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Abstract. This contribution analyzes the COVID-19 pandemic by comparably

simple mathematical and numerical methods. The final goal is to predict the peak

of the epidemic outbreak per country with a reliable technique. The difference to

other modelling approaches is to stay extremely close to the available data, using

as few hypotheses and parameters as possible. This is done by an algorithm moti-

vated by standard SIR models that directly works with the standard data provided

by the Johns Hopkins University. But this model not sufficient to deal with the

hidden part of the pandemics. To reconstruct data for the unregistered Infected,

a second algorithm uses current experimental values of the infection fatality rate

and a data-driven estimation of a specific form of the recovery rate. All other in-

gredients are data-driven as well. Various examples of predictions are provided

for illustration. They show how dramatic the predictions during the uncontrolled

outbreak were, how the situation changed by political and social counteraction,

and what countries expecting their infection peak possibly have to face. In the

beginning, the basic notions of modelling epidemics are collected, for the conve-

nience of readers.

1 Introduction and Overview

During an epidemic outbreak like COVID-19, everybody wants to know how hard

the impact will be. In particular:

• What is the health risk for me, my family, our friends, the city, the country,

and the world?

• Is the health system prepared properly?

• Should households fill up their reserves in time?
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This is a situation that asks for mathematics, like in the old times when mathe-

maticians were needed to predict floods or solstices. Such predictions should be

based on data and arguments, and they should provide well-supported suggestions

for what to do. To understand the process and to make predictions, it should be

modelled, and the model should be computable. Then predictions will be possible,

and reality will decide later whether the model and the predictions were useful.

Many models are possible, and the approach presented here is just one of them.

The specific goal is to stay as close as possible to the available data, but it turns

out that the available data are not directly usable for the standard models that give

the basic understanding. To this end, two extensions to the standard SIR model

are developed that get closer to the available data and finally are able to make

data-driven predictions.

The beginning is made in section 2 with an introduction to standard terms like

Basic Reproduction Number, Herd Immunity Threshold, and Doubling Time, to-

gether with some critical remarks on their abuse in the media. These notions are

based on the standard SIR model for epidemics. Experts can skip over this com-

pletely. Readers interested in the predictions should jump right away to section

5. For simplicity, the presentation ignores all delay-related issues like incubation

period and serial interval in the theoretical model of Section 2.

To bridge the gap between model and data, Section 3 describes the Johns Hopkins

data source with its limitations and flaws, and then presents a variation of a SIR

model that can be applied directly to the data. It allows to estimate basic parame-

ters, including the Basic Reproduction Number, but does not work for predictions

of peaks of epidemics.

To achieve the latter goal, section 4 combines the data-compatible model of sec-

tion 3 with a SIR model dealing with the unknown Susceptibles and the unreg-

istered Infectious. This needs extra parameters that should be extracted from the

literature. The first is the infection fatality rate, as provided e.g. by an der Hei-

den/Buchholz [2], Streeck et al. [21], Verity et al. [22]. Section 4.3.1 pairs it with

the case fatality rate and shows how the latter can be deduced from the Johns

Hopkins data. Like in Bommer/Vollmer [3], their combination gives a detection

rate for the confirmed cases.

Section 4.4 introduces the second additional parameter: a recovery rate that can

be directly used in the model and estimated from the infection fatality rate and

the observable case fatality and case death rates. However, this parameter is not
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needed for prediction, just for determination of the unknown variables from the

known data as long as the latter are available.

Then section 5 combines all of this into an algorithm that makes predictions under

the assumption that there are no further changes to the parameters by political

action. It estimates the parameters of a full SIR model from the available Johns-

Hopkins data by the techniques of section 4, using two additional technical para-

meters: the number of days used backwards for estimation of constants, and the

number of days in which recovery or death must be expected, for estimation of

case fatality and recovery rates. This is where time delays enter, but not into the

model, only into internal estimation procedures. After the data-driven estimation

of these parameters, the prediction uses only the infection fatality rate. All other

ingredients are derived from the Johns Hopkins data.

Results are presented in section 5. Given the large uncertainties in the Johns-

Hopkins data, the predictions are rather plausible. However, reality will have the

final word on this prediction model.

