furthermore, we refer the reader to the cited surveys for obtaining
additional references or historical remarks.

The theory of optimal recovery provides good theoretical reasons to as-
sume s to be of the form

s(x) = Z b;®(x — ;) (2)

with control points by,...,by € R” and a function ® : RY — R that is

positive definite on R? in the following sense: For all sets X = {z1,...,2n}
of finitely many distinct points z1, ..., 2y in R? the matrix
A= (®(zr —2j) i<k (3)

is positive definite. We write @ € PDy as shorthand for this property, and it
is clear that it guarantees solvability of the system

N
s(wp) =Y bj®(wp —aj) =y, 1<k<N, (4)
=1

defining an interpolating object. Of course it would suffice to require that (3)
is nonsingular for each x = {xy,...,2n5} C R?, but so far there is no theory
to handle this generalization, while there is a long history of positive (semi-)
definite functions (see [35], but note the slightly different definition there).
Another good reason to consider objects defined by (2) with s € PDy will
be completely ignored in this contribution: all such objects minimize certain
“energy functionals” over a large set of objects admissible for interpolation.
Furthermore, there is a probabilistic background to this approach which has
been exploited in detail by authors working on geophysical applications, using
the term Kriging [2, 19, 37].

For geometric applications it would be very convenient if the solution of
the interpolation conditions (1) were independent of Euclidean transforma-
tions of the data. This can be achieved if the function ® : R — R is radial
in the sense

() = ¢(||z]2), « € R (3)

with a univariate function ¢ : R>9 — IR and the Euclidean norm ||.||2 on RY.
Furthermore, (5) often simplifies the evaluation of & due to the reduction to
a univariate function ¢. For convenience, we restrict ourselves from now on
to radial basis functions @ defined by some ¢ via (5).

There is an important extension to the class of objects defined by (2).
First, one adds polynomials from the space Ile of d-variate polynomials of
order at most m to generalize (2) to

@) = D@ =) + Y eaple) (©)

(=1
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additional control points ci,...,cy € R”, and a basis
Ply...,pyp of IPgl. Then @ usually is required to be conditionally positive
definite of order m on RY, i.e. the matrix A of (3) only needs to be positive

with M = dimIP?

m

definite on the space of vectors o = (ay,...,an) € RY satisfying
N
Zoszg(xj):(), 1 <0< M. (7)
j=1

The solution of the interpolation problem (1) for the augmented function (6)
then requires the additional condition

N
ijpg(xj):& 1<t< M
=1

corresponding to (7). This condition looks strange at first sight, but it occurs
naturally if one considers minimization of certain error functionals.

Up to now, conditionally positive definite functions provided the most
important cases of radial basis functions (see Table 1), and they have proven
to be highly useful in multivariate scattered data analysis [12]. For m > 0 they
usually behave like a positive power of ||x||2 for large ||z||2. Thus the matrix
A of (3) will not be sparse, and there will be no off-diagonal decay unless A is
suitably preconditioned [16]. Techniques for preconditioning are available but
not easy to implement for scattered multivariate data [10]. Furthermore,
the sum in (2) will be costly to evaluate for large N unless some rather
complicated, but very efficient acceleration techniques are used [24, 25].

Multiquadrics: ¢(r) = (¢ +r2)%/? for B € Rs_4\27ZZ and 2m > f3
Thin-plate splines: é(r) = 77 for 3 € Rx¢ \2%Z and 2m > j3
Thin-plate splines: ¢(r) = (=1)3/21r8 logr for 5 € 2IN, 2m > 3

Sobolev splines: ¢(r) = %Kk_d/z@ﬁr) k=42 for k> d/2 and m > 0

using the Macdonalds (or spherical Bessel) function K,

Gaussians: ¢(r) = e for ¢ > 0 and m > 0.
Table 1. Conditionally positive definite functions of order m.

