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Abstract: Under mild additional assumptions this paper constructs quasi -interpolants

in the form

f

h

(x) =

+1

X

j=�1

f(hj)'

h

�

x

h

� j

�

; x 2 IR; h > 0 (0.1)

with approximation order `� 1, where '

h

(x) is a linear combination of translates  (x� jh)

of a function  in C

`

(IR). Thus the order of convergence of such operators can be pushed

up to a limit that only depends on the smoothness of the function  . This approach can be

generalized to the multivariate setting by using discrete convolutions with tensor products

of odd-degree B{splines.
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1 Introduction

If the Fourier transform

^

 of a function  : IR ! IR with certain additional properties has

zeros of order ` at 2�j 6= 0 j 2 ZZ , then Strang -Fix theory implies that there is a linear

combination ' of the translates  (x� j) of  such that the quasi-interpolation

Qf

h

(x) =

X

j2Z

f(jh)'(

x

h

� j) (1.1)

is convergent and has approximation order ` with respect to h! 0. This paper treats two

problems :

1. Is the special quasi- interpolation

X

j2Z

f(jh) (

x

h

� j) (1.2)

de�ned by  itself convergent and what is its order of approximation? We will inves-

tigate the inuence of the behaviour of the Fourier transform

^

 of  near zero to the

approximation order of (1.2).

2. The classical Strang-Fix condition [10] is a necessary and su�cient condition for a

quasi- interpolant of the above form (1.1) to have a certain approximation order. But

can we construct other quasi- interpolants from  with higher approximation order?

How far can the approximation order of variations of (1.2) be increased for a �xed

given  ?

In the second situation, we shall leave the classical \stationary" setup for quasi{interpolants

of the form (1.1). This idea is not new. It was indicated in [9] by Dyn and Ron. See also

[6] and [1], where similar estimates to those of our Section 2 were established. Usually, the

sampling distance h of the data f(jh) is identical to both the shift distance � and the scaling

parameter � for the basic function  in the sense that the quasi{interpolant is in the span of

translates  

�

� � j�

�

�

. In contrast to this, we �nally use shift � = h

2

and scale h with the

sampling distance h, and we are interested in explicit constructions of quasi{interpolants

Qf

h

(x) =

X

j2ZZ

f(jh)�

h

�

x

h

� j

�

; (1.3)

where '

h

is a linear combination of translates  (��kh), such that we altogether work in the

span of functions

 

�

� � jh� kh

2

h

�

; j; k 2 ZZ

to recover data f(jh); j 2 ZZ.

In the sense of the literature on principal shift{invariant spaces ([5], [6], [14]) we thus work

in the scale of spaces fS

h

2
( (�=h))g

h

, but our special quasi{interpolation operators do not

attain the optimal approximation orders (in terms of distances) that are possible in this scale.

Those orders are independent of special operators, but we want to stick to simple operators

like (1.3) based on sampling at distance h. Thus we do not study the general approximation

3



orders in these spaces, since we con�ne ourselves to the special quasi{interpolants (1.3),

where '

h

is based on \other" shifts and dilates of  . Nor is it relevant at the outset that

we �nally end up with shifts � = h

2

: our main ingredient is the data sampling at distance

h, and this is why we keep h as an index to the quasi{interpolants (1.3). Our results imply

that the attainable order of convergence for quasi{interpolants (1.3) mainly depends on the

smoothness of the function  , and we provide an explicit construction that makes full use of

this fact. Applications include the construction of quasi{interpolants based on data f(jh)

that achieve arbitrarily high approximation orders, if  is chosen to be a multiquadric or a

Gaussian.

2 Convergence Orders of Quasi{Interpolants

We �rst consider quasi{interpolants of the special form

f

h

(x) =

+1

X

j=�1

f(hj) 

�

x

h

� j

�

; x 2 IR; h > 0 (2.1)

for functions f 2 C(IR) that are inverse Fourier transforms

f(x) =

1

2�

Z

+1

�1

^

f(t)e

ixt

dt; x 2 IR (2.2)

of functions

^

f 2 L

1

(IR). The quasi{interpolant (2.1) is supposed to use a basic function

 2 C

`

(IR) with

C

k

( ) := max

0���1

+1

X

j=�1

j 

(k)

(� � j)j <1 (2.3)

for 0 � k � `.