The paper closes with a summary and a list of open problems.

2 Classical SIR Modeling

This contains the basic notions that are useful for modelling epidemics, and that

were in use in the media during the COVID-19 outbreak. Among other things,

there will be a rigid mathematical underpinning of what is precisely meant by

• flattening the epidemic outbreak (mitigation),

• basic reproduction number,

• Herd Immunity Threshold, and

• doubling time,

pointing out certain abuses of these notions. This will not work without calculus,

but things were kept as simple as possible. Readers from outside the mathemat-

ics community should take the opportunity to brush up their calculus knowledge.

Experts should go over to section 3.
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2.1 The Model

The simplest standard “SIR” model of epidemics (e.g. Hethcote [10], and easily

retrievable in the wikipedia [23]) deals with three variables

1. Susceptible (S),

2. Infectious (I), and

3. Removed (R).

The Removed cannot infect anybody anymore, being either dead or immune. This

is the viewpoint of bacteria or viruses. The difference between death and immu-

nity of subjects is totally irrelevant for them: they cannot proliferate anymore in

both cases. The SIR model cannot say anything about death rates of persons.

The Susceptible are not yet infected and not immune, while the Infectious can

infect Susceptibles. The three classes S, I, and R are disjoint and add up to a

fixed total population count N = S+ I +R. All of these are ideally assumed to be

smooth functions of time t, and satisfy the differential equations

Ṡ = −β
S

N
I,

İ = +β
S

N
I − γI,

Ṙ = γI.

(1)

where the dot stands for the time derivative, and where β and γ are positive para-

meters. The product S
N

I models the probability that an Infectious meets a Suscep-

tible.

Managing an SIR epidemic means modifying the constants β and γ . This is why

one should see the parameters as control variables, and we shall treat them even

as time series from section 3 on.

Note further that the Removed of the SIR model are not the Recovered of the

Johns Hopkins data that we treat later, and the SIR model does not account for

the Confirmed counted there. Similarly, there is no direct relation to the data

published by the Robert Koch Institute. It is a major problem to match models

with the available data, and we shall explain the latter to some detail in section 3.
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2.2 Other Models

In many publications concerning COVID-19 (e.g. an der Heiden/Buchholz [2],

Dandekar/Barbasthatis [4], De Brouwer et al. [5], Friston et al. [8], Khailaie et al.

[14], Kucharski et al. [15], Maier/Brockmann [16]), the SIR model is extended

by Exposed E that are infected, but not (yet) infectious. This introduces an ad-

ditional parameter and would require dealing with a latency delay properly. We

avoid this complication to keep the model as simple as possible. Note that there

are extensions of SIR models with 14 to 21 parameters, e.g. (Friston et al. [8],

Giordano et al. [9], Khailaie et al. [14]. Fitting model parameters in the above

papers is partially done numerically and partially by Bayesian approaches using

Monte Carlo sampling. Here, we avoid fitting and time delays as far as possible.

Conceptionally different are the individual-based transition model for contacts of

Ferguson et al. [7], and the approach of Mohring et al. [17] working consistently

with time delays.

2.3 Simple Properties of the SIR Model

Since Ṅ = Ṡ+ İ + Ṙ = 0, the equation N = S+ I +R is kept valid at all times.

The term β S
N

I moves Susceptibles to Infectious, while γI moves Infectious to

Removed. Thus β represents an infection rate while the removal rate γ accounts

for either healing or fatality after infection, i.e. immunity. Political decisions

about reducing contact probabilities will affect β , while γ resembles the balance

between the medical aggressivity of the infection and the quality of the health care

system.

As long as the Infectious I are positive, the Susceptibles S are decreasing, while

the Removed R are increasing. Excluding the trivial case of zero Infectious from

now on, the Removed and the Susceptible will be strictly monotonic.