For these reasons we shall concentrate here on compactly supported posi-
tive definite radial functions ®(-) = ¢(||-||2). They will lead to a sparse matrix
in (3) and to an easy evaluation of (2), if implemented properly (see Section
5). However, such functions were discovered only very recently, and we give
a fairly complete summary of their construction in Section 2. Examples can
be found in Sections 3 and 4, while the computational complexity is treated
in Section 5.
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§2. Compactly Supported Positive Definite Radial Functions

A straightforward technique for generation of compactly supported positive
definite radial functions simply uses a d-variate convolution

¢(II$II2)=/ERd Llyll2) - (e = yll2)dy (8)

of a continuous compactly supported nonzero function ¢ : R>o — IR with
itself. By Fourier transform arguments [34] the result is a radial function, and
it is compactly supported by construction. Positive definiteness follows from

2

S ajardlier — o) / Zam s —ll2) | dy

7,k=1

and the linear independence of finitely many distinct translates of a nonzero
compactly supported continuous function.

By convolution (8) one can generate abundantly many nonnegative com-
pactly supported, continuous, and positive definite radial functions. The main
problem, however, is that for d > 1 there were no explicit constructions of
smooth examples until recently.

To our knowledge the first nondifferentiable example was provided by
Askey [3], as cited by Micchelli in [21]. However, [21] contained a typograph-
ical error that caused Iske [13] to find Askey’s examples

é(r)=(1—r)] € PDy for 5> (d+1)/2

independently. A different class of functions was constructed in 1993 by H.
Wendland [36], using the characteristic function ¢ = x[o,1] and convolution in
R*. We include the recipe here, because it is quite instructive.

The univariate hat function f2(¢) = (1 — [t|)+ is a second-order sym-
metric univariate B-spline with knots —1,0,1. It is the convolution f; =
X[=1/2,1/2]¥X[~1/2,1/2] of two instances of the characteristic function x[_1 /2,1 /9]

n [—1/2,1/2]. If this approach is generalized to the multivariate setting, the
result is a radial function only if convolutions of characteristic functions of
Euclidean balls are taken. Using the unit balls of the Chebyshev or Lo, norm
yvields the tensor product of instances of 35, i.e., a 2%-sided pyramid that could
be called Chebyshev’s hat and that has knot lines joining the center with the
corners of the domain.

We now proceed to calculate Fuclid’s hat by convolution 32 4 := X B, *X B,
where By is the Euclidean unit ball in IR?. This involves calculating the
volume of the cap of the unit ball in R? which is cut off by a plane at distance
t <1 to the origin. Thus, for ¢ € [0,1], we have

[a,a(2t) —2/ vol(v/1—s2Byq_1)
¢

1
— de_l/ (1-— 32)(d_1)/2d3,
t
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where wg_1 1s the volume of the unit ball By_; in R, We substitute
t = cost, s =cosyp and get

P
B a(2cos ) = 2wq_s / sint pdp, 0 <1 < /2.
0

An easy integration by parts yields the recursion
dF(¢p) = (d — 1)Fy_o(¢p) — costpsin®™ 1 op, d > 2

for .
Fa(y) = / sin? pdep.
0

Clearly,
Fo(ip) =,

Fi(1) = 58— sin i cos ),

and all Fyi4q are odd polynomials in cos ) due to the recursion. This implies
that in spaces of odd dimension d = 2k 4+ 1 the Euclidean hat function is an
odd polynomial

B2,2k+1(2t) = 2wa Fop(arccost)

2k 1

=2 — I t) —
w2k2k—|—1 hk—1(arccost) Sh 11

_ 2k1+ (2 i (20) — (1 — 1))

t(1— %)k

for t € [0,1] with 32 1(2t) = 2(1 —t). In spaces with even dimension d = 2k
we similarly get

1
Pa,2k(2t) = %(27T52,2k—2(2t) — /1 —12(1 —tH)F
with
[2,2(2t) = 2(arccost — t\/1 — t2).

This will always generate a function of ¢ that can be written as a linear
combination of arccost/2 and an odd polynomial in ¢ multiplied by /1 — 2 /4.
In these formulae we made use of w,, /w,—2 = 27 /n. Figure 1 shows the graphs
of B2 4(r) for dimensions d = 1,2,3,5, and 100, while Figure 2 shows a three-
dimensional plot of 3 o after rescaling.