In the terminology of shift{invariant spaces this is a speci�c form of approximation in a scale

fS

h

g of principal shift{invariant subspaces

S

h

:= fg 2 S : g = f

h

for f 2 Sg

of the shift{invariant space

S := ff 2 C(IR);

^

f 2 L

1

(IR); (2:2)g:

Note that we do not attempt to characterize S

h

in an intrinsic way, e.g. by a summability

condition on coe�cients in (2.1). For our purposes it su�ces to provide L

1

bounds for the

error of quasi{interpolation of f 2 S by f

h

2 S

h

.

We start with an integral representation for f

(k)

h

that is based on Fourier transform tech-

niques as used in [1] and [6] for instance, and we skip over the proof, which can be reduced

to an application of Poisson's summation formula to the function whose Fourier transform

is  

(k)

(x + �). If f 2 C(IR) satis�es (2.2) with

^

f 2 L

1

(IR) and if  2 C

`

(IR) is a function

with (2.3) for 0 � k � `, then the quasi{interpolant (2.1) exists and has derivatives up to

order ` that can be expressed by

f

(k)

h

(x) =

1

2�

Z

+1

�1

^

f(t)e

ixt

I

k;h

(x; t)dt (2.4)
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with a continuous h{periodic function

I

k;h

(x; t) := h

�k

+1

X

j=�1

e

�i(x�hj)t

 

(k)

�

x

h

� j

�

(2.5)

that has a Fourier series representation

I

k;h

(x; t) =

+1

X

j=�1

c

k;h;j

(t)e

2�ijx=h

with coe�cients

c

k;h;j

(t) =

�

i

h

�

k

(2�j + ht)

k

^

 (2�j + ht): (2.6)

Now we assume f to satisfy

B

k

(f) :=

Z

+1

�1

j

^

f(t)t

k

jdt <1 (2.7)

for 0 � k � L. Then

f

(k)

(x) =

1

2�

Z

+1

�1

^

f(t)(it)

k

e

ixt

dt

for 0 � k � L and

f

(k)

h

(x)� f

(k)

(x) =

1

2�

Z

+1

�1

^

f(t)e

ixt

(I

k;h

(x; t)� (it)

k

)dt (2.8)

for 0 � k � min(`; L). A similar error representation was used in [17] and [20] to prove

error bounds for radial basis function interpolation. Note that this means that we work in

a subspace

S

k

:= ff 2 C

k

(IR);

^

f 2 L

1

(IR) and (2:7)g

measuring smoothness of functions in S.

To get a bound for this representation of the error, we require additional assumptions on  .

Let the Fourier transform

^

 of  have zeros of order `

1

in 2�j for all j 6= 0. Furthermore,

let

^

 � 1 have a zero of order `

0

in 0.

More speci�cally we require

^

 2 C

`

2

(IR), `

2

� max(`

0

; `

1

) and use Taylor's formula to write

^

 (2�j + t) =

^

 

(`

1

)

(2�j + t�

j

(t))t

`

1

=`

1

!; (2.9)

^

 (t)� 1 =

^

 

(`

0

)

(t�

0

(t))t

`

0

=`

0

! (2.10)

with �

m

(t) 2 [0; 1] for all m 2 ZZ and all t 2 IR. Finally, we de�ne

D

k;m

( ) := max

j�j�1

j�j�1

X

j 6=0

j2�j + �j

k

j

^

 

(m)

(2�j + �)j (2.11)

for 0 � m � `

2

and assume

D

k;m

( ) <1; 0 � k � K

for some nonnegative integer K.
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Theorem 2.1 Assume the quasi{interpolant (2.1) to be generated by a function  2 C

`

(IR)

with a Fourier transform

^

 satisfying (2.9), (2.10), and (2.11). If the quasi{interpolant is

evaluated for functions f 2 C(IR) with B

k

(f) <1, 0 � k � L, then

kf

(k)

h

� f

(k)

k

1

� Ch

d

for 0 � k � min(`; L � `

0

;K; `

1

),

d = min(`

0

; `

1

� k);

and all h > 0. The constant C is the maximum of

1

2�

�

B

L

(f)(1 + C

k

( )) +

B

k+`

0

(f)

`

0

!

k 

(`

0

)

k

1;[�1;+1]

+

B

`

1

(f)D

k;`

1

( )

`

1

!