The SIR model is not really dependent on the total population N. Moreover, if we

scale time by τ := t · γ and go over to relative quantities

s(τ) :=
S(τ/γ)

N
,

r(τ) :=
R(τ/γ)

N
,

i(τ) :=
I(τ/γ)

N
,
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we get the new system

ds

dτ
= −

β

γ
s(τ)i(τ) = −R0s(τ)i(τ)

di

dτ
=

(

β

γ
s(τ)−1

)

i(τ) = (R0s(τ)−1) i(τ)

dr

dτ
= i(τ)

(2)

only containing the Basic Reproduction Number

R0 :=
β

γ
(3)

that will turn out to be of central importance. Both β and γ vary under a change

of time scale, but the basic reproduction number is invariant. Physically, β and

γ have the dimension time−1, but R0 = β/γ and the new “time” parameter τ are

dimensionless. Another interpretation is that after a time scale one can assume

γ = 1 and R0 = β . The new “time” scale lets removal take one unit of “time”. We

shall call it unit removal parameter, and use a prime to denote derivatives with

respect to τ . But in all sections that make real-world interpretations, we have to

use real time, and then we shall go back to (1).

Another standard mathematical trick is to divide the first equation by the third to

arrive at
ds

dr
= −R0s,

s(r) = s(r(0))exp(−R0(r− r(0))).
(4)

We shall use (4) in section 2.11 to study the long-term behaviour of solutions.

The introduction of (4) is a typical pitfall for mathematics: it is a nice theoretical

simplification, but it obscures the most interesting practical aspect, in this case the

number I of infectious persons.

Figures 1 and 2 show some simple examples that will be explained in some detail

below.

2.4 Interpretation of the Basic Reproduction Number R0

Media often say that R0 gives the number of persons an average Infectious infects

while being infectious. This is a rather mystical statement that needs underpin-
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Figure 1: Some typical SIR system solutions, relative to the total population N,

with small I(0) and varying R0.
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Figure 2: Some other typical SIR system solutions, now with I(0) = N/2.
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ning. The quantity
1

γ
=

I

Ṙ

is a value that has the physical dimension of time. It describes the ratio between

current Infectious and current newly Removed, and thus can be seen as the average

time needed for an Infectious to get Removed, i.e. it is the average time that an

Infectious can infect others. Correspondingly,

İ + γI = İ + Ṙ = β
S

N
I

are the newly Infected, and therefore

1

β

N

S
=

I

İ + Ṙ

can be seen as the time it needs for an average Infectious to generate a new In-

fectious. The ratio
β
γ

S
N

then gives how many new Infectious can be generated by

an Infectious while being infectious, but this is only close to R0 if S ≈ N, i.e. at

the start of an outbreak. A correct statement is that R0 is the average number of

infections an Infectious generates while being infectious, but within an unlimited

supply of Susceptibles.

The above interpretation of the Basic Reproduction Number is used as an argu-

ment to change the parameters of the epidemic towards small R0 by administrative

action. We shall see that this is correct from a mathematical viewpoint as well,

ands we shall study the influence of R0.

On the side, the above viewpoint shows two major ways to make R0 small: re-

ducing the number of possible contacts to Susceptibles, and reducing the time an

Infectious has to infect others. The first can be done by reducing contacts of all

persons, even the Susceptibles, and the second by putting all infectious persons

into strict quarantine. Both were used by various countries.

SIR-based models of the COVID-19 pandemics estimate R0 between 2 and 6 dur-

ing an outbreak (see e.g. the Robert Koch-Institute [18], De Brouwer et al. [5],

and Maier/Brockmann [16]), while non-pharmaceutical interventions (NPI) bring

R0 below 1. We shall see examples in sections 3.3.2 and 5.2.

The use of the Basic Reproduction Number R0 in the media suggests that large R0

are generally serious, because each Infectious infects several people. This is only
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true at the beginning of an outbreak, because then there are enough Susceptibles.

But it will turn out in section 2.7 that the Infectious will always finally go to zero,

whatever the Basic Reproduction Number is.

2.5 Conditions for Outbreaks

The first interesting question in a beginning epidemic is:

Will there be a serious outbreak, or will the infection disappear quickly?

Therefore we start by looking at the initial conditions for the model. Since ev-

erything is invariant under an additive time shift, we can start at time 0, and since

time scales are irrelevant either, we can go to the simplified system (2).