Note that the functions of Wendland are only continuous, but very easy
to calculate for large space dimensions. To generate the first instance of
compactly supported differentiable positive definite functions, we provide a
second example. Let 2, be the univariate B-spline of order 2m with uniform
knot set [—m,m] N ZZ. We do not need to specify the normalization here. It
would be convenient to use fap(||z||2) on R?, but due to results of Wu [40],
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Fig. 1. Profile of Euclid’s hats for dimensions d = 1,2,3,4,10, 100 from right to left.

Fig. 2. Wendland’s function 3 ».

the plain B-Spline fa,,, is not positive definite on any IR? for d > 1 when

used as a radial d-variate function. This is why we now radialize the d-fold

tensor product of 3, in RY to get a radial function py,, ¢ which is positive

definite on IR?, because its d-variate Fourier transform is positive, being the
2m

radialization of the d-variate tensor product of sinc”™.
This approach yields the function

d
1
,02m,d(7“) = O'_d/s H 62m(ry])dy7 r Z 07
d 5=1

where o4 is the surface area of the unit sphere S; C RY. For d = 2 we
parametrize Sy in the usual way and get, by use of symmetry,

8

w/4
pam,2(r) = %/ Bam (1 sin ) Bam (1 cos ¢ )dep.
0
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For positive arguments we represent fJ3,, as a piecewise polynomial via

m 2m—1
Bam(r) = ZX[]‘—L]‘](T) Z cjrr’

and evaluate pan, 2 explicitly by application of the formulae

m 2m-—1

4 )
,02m,2(r) = ; Z Z Cjkclnrk—i—nF(r;]v&kvn)v (9)

j =1k n=0

w/4
F(rig, 0 k,n):= / X[j=1,5] (r cos S@)X[f_l’f](r sin ) cosk psin” pdp
0

w2(r;j,0)

= / cos® ¢ sin” wdoyp,
e1(r;5,0)

where the limits of integration can be explicitly calculated and programmed.

Since we want a precise evaluation without truncation errors, we make use of
the fact that integrals of the form

P2
/ cos® @ sin” ody =: Hin(p1,02)
P1

are explicitly known and numerically available without integration. We use
sin®(z) = 1 — cos?(z) to get the recursion

Hk,n = Hk,n—Z - Hk+2,n—2
that reduces everything to Hy ; and Hy o, and then

1
+1
kHy o(@1,92) = sin s cos

(cos™ o1 — cos* Tt y)

Hkal(SOl?SOZ) - k

F=1 oy —sinpy cosF Tty + (K — D) Hg—2,0(1,%2),

while Hy o and Hy are elementary. Though (9) contains O(m*) terms,
there can be only O(m) pairs (j,() that yield nonzero contributions for a
specific value of r, because the arc (rcosp,rsiny) meets only O(m) cubes
[7 —1,7] x [¢ = 1,0]. For each such pair (j,() we calculate ¢i(r;j,() and
©w2(r; J,0) such that the interval [¢1, 2] precisely describes the set of values
for ¢ that satisfy

J—1 < rcosp < 7
(-1 < rsinp < 14
0 < © < 7w/4

This can be done in a straightforward way, using arcsin and arccos functions
appropriately. Once ¢ and @, are found, we calculate the whole set of values
F(r;j,0,k,n) for 0 < k,n < 2m — 1 using the recursions.



8 R. Schaback

Fig. 3. Radialized cubic tensor product B-spline B4(7).

This still is not a particularly efficient method to get pay, 2(r) for a given
value of r. For large-scale applications one would prepare a sufficiently good
piecewise polynomial or rational approximation to pa,, 2 beforehand, using the
above method to generate precise values. We include Figure 3 for illustration.