�

for 0 � k � min(`; L � `

0

;K; `

1

).

Proof: We �rst consider the integrand (2.8) on jtj > h

�1

. If we use (2.3) to get a uniform

bound

jI

k;h

(x; t)j � C

k

( )h

�k

; 0 � k � `

for all x; t 2 IR and h > 0, then we have

1

2�

Z

jtj�1=h

j

^

f(t)e

ixt

(I

k;h

(x; t)� (it)

k

)jdt

�

1

2�

Z

jtj�1=h

j

^

f(t)j(C

k

( )h

�k

+ jtj

k

)dt

�

1

2�

Z

jtj�1=h

j

^

f(t)j(C

k

( ) + 1)jtj

k

dt

�

1

2�

(C

k

( ) + 1)

Z

jtj�1=h

j

^

f(t)j � jtj

k

jhtj

L�k

dt

�

1

2�

(C

k

( ) + 1)h

L�k

B

L

(f)

for 0 � k � min(`; L) and all h > 0.

For jtj < 1=h we split the integrand via

I

k;h

(x; t)� (it)

k

= c

k;h;0

(t)� (it)

k

+

X

j 6=0

c

k;h;j

(t)e

2�ijx=h

:

The �rst part is bounded by

1

2�

Z

jtj<1=h

j

^

f (t)j jc

k;h;0

(t)� (it)

k

jdt

=

1

2�

Z

jtj<1=h

j

^

f (t)j jtj

k

j

^

 (ht)� 1jdt

�

h

`

0

2�`

0

!

Z

jtj<1=h

j

^

f(t)j jtj

k+`

0

j

^

 

(`

0

)

(ht�

0

(t))jdt

�

h

`

0

2�`

0

!

B

k+`

0

(f) �max

j�j�1

j

^

 

(`

0

)

(�)j

6



for k + `

0

� L. The second part is

1

2�

Z

jtj<1=h

j

^

f(t)j j

X

j 6=0

c

k;h;j

(t)jdt

=

h

�k

2�

Z

jtj<1=h

j

^

f(t)j

X

j 6=0

j2�j + htj

k

j

^

 (2�j + ht)jdt

=

h

�k+`

1

2�`

1

!

Z

jtj<1=h

j

^

f(t)j jtj

`

1

X

j 6=0

j2�j + htj

k

j

^

 

(`

1

)

(2�j + ht�

j

(ht))jdt

�

h

`

1

�k

2�`

1

!

B

`

1

(f)D

k;`

1

( ):

(2.12)

Now everything combines into the assertion of the theorem. 2

Remarks: The principal consequence of Theorem 2.1 is that the rate of convergence of

derivatives is mainly tied to `

0

, while the admissible orders of derivatives are mainly con-

trolled by `

1

. Thus, a small value of `

0

together with a large value of `

1

will provide slow

convergence of high{order derivatives, and vice versa. The next section will provide tech-

niques for modi�cation of given quasi{interpolants in order to yield higher values of `

0

and

`

1

.

3 Increase of Approximation Order

We �rst consider simple techniques to improve the approximation order of a quasi{interpolant

by suitable modi�cations that imply an increase of `

0

. This has been done already by [3],

[4], [8], [16] and possibly others, but we shall include the explicit construction recipe for

completeness and in order to be able to refer to it in the next section.

Let a quasi{interpolant (2.1) be generated by a given symmetric function  with

^

 2 C

`

2

(IR),

and let the assumptions of Theorem 2.1 be satis�ed. Then `

0

� `

2

holds by de�nition, but

there is a �nite linear combination ' of translates of  such that ' satis�es Theorem 2.1

with `

0

replaced by `

2

and with an appropriately modi�ed constant C. In other words: By

taking �xed linear combinations of  one can always push `

0

up to `

2

.