The relative Infectious i do not increase right from the start if

s(0)≤
1

R0
, (5)

and then they decrease further since the Susceptibles σ must decrease and

(log i(τ))′ = R0s(τ)−1 < R0σ(0)−1 ≤ 0. (6)

There is no outbreak, and this must occur for all initial conditions if R0 ≤ 1. But

if R0 > 1, the outbreak depends on the initial condition (5). We require

1 > s(0)>
1

R0
(7)

for an outbreak, i.e. there must be sufficiently many Susceptibles. When we

discuss an outbreak in what follows, we always assume R0 > 1 and (7).

2.6 Herd Immunity Threshold

In connection with an outbreak, the Herd Immunity Threshold

HIT = 1−
1

R0

is often mentioned. The background question is:
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If an uninfected population is threatened by an infection with Basic Re-

production Number R0, what is the number of immune persons needed to

prevent an outbreak right from the start?

We can read this off equation (5) in the ideal situation that i(0) = 0 and s(0)+
r(0) = 1, namely

s(0) = 1− r(0) =
1

R0

implying

r(0) = 1−
1

R0

as the threshold between outbreak and decay for the relative Removed. This does

not refer to a whole epidemic scenario. It is a condition to be checked before

anything happens, and useless within a developing epidemic, whatever the media

say.

Furthermore, the Herd Immunity Threshold has nothing to do with the important

long-term ratio of Susceptibles to Removed. We shall address this ratio in section

2.11.

2.7 The Peak

In the outbreak case (7), the main questions are:

• when will the Infectious reach their maximum, and

• how large the maximal value is.

In more generality, we ask for a unit removal parameter τI where the Infectious

are positive and do not change. Then we have

0 =
di

dτ
(τI) = (R0s(τI)−1)i(τI), (8)

and the monotonicity of s implies uniqueness of τI and

s(τI) =
1

R0
. (9)

If i would increase without reaching a maximum in finite time, the first equation

of (2) would imply that s goes exponentially to zero, but then there is a τI with
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(9), and (8) follows. Summarizing, this proves that whenever there is an outbreak

by (7), there is a unique maximum of the relative Infectious i that we call the peak

from now on.

Determining the peak is theoretically difficult, and in practice it requires good

estimates for β and γ . We shall deal with this problem in the major part of this

paper,

In real life it is highly important to avoid the peak situation, and this can only be

done by administrative measures that change β and γ in (1) to the situation β < γ .

This is what management of epidemics is all about, provided that an epidemic

follows the SIR model. We shall see how countries perform.

In the peak situation of (8), the fraction

1−
1

R0
= 1− s(τI) = r(τI)+ i(τI)≥ i(τI) (10)

of the relative Non-Susceptible at the peak is exactly the Herd Immunity Thresh-

old. Thus it is correct to say that if the Immune of a population are below the

Herd Immunity Threshold at startup, and if the Basic Reproduction Number is

larger than one, the sum of the Immune and the Infectious will rise up to the

Herd Immunity Threshold and then the Infectious will decay. This is often stated

imprecisely in the media.

2.8 Examples

Figure 1 shows a series of test runs with s(0) = 0.999 and r(0) = 0 with R0 vary-

ing from 1/5 to 3. Due to the realistically small i(0) = 0.001, one cannot see the

decaying cases near startup, but the tails of the peaked i curves are decaying ex-

amples by starting value, due to s(τ) < 1/R0 when started at time τ . Decreasing

R0 flattens the peaks of i. One can observe that i always dies out, while s and r

tend to fixed positive levels. We shall prove this below. From the system, one can

also infer that r has an inflection point where i has its maximum, since r′′ = i′. If

only r would be observable, one could locate the peak of i via the inflection point

of r.

When countries change parameters by administrative actions like a shutdown, they

jump to a more flat i curve, e.g. at an intersection point. Recall that the i values
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are the most interesting ones, but they are usually not covered by the media. They

usually focus on the cumulative number of confirmed Infectious, containing the

Removed.