A rather neat construction due to Wu [39] starts with

fe(z)=(1- xz)ﬁ_, reR, (>0,
then takes univariate convolutions

Peo(x) = (fex fo)x)

and univariate derivatives

¢ok =D*¢00, D=— (10)

8|

d
dz
for 0 < k£ < {. Curiously enough, this approach generates compactly sup-
ported functions

¢f,k € PDyiy1 N C%_Zk(R>O)

which are nice piecewise polynomials of degree at most 4¢ — 2k + 1 with a
stable evaluation, having breakpoints only at zero and at the boundary of the
support. See Table 2 for explicit formulae of ¢¢ x(r) for the argument r = ||.||2
and with support normalized to [0,1]. Figure 4 provides a visualization of
Wu’s radial positive definite B-spline ¢21 with C? smoothness. The C°
function ¢, looks very much like Wendland’s function in Figure 2, while
the other functions from Wu'’s class look similar to ¢, ; when plotted in R®.
Details are in [39], and the general theory will be contained in [33]. Note that
= means equality up to a normalization factor in Table 2.
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Fig. 4. Wu’s function ¢ 1 in R2.

boo=(1—-r)y €C°NPD,y

d10=(1—r)%(14+3r+r*)e C*NPD,
¢p110=Do¢1o=(1-7)2(2+7r)€C’°NPD;

P20 =(1— T)i(l +5r + 92 +5° 4+ Yy € C*NPD,

$21 = Do = (1 —r)i(4+16r +12r* +3r*) € C* N PD;s
$a2=D%¢r9=(1—-7)3(8+9r +3r*) € C°NPD;

¢3,0 = (1 — 1) (54 35r +101r° 4 147r® 4+ 101r* 4 35r° + 5r°) € C® N PD;4
¢31 = Doz o = (1—7)5(6+ 36r +82r* + 72r° 4+ 30r* + 5r°) € C* N PD3
¢32 = D%¢30 = (1 — )2 (8 +40r +487% +257° + 5r*) € C* N PD;

¢33 = D’¢39 = (1 —1)3 (164 29r +20r* + 5r°) € C° N PDy

Table 2. Wu’s compactly supported positive definite functions

We close this section by pointing at a remarkable property of Wu’s
functions @, . They are in C?‘=2* around zero, but in C**~* at the boundary
of their support. For k£ > 0 the singularities at zero will outweigh those
at the boundary of the support. When superimposed for construction of
C?t=2?F gingularities at the data locations, while
there are C*~* singularities on spheres around the data locations. As the
next section will show, this property has a very positive effect on the visual
appearance of the solutions.

interpolants, there will be

63. Some Preliminary Examples

Before turning to more specialized applications, we first want to show some
examples of surface generation from scattered data using Wu'’s functions. To
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Fig. 5 and 6. Franke’s function and Thin-plate spline interpolant on 5 X 5 points.

Fig. 7 and 8. Wu’s C interpolant on 5 x 5 points and Wu’s C? interpolant
on 5 X 5 points.

Fig. 9 and 10. Wu’s C* interpolant on 5 X 5 points, support 0.499 and 1.5.

be compatible with earlier numerical experiments, we concentrate on the well-
known function (Figure 5) introduced by Franke, scaled here to the domain
[0,1]%. We take 5 x 5 data points on a regular grid in [0,1]* and start with
thin—plate splines (Figure 6) for comparison.
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It 1s essential to note that the following examples with Wu’s functions
have a support radius of 0.499. This means that there are only 9 interpolation
points at most in each support, and even less points in supports near the
boundary. Enlarging the support always improves the quality of the results,
but this is not intended here, because we want to illustrate what happens
for reasonably small supports. The C? peaks of the interpolant with ¢; 1 are
clearly visible in Figure 7, but the reproduction in the flat areas is comparably
good, and for larger supports the flatness improves. Figures 8 and 9 show ('
and C* interpolants, but the differentiability is C'* and C'° except at the data
points. These are not visible. Note that for support radius = 0.499 there is a
certain degradation near the boundary due to lack of points in the supports.
Figure 10 shows how a larger support irons out the boundary wiggles.

We do not directly intend to beat thin—plate splines in accuracy of repro-
duction at low numbers of data points. Our main goal is to show that com-
parable accuracy can be obtained by compactly supported functions whose
support covers only a minor part of the data. If this works, one can treat
extremely large problems very efficiently, making full use of sparsity of the
system and locality of the representation. Thus the figures should be inter-
preted as local portions of much larger problems. For those the compactly
supported radial basis functions will pay off with respect to computational
efficiency, maintaining a comparable level of accuracy of reproduction. In
particular, the pictures show local reproductions with supports containing at
most 9 points, and the corresponding matrices will have maximally 9 entries
in each row or column, while the reproduction quality is comparable to that
of nonlocal radial basis functions like the thin-plate spline.