Indeed, by Taylor's formula we have

^

 (t) = q(t

2

) +O(t

`

2

) for t! 0

with a polynomial q satisfying q(0) = 1. Then there is another polynomial p with p(0) = 1

and

p(t

2

)q(t

2

) = 1 +O(t

`

2

) for t! 0;

which implies

p(t

2

)

^

 (t) = 1 +O(t

`

2

) for t! 0:

Now let the trigonometric polynomial

T (e

it

) =

X

j

d

j

e

ijt

= p(t

2

) +O(t

`

2

)

be a su�ciently good approximation of p around the origin. Then one de�nes

'(x) =

X

j

d

j

 (x+ j)

7



to get

'̂(t) =

^

 (t) � T (e

it

)

= 1 +O(t

`

2

) for t! 0:

This makes Theorem 2.1 applicable for `

0

replaced by `

2

, and the constants C

k

and D

k;m

of

the preceding section will take an additional factor

P

j

jd

j

j.

4 Increase of the Order of Derivatives

We now want to modify a function  in such a way that `

1

is increased. This will boost

up the bound on the order of convergent derivatives, and it will be done via smoothing by

convolution. We shall �rst consider convolution with B{splines, and later we shall employ

discrete convolution to get a numerically accessible quasi{interpolant based on the introduc-

tion of additional shifts of  with spacing h

2

. Our assumptions on  will be much weaker

than those required by Theorem 2.1, but the quasi -interpolation constructed by function ',

resulting from our construction, will have the same error bounds as given by Theorem 2.1

with `

1

= `.

Theorem 4.1 Let  2 C

`

with

^

 2  L

1

(IR)\C

`

(IR) be a basis function for quasi{interpolation,

and assume

C

0

( ) = max

0���1

+1

X

j=�1

j (� � j)j <1;

:

If B

`

is the `{th order symmetric uniform B{spline, then the basis function '

`

=  � B

`�1

satis�es Theorem 2.1 with `

1

('

`

) = `. Thus '

`

satis�es the Strang -Fix condition of order `

and

C

k

('

`

) < 1; 0 � k � `:

(4.1)

Proof: Let � = �

[�1=2;1=2]

be the characteristic function on [�1=2; 1=2], and de�ne the

B{spline

B

m�1

= � � � � � � �

as the m{fold convolution of � with itself. Now we de�ne

'

m

:= B

m�1

�  = � � '

m�1

for 1 � m � `; '

0

:=  . Then

'̂

`

(t) =

^

B

`�1

(t) �

^

 (t) =

^

 (t) � sinc

`

�

t

2

�

has the required behaviour at all points 2�j, j 2 ZZ n f0g. It remains to show (4.1), and this

follows from

C

k

('

`

) = C

0

(D

k

'

`

) = C

0

�

 �B

(k)

`�1

�

� C

0

( )kB

(k)

`�1

k

1

;

8



where we interpret the norm in the last line as the total mass of the measure B

(k)

k�1

for k = `.

Now we have constructed a function '

`

from the function  by convolution such that the

function '

`

satis�es the Strang - Fix condition of order ` and Theorem 2.1 with `

1

(') = `.

Unfortunately, the function '

`

is de�ned by convolution and is not expressible via translates

of the original function  . Thus we now take the discrete convolution instead of the usual

convolution. If we replace the integration by a high-order quadrature formula for equidistant

data, we can replace '

`

by a function '

`;h

, depending on ` and h, which is a linear combination

of translates  (x� jh), such that

jj'

(k)

`;h

� '

(k)

`

jj

1

= O(h

`�k

) (4.2)

holds for h ! 0. If we de�ne Q

h

f as the quasi- interpolation of (2.1) with  := '

`;h

and

~

Q

h

f with  := '

`

, then for f 2 L

1

(IR) we �nd

jjQ

(k)

h

f �

~

Q

(k)

h

f jj

1

= max

x

�

�

�

�

�

�

1

X

j=�1

f(jh)('

(k)

`;h

(

x

h

� j)� '

(k)

`

(

x

h

� j))

�

�

�

�

�

�

�

0

@

1

X

j=�1

jf(jh)j)max

y

(j'