Figure 2 shows an artifical case with a large starting value i(0) = 1/2 = s(0) and

R0 varying from 0.05 to 3. In contrast to Figure 1, this example shows cases with

small R0 properly. The essence is that the Infectious go down, whether they have

a peak or not, and there will always be a portion of Susceptibles. Again, we shall

prove this below.

2.9 Analyzing the Outbreak

In the beginning of the outbreak, s is near to one, and therefore

i′ = R0s−1 ≈ R0 −1

models an exponential outbreak with exponent R0−1> 0 in unit removal parametriza-

tion, with a solution

i(τ)≈ i(0)exp((R0 −1)t).

If this is done in real time and discrete time steps ∆t, one has

I(t+∆t)

I(t)
≈ exp((β − γ)∆t).

The severity of the outbreak is not controlled by R0 = β/γ , but rather via β − γ .

Publishing single values I(t) does not give any information about β − γ . Better is

the ratio of two subsequent values

I(t2)

I(t1)
≈ exp((β − γ)(t2 − t1)),

and if this gets smaller ove time, the outbreak gets less dramatic because β − γ
gets smaller. Really useful information about an outbreak does not consist of

values and not of increments, but of increments of increments, i.e. some second

derivative information. This is what the media rarely provided during the out-

break. On the other hand, publishing estimates of R0 > 1 indicates the severity of

an outbreak in unit removal parametrization.
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2.10 Doubling “Time”

Another information used by media during the outbreak is the doubling time, i.e.

how many days it takes until daily values double. It clearly is no time, but it is the

number n in

2 =
I(t +n∆t)

I(t)
≈ exp((β − γ)n∆t) = (exp((β − γ)∆t)n

or

n =
log2

(β − γ)∆τ
,

i.e. it is inversely proportional to β − γ . If political action doubles the “doubling

time”, if halves β − γ . If politicians do this repeatedly, they never reach β < γ ,

and they never escape an exponential outbreak if they do this any finite number of

times. Extending the doubling time will never prevent a peak, it only postpones

it and hopefully flattens it. When presenting a “doubling time”, media should

always point out that this makes only sense during an exponential outbreak. And

it is not related to the basic reproduction number R0 = β/γ , but rather to the

difference β − γ . If R0 is used in

ν =
log2

R0 −1
,

one gets the doubling number ν in removal time units.

2.11 Long-term Behaviour

Besides the peak in case R0 > 1, it is interesting to know the portions of the

population that get either removed (by death or immunity) or never come into

contact with the infection. This concerns the long-term behaviour of the Removed

and the Susceptibles. Figures 1 and 2 demonstrate how r and r level out under all

circumstances shown, but is this always true, and what is the final ratio? And if

one has addition information on the percentage of casualties within the Removed,

what is total death toll in the long run?

So far, section 2.7 showed that the Infectious i always go to zero, independent of

how large R0 is, but we are still left with s and r. Going back to (4), we get

s(r) = s(0)exp(−R0r) (11)
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when assuming r(0) = 0 at startup. Since r is increasing, it has a limit 0 < r∞ ≤ 1

for τ → ∞, and in this limit

s(r∞) = s(0)exp(−R0r∞)

holds, together with the condition r∞ + s(r∞) = 1, because there are no more In-

fectious. The equation

s(0)exp(−R0r∞) = 1− r∞

has a unique solution in (0,1) dependent on s(0) < 1 and R0. See Figure 3 for

illustration. The right-hand side 1− r∞ of the equation is the fixed straight line,

while the dotted curves are the left-hand side for varying values of R0. The in-

tersection points are the values r∞ of r that solve the equation. Looking at both

sides of the equation as functions of r∞, an increase of R0 for fixed s(0) < 1 lets

the intersection point move towards 1 on the r axis.

Qualitatively, we can use (11) in the form

R0 =−
log(s(r))− log(s(0))

r
=

log(s(0)/s∞)

r∞
(12)

to see that the ratio of Susceptibles to Removed decreases with R0, but there is a

logarithm involved.

All of this has some serious implications, if the model is correct for an epidemic

situation. First, the Infectious always go to zero, but Susceptibles always remain.

This means that a new infection can always arise whenever some infected person

enters the sanitized population. The outbreak risk is dependent on the portion

s∞ = 1− r∞ of the Susceptibles. This illustrates the importance of vaccination,

e.g. against measles or influenza.