64. Additional Features

In this section we give some hints to possible extensions and applications.
These are mainly in statu nascend:, but the reader is invited to experiment
with them and to accumulate further practical experience with compactly
supported radial basis functions.

A widespread application of multivariate interpolation is identification,
comparison, morphing or warping of images or other geometric objects. The
basic idea is that an object O; is to be linked to an object O via a trans-
formation F' : O; — O3 such that for certain corresponding points z; € O,
and y; € Oz one has F(x;) = y;. This multivariate interpolation problem
can rather easily be implemented and solved using radial basis functions, and
the locality provided by a compactly supported function should pay off in
computational efficiency. See Section 5 for efficiency considerations.

Another application arises from the first-stage construction of geomet-
ric objects from scattered measurements. An explicit representation can be
computed directly via multivariate interpolation, if parameter values are as-
signed in some way or other. The calculation of implicit representations from
scattered data will be treated at the end of this section. In both cases, the
CAGD user will convert the objects in a second computation stage to some
other representation which the underlying system readily accepts.
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Unfortunately, interpolants of the form (2) do not satisfy the convex hull
property with respect to their control points. This can be remedied by going
over to rational representations of the form

S wibiollle — )
S wid(lle — )

s(a) = (11)

with positive weights wy,...,wny € Rsg. One can use (11) for construction
of free—form objects, and (11) itself can be called a Non—Uniform Radial
Rational B-Spline.

To handle Lo—approximation problems one must be able to compute inner
products

(oIl - =2ill2), ol - —zkll2))p2mey (12)

efficiently. Due to compact supports, the Gramian with entries (12) will
be sparse again, but it is necessary to circumvent the complicated d—variate
integral. Fortunately, the inner product (12), when written as a value

(6 *a &)(||x; — wkl2)

of the d—variate convolution of ¢(||.||2) with itself, can be easily evaluated if
& *q ¢ is explicitly available as a univariate function. Due to a theorem in [33]
it is possible to boil a d-variate convolution recursively down to a univariate
convolution. More precisely, if D is the differential operator occuring in (10)
with inverse

UFWﬂz/mw@M&

then
f*rayo 9 = D(If *d Ig)

holds whenever both sides of this identity make sense for certain univariate
functions f,g : R>¢o — R. A similar but more complicated formula holds for
recursion from R4 to RY, but we skip over details here and refer the reader
to [33]. As a simple example we provide the trivariate convolution

@/)2,1 = 452,1 *3 452,1 = D(</52,0 *1 452,0)

of Wu'’s function ¢, 1, which is a two-piece univariate rational spline

(85 — 72022 + 3528x* — 37802° — 9602°+
s(x) = +216027 + 1922%)/85, = € [0,1/2]
4(x —1)%(162* 4 9623 + 1562% + 562 — 9)/(85x), x € [1/2,1].

Multivariate interpolation can also serve to generate implicitly defined geomet-
ric objects that fit through a set of scattered data y1,...,yn € RY. If one
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takes a radial function ¢ of compact support and interpolates 1 at y1,...,yn
by solving the system

N
Y obiolllyr —ysllz) =1,  1<k<N (13)
j=1

for b; € R', one can form the object

N
O=3yeR”:> by —yll) =1

J=1

which definitely contains the points yy,...,yxy and is compact. Note that
some clipping will be required, because the object will be a closed planar
curve (D = 2) or a closed surface (D = 3), possibly with several connected
components. The interior of O is

N
ye R bioly — yillz) > 1

J=1

and one can fix certain additional interpolation points y; as being interior or
exterior points by incorporating them into the interpolation using a value > 1
or < 1 instead of 1 in (13).

We include some preliminary tests for low numbers of data points in the
plane. The four points (1,0), (0,1), (-1,0), (0,-1) are picked up by a closed
curve which is the contour line of

s(y) = Z bid(lly — yjll2)

at level 1 (see Figures 11, 12, and 13).

Again, the implicit curves are much smoother than expected, since the
major deficiency of smoothness occurs only at the data locations.