(k)

`;h

(y)� '

(k)

`

(y)j

1

A

= O(h

`�k�1

):

(4.3)

We summarize the above discussion to our main theorem

Theorem 4.2 Let  have the properties

 2 C

`

; jj 

(`)

jj

1

<1; C

0

( ) <1;

and let its Fourier transform

^

 satisfy

^

 2 L

1

(IR);

^

 2 C

`

(IR)

with (2.11) for 0 � k;m � `. Then there is a function '

`;h

consisting of linear combinations

of the translates  (x � jh), such that the quasi interpolation (2.1) with  := '

`;h

has the

error estimate

jjf

(k)

h

(x)� f

(k)

(x)jj

1

= O(h

`�k�1

); 0 � k � `� 1

for any function f 2 L

1

with B

2`

(f) <1.

Proof : By the construction of Section 3 there is a trigonometric polynomial

T (e

it

) =

X

d

j

e

ijt

;

and by Theorem 4.1 there is a B-spline of degree ` such that the function

'

`

=

X

d

j

B

`

�  (� � j)

satis�es the complete Strang - Fix condition of order `, in other words it satis�es the con-

ditions of Theorem 2.1 with `

0

= `

1

= `. Using discrete convolution with a quadrature

9



formula we get a function '

`;h

such that the order of the approximation is estimated as in

(4.3). Then Theorem 2.1 yields our assertion.

Remark : Our construction can be summarized as follows: If  2 C

`

satis�es the mild

additional conditions of Theorem 4.2, we can construct quasi -interpolants in the form

Qf

h

(x) =

+1

X

j=�1

f(hj)'

`;h

�

x

h

� j

�

; x 2 IR; h > 0

=

+1

X

j=�1

f(hj) �

X

k

c

(`)

k

(h) 

�

x

h

� j � kh

�

(4.4)

with approximation order `�1, where '

`;h

(x) is a linear combination of translates  (x� jh)

of the function  but depends on h. Note that the data are still sampled at points with

distance h, while the set of scaled translates of  now uses shifts h and h

2

. In the terminology

of approximation from shift{invariant spaces these functions live in a scale fS

h

2
g instead of

fS

h

g, and therefore a general optimal approximation in these spaces can and will have a

better approximation order. However, our special linear quasi{interpolant uses function

values of spacing h only. The increase of approximation order, as described in this section,

is achieved by using more basis functions, not by using more data. The order of convergence

of such operators can be pushed up to a limit that only depends on the smoothness of the

function  . This approach can be generalized to the multivariate setting by using discrete

convolutions with tensor products of odd-degree B -splines.

Example 1: For multiquadrics�(x) =

p

c

2

+ x

2

; we choose at �rst  (x) = (�(x+1)�2�(x)+

�(x � 1)). Then `

1

( ) = 2, and with the Strang-Fix condition we get the approximation

order 2, which is similar to results in [2] [7] [19]. But references [11] [20] imply that the

order of approximation by interpolation exceeds any `, if the function f is very smooth and

if c is �xed. Note here that the usual Strang- Fix theory scales c like O(h) for h! 0. Our

result bridges the gap between these two approaches. Since  

(k)

(x) = O(x

�(k+3)

), we can

construct for any ` a quasi-interpolant with approximation order ` � 1 for functions f 2 L

1

with B

2`

(f) <1.

Example 2: (see also [1]). The Gaussian distribution  (x) = e

�a

2

x

2

is often criticized in

the literature on radial basis functions, because it fails to satisfy the Strang-Fix conditions.

But by [17] for some very smooth functions f the order of approximation can exceed any `.

Using Theorem 4.2 for any ` we can always construct a quasi-interpolant with approximation

order ` � 1 for f 2 L

1

and B

2`

(f) <1.

Example 3: The function  (x) = (1 � x

2

)

`+1

+

satis�es no Strang-Fix condition, but from

our approach the approximation order of the quasi- interpolation (4.4) is at least `� 1. We

can get a similar result for B -splines, too.
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and for several suggestions that helped to avoid some serious misunderstandings in relation

to previous work on approximation orders.
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