The above analysis shows that large values of R0 lead to large relative values of

Removed to Susceptible in the limit. The consequence is that systems with large

R0 have a dramatic outbreak and lead to a large portion of Removed. This is

good news if the rate of fatalities within the Removed is low, but very bad news

otherwise.

When politicians try to “flatten the curve” by bringing R0 below 1 from some

time on, this will automatically decrease the asymptotic rate of Removed and
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Figure 3: Solving for r∞ for fixed C(0) = 0.9 and varying R0

increase the asymptotic rate of Susceptibles in the population. This is particularly

important if the rate of fatalities within the Removed is high, but by the previous

argument the risk of re-infection rises due to the larger portion of Susceptibles.

The decay situation (5) implies that

s∞ ≤
1

R0

and consequently

r∞ = 1− s∞ ≥ 1−
1

R0
= HIT.

Therefore the final rate of the Removed is not smaller than the Herd Immunity

Threshold. This is good news for possible re-infections, but only if the death rate

among the Removed is small enough.
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2.12 Asymptotic Exponential Decay

If we go back to (6) for a unit removal parameter τD where i decreases (in an

outbreak or not), we have

R0s∞ ≤ R0s(τD)< 1

and then

i(τD)exp(−(R0s∞ −1)(τ − τD))≤ i(τ)≤ i(τD)exp(−(R0s(tD)−1)(τ − τD))

for all τ ≥ τD. Therefore the exponential decay in unit removale parametrization

is not ruled by R0 −1 as in the outbreak case with R0 > 1, but rather by R0s∞ −1.

This also holds for large R0 because s∞ counteracts. The bell shapes of the peaked

i curves are not symmetric with respect to the peak.

2.13 Back to the Peak

If we go back to analyzing the peak of i at τI for R0 > 1, we know

s(τI) =
1

R0
= s(r(τI)) = s(0)exp(−R0r(τI))

and get

r(τI) =
1

R0
log(s(0)R0) (13)

leading to

i(τI) = 1− s(τI)− r(τI) = 1−
1

R0
−

1

R0
log(s(0)R0) (14)

as the exact value at the maximum, improving (10). Note that the final log is

positive due to the condition (7) for an outbreak.

For standard infections that have starting values s(0) = S(0)/N very close to one,

the maximal ratio of Infectious is

i(τi)≈ 1−
1

R0
−

1

R0
log(R0).

Figure 4 shows the behaviour of this function. A value of R0 = 4 leads to a

maximum of more than 40% of the population infectious at a single time. If 5%
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Figure 4: The effect of R0 on the maximum rate of Infectious within the population

need hospital care, a country needs hospital beds for 2% of the population. This

is what mitigation by “flattening the curve” is all about.

The dotted line leaves the log term out, i.e. is marks the rate of the Susceptibles

at the peak, and by (10) the difference is the rate r(τi) of the Recovered at the

peak. The line also marks the extreme case in (7) with R0s(0) = 1, i.e. having

the smallest possible initial value of s(0) for a given R0 to generate an outbreak.

Therefore all possibilities vary between the two lines.

2.14 Flattening the Curve

We first evaluate the integral

∫ ∞

0
i(σ)dσ =

∫ ∞

0
r′(σ)dσ = r∞ − r(0).

If we are in a peak situation (7), we can consider the turnaround parameter τT

at which i comes down back to i(0) behind the peak. At that point the relative

number of Infectious is back to its starting value, but now the population has

accumulated more Immune.
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We compare areas under the i curve and get

i(0)τT ≤ r∞ − r(0)≤ r∞ ≤ 1, (15)

proving that the turnaround time tT = τT/γ has a fixed bound tT ≤ r∞/(i(0)γ), and

this is also a crude bound on the peak time tI. It depends on R0 only indirectly via

r∞.