If we place 5 points on each edge of the square [—1,1]* we get Figures
14, 15, and 16.

It would be interesting to see how the method behaves in 3D for large
numbers of data points. However, it should only be used as an intermediate
stage to produce input data for other representations of the same object. For
this purpose it will be sufficient to do local evaluation, clipping will not be
required.

Another remarkable property of positive definite radial functions ¢ €
C?NPDy is

—Agp € C'NPDy

for the d—variate Laplacian Ay applied to ¢ as ¢(|| - ||2), resulting again in a
univariate positive definite radial function —Ay¢. Furthermore, this operation
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Fig. 13. Contour lines for Wu’s C* function 3,1-
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Fig. 14. Contour lines for Wu’s

Fig. 16. Contour lines for Wu’s

C* function ?3.1-
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preserves compact supports and generalizes to other elliptic operators when
applying Fourier transform techniques. This allows collocation for elliptic
boundary value problems of the form

—Ags= fonGcR?
s =@ on dG

using scalar—valued representations of the form

s(a) =Y bi(=Add(lle = zjll2) + Y emdlle = ymll2)

for collocation points xq,...,2xy € G and yy,...,yym € 0G. The underlying
theory can be found in [38]. So far there were no practical tests carried out
with this method. This collocation technique is simpler to implement than
finite elements, but a thorough error analysis is still missing.

65. Efficiency Considerations

If a representation (2) uses a radial function ®(-) = ¢(||-||2) with ¢ compactly
supported on [0, p] C R>¢, the evaluation of s(z) for a given € R” requires
quick access to all «; with || —z||2 < p. This is a variation of the “k nearest
neighbors” problem of computational geometry [27]. If evaluation of s(x) for
a very large number of points x of a compact set €2 C R? is required, a prepro-
cessing step using a space decomposition technique should be implemented.
Such things are common practice in Computer Graphics software, for instance
to speed up ray tracing algorithms [11]. For completeness, we add a sketch
of the basic technique and relate it to the computational efficiency of solving
the underlying sparse linear system.

Assume € to be contained in a large L., box By C R? which in turn is
split into smaller L., boxes By,...,Bys. For each B,, our preprocessing step
should produce a list L,, satisfying

Lp2{j:1<j<N, K,(2j)N B # 0},

where we used K,(z) :={y € R : lly — x||2 < p}. If the lists Ly, ..., Ly are
available, the evaluation of s(x) for any given © € Q C By C R? consists of
the steps

1) Find some m with « € B,,.
2) Evaluate (2) with j running over L,.

Note that step 1 can be done very efficiently for regular gridded structures
laid over §2 or for hierarchical space decompositions by median splits, for
instance. Note that we do allow the B, to overlap and to be of different size.

It remains to indicate how to build up the lists Ly,..., Ly by prepro-
cessing. This can be done by the following algorithm:
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Let all L, be empty.

for 1 <3 <IN do
find all m with By, N Kp(z;) # 0 and
add j to Ly, for these m.

end do.

For regular splittings of By into boxes By, ..., By the find part of this
algorithm can be implemented very effectively. For hierarchical splittings we
recommend more sophisticated techniques that recursively construct the boxes
together with the lists by splitting boxes B that contain “too many” entries
in the list

L(B)D{j:1<j<N, BNnK,(xz;)#0}.

This can be started with L(By) = {1,..., N} and carried out by median splits
[11]. We leave details to the experienced graphics programmers among the
readers, but we add some hints on the proper choice of the parameters p and
M for large N.

This is a rather delicate problem because small values of p will have disas-
trous effects on the reproduction quality of geometric objects while leading to
very efficient evaluation algorithms and stable solutions of the equations (4).
Details on this intrinsic relation between interpolation errors and condition
numbers can be found in [31].