If we look at the integral left of the peak and assume r(0) = 0, we get
∫ τI

0
i(σ)dσ =

∫ τI

0
r′(σ)dσ = r(τI) =

1

R0
log(s(0)R0).

from (13). This goes to zero for R0 → ∞, i.e. the left part of the full integral gets

small though the value at the peak goes to 1. By additional arguments one can

show that the peak position moves towards zero. The major part of the curve of

the Infectious lies behind the sharp peak when R0 is large.

Flattening the curve by bringing R0 down is limited by (7) in the form R0s(0)> 1,

if one stays in the outbreak situation. If s(0) is small, one has a chance to avoid

the outbreak even when R0 > 1, namely by 1 ≤ R0 ≤ 1/s(0).

Otherwise, when using small R0, we are near the dotted line situation of Figure 4

near R0 = 1 and know that decreasing R0 brings the peak value down. But where

does the peak time tI or the peak parameter τI go?

By a detailed argument that we suppress here, there is a lower bound

τI ≥
log(s(0)R0)

s(0)(R0−1− log(s(0)R0))
≥

log(s(0)R0)

s(0)(R0−1)
.

If we go into the minimal R0 situation by setting

R0s(0) = exp(1+ ε) = 1+δ

with small ε and δ , the bound turns int0

τI ≥
1+ ε

1+δ − s(0)
=

1+ ε

i(0)+δ

if r(0) = 0. The bound is sharp because of an additional upper bound

τI ≤
log(s(0)R0)

i(0)
=

1+ ε

i(0)

that we also suppress. This blends in with the upper bound (15) on the turnaround.

If R0 is chosen as small as possible to still guarantee an outbreak, the peak moves

away from the origin at least like 1/i(0).
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2.15 The Infection Timescale

Here is a detour that is well-known in the SIR literature. The full SIR system (1)

can be written as
dS

N
= −β

S

N

I

N
dt

dI

N
=

(

+β
S

N
− γ

)

I

N
dt

dR

N
= γ

I

N
dt

and in a new time variable τ with dτ = I
N

dt, one gets the system

ds

dτ
= −β s(τ),

dr

dτ
= −γ

for s = S/N and r = R/N as functions of the new infection timescale τ that one

can fix as

τ(t) =

∫ t

0

I(s)

N
ds

to make sure that τ(0) = 0. This implies

s(τ) = s(0)exp(−βτ),
r(τ) = r(0)+ γτ.

The beauty of this is that the roles of β and γ are perfectly split, like the roles of

s and r. In the new timescale, r increases linearly and s decreases exponentially.

The Basic Reproduction Number then describes the fixed ratio

β

γ
= R0 =

logS(τ)− logS(0)

r(τ)− r(0)
,

like in (12), and the result (11) of section 2.11 comes back as

s(τ) = s(0)exp

(

−
β

γ
r(τ)

)

for the case r(0) = 0. This approach has the disadvantage to conceal the peak

within the new timescale, and is useless for peak prediction. Of course, by a scale

of the infection timescale one can set γ = 1 and R0 = β , going to a dimensionless

parametrization, as in the transition to (2).
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2.16 Estimating and Varying Parameters

If real-time data for the SIR model were fully available, one could solve for

γ =
Ṙ

I

b := β
S

N
=

İ + γI

I
=

İ + Ṙ

I
,

β =
N

N − I −R
·

İ + Ṙ

I
,

R0 =
N

N − I −R
·

İ + Ṙ

Ṙ
=−

N

S

Ṡ

Ṙ
=−

1

s

ds

dr
,

(16)

and we shall use this in section 3.3. The validity of a SIR model can be tested by

checking whether the right-hand sides for β , γ and R0 are roughly constant. If data

are sampled locally, e.g. before or after a peak, the above technique should deter-

mine the parameters for the global epidemic, i.e. be useful for either prediction or

backward testing.

However, in pandemics like COVID-19, the parameters β and γ change over time

by administrative action. This means that they should be considered as func-

tions in the above equations, and then their changes may be used for conclusions

about the influence of such actions. This is intended when media say that “R0 has

changed”. From this viewpoint, one can go back to the SIR model and consider β
and γ as “control functions” that just describe the relation between the variables.

But the main argument against using (16) is that the data are hardly available. This

is the concern of the next section.