After some practical experience we found the following guidelines to be
useful:

a) First fix a function ¢ by consideration of smoothness requirements for s
in (2). This is a crucial step, because from a theoretical point of view (see
[8, 9, 20, 28]) each ¢ is an optimal choice for a specific space of smooth
objects.

b) If N is small, say N < 200 for a standard 1994 workstation, then don’t
care about compact supports. Depending on smoothness requirements,
try thin—plate splines or multiquadrics, but for the latter make sure that
the constant ¢ in ¢(r) = (¢? 4+ r?)%/? is roughly proportional to the
minimum distance of interpolation points in the sample. Otherwise the
condition of A in (3) causes problems.

c) If N is large and if the data set is very unevenly distributed, try a
hierarchical approach or different supports for ¢ around each ;. Details
of this will be given at the end of this section.

d) If N is large and if the data set is well distributed, one can fix the support
radius p in such a way that each K, (z;) contains roughly the same
number, say n, of data points from X = {xy,...,2x}. Small values
of n and p will increase efficiency and decrease reproduction quality.
Furthermore, the proper choice of n and p will depend on ¢, because
smooth functions ¢ will have a rapid decrease towards the boundary of
their support. Thus, they behave practically like functions with a much
smaller support. Anyway, preprocessing should be done that each list L,
contains O(n) points. This will imply that a large number M = O(N)
of boxes is required.
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Fig. 17. System time in seconds versus N.

If preprocessing has been done an evaluation of s(x) will then require
O(n) instead of O(N) operations. Preprocessing itself needs O(N - n) opera-
tions for regular splits. Furthermore, there is an O(M -n) = O(N - n) storage
requirement for the lists, and special precautions should be made to guarantee
data locality when doing very many evaluations of s at nearby points 2 € R?,
In these considerations, we regard N, M, and n as large when compared to d

and D.

The solution of the system induced by (4) should make use of sparsity.
Each matrix—vector multiplication requires O(N -n) operations. If a conjugate
gradient method is used, the number of such multiplications to reach a fixed
precision will be dependent on the condition number « of the matrix. This
condition number & in turn depends on n, not on N, if p is scaled with NV such
that there are O(n) elements in each K,(z;). In particular, x(n) behaves like
a power n” of n if ¢ is of limited smoothness, and the exponent 7 increases
with ¢’s smoothness. Details of the analysis of condition numbers for matrices
arising from radial basis functions can be found, for instance in [4,5,14,22.30].

For practical purposes it will suffice to keep n bounded by, say, a number
between 5 and 50 for standard applications, even if N is very large. Recall
that the examples of Section 3 were carried out with n = 9. Then the
conjugate gradient method for solving (4) up to a fixed precision will need
O(N) operations, keeping the whole complexity at O(N) operations. See
Figure 17 for mean values of 3 test runs with n fixed and N increasing,
where the results for preprocessing (dashdotted line) varied wildly because of
frequent heap access, but clearly stayed at O(N) for large N. The dashed line
is the time for the conjugate gradient method, while the dotted line represents
the computation of N values of s(x) at random locations. Note, however, that
these efficiency considerations hold only for fixed precision requirements and
varying sample sizes. It is much more involved to vary the required precision
and to calculate the necessary values of N,n, and p in terms of the precision,
provided that a fixed compact domain 2 C R? is gradually filled up with data
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points.
For cases with very unevenly distributed data points one can try to
replace (2) by

s(x) = Z bj®p; (v — ;)

where @ ,(z) = ¢(p - ||z]|) allows to scale each radial basis function by some
positive quantity p; that should be roughly proportional to the distance of
r; to its nearest n neighbors. If ¢ is compactly supported, this approach will
again lead to an N by N sparse matrix with O(n) entries per row or column,
but so far there is no general proof of the nonsingularity of the matrix.

Another possibility for unevenly distributed points will be a split of X =
{21,..., 2N} into an evenly distributed X and the rest X? = X\ X,
One can then interpolate f on X by some s(1) using a function ¢ and the
standard technique. For interpolation of f — sV on X one can now choose a
#?) with smaller support and make use of the the fact that f — s(1) already
vanishes at points of X The final result will then be s(1) 4+ s(2), If the data
are dense in certain areas and well distributed elsewhere, this hierarchical
approach will be easily applicable. Similar techniques are common practice
in multivariate data analysis [2]. Large-scale “trends” are handled first and
“details” are added on by rapidly varying local functions. The overall analysis
of such an hierarchical approach still is missing.
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