3 Using Available Data

Now we want to confront the modelling of the previous section with available

data. This is crucial for maneuvering countries through the epidemics (Sentker

[20])2. Note that from now on we have work in real time and go back to (1)

instead of all mathematical simplifications.

2Original text in German, April 16th: Schnelle Modelle, die dem Abgleich mit der Wirklichkeit

standhalten, sind eine wichtige Voraussetzung, das Land politisch durch die Seuche zu steuern.
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3.1 Johns Hopkins Data

In this text, we work with the COVID-19 data from the CSSEGISandData reposi-

tory of the Johns Hopkins University [13]. They are the only source that provides

comparable data on a worldwide scale.

The numbers there are

1. Confirmed (C) or cumulative infected

2. Dead (D), and

3. Recovered (R)

as cumulative integer valued time series in days from Jan. 22nd, 2020. All these

values are absolute numbers, not relative to a total population. Note that the un-

confirmed cases are not accessible at all, while the Confirmed contain the Dead

and the Recovered of earlier days.

We take the data as presented, but there are many well-known flaws. In particular,

the values for specific days are partly belonging to previous days, due to delays in

the chains of data transmission in different countries. This is why, at some points,

we shall apply some conservative smoothing of the data. Finally, there are incon-

sistencies that possibly need data changes. In particular, there are countries like

Germany who deliver data of Recovered in a very questionable way. The law in

Germany did not enforce authorities to collect data of Recovered, and the United

Kingdom did not report numbers of Dead and Recovered from places outside the

National Health System, e.g. from Senior’s retirement homes. Both strategies

have changed somewhat in the meantime, as of early May, but the data still keep

these flaws.

We might assume that the Dead plus the Recovered of the Johns Hopkins data are

the Removed of the SIR model, and that the Infectious I =C−R−D of the Johns

Hopkins data are the Infectious of the SIR model. But this is not strictly valid,

because registration or confirmation come in the way.

On the other hand, one can take the radical viewpoint that facts are not interesting

if they do not show up in the Johns Hopkins data. Except for the United Kingdom,

the important figures concern COVID-19 casualties that are actually registered as

such, others do not count, and serious cases needing hospitalization or leading to
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death should not go unregistered. If they do in certain countries, using such data

will not be of any help, unless other data sources are available. If SIR modelling

does not work for the Johns Hopkins data, it is time to modify the SIR technique

appropriately, and this will be tried in this section.

An important point for what follows is that the data come as daily values. To

make this compatible with differential equations, we shall replace derivatives by

differences.

3.2 Examples

To get a first impression about the Johns Hopkins data, Figure 5 shows raw data up

to day 120 (May 21st , as of this writing). Here, and in all plots to follow, the x axis

has the days after Jan. 22nd , 2020. It might be helpful to remember that day 100 is

May 1st . The y axis is logarithmic, because then linearly increasing or decreasing

parts in the figures correspond to exponentially increasing or decreasing numbers

in the real data. Many presentations in the media are non-logarithmic, and then

all exponential outbreaks look similar. The real interesting data are the Infectious

I =C−R−D that show a peak or not. The other curves are cumulative. The data

for other countries tell similar stories and are suppressed.

The media, in particular German TV, present COVID-19 data in a rather debatable

way. When mentioning Johns Hopkins data, they provide C, D, and R separately

without stating the most important figures, namely I = C−D−R, their change,

and the change of their change. When mentioning data of the Infectious from

the Robert Koch institute alongside, they do not say precisely that these are non-

cumulative and should be compared to the I =C−R−D data of the Johns Hopkins

University. And, in most cases during the outbreak, they did not mention the

change of the change. Quite like all other media.

One can see in Figure 5 that Germany has passed the peak of the Infectious, while

France is roughly at the peak and the United States and Brazil are still in an expo-

nential outbreak. The early figures, below day 40, are rather useless, but then an

exponential outbreak is visible in all cases. This outbreak changes its slope due

to political actions, and we shall analyze this later. See Dehning et al. [6] for a

detailed early analysis of slope changes.

There are strange anomalies in the Recovered (green). France seems not to have

delivered any data between days 40 and 58, Germany changed the data delivery
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policy between days 62 and 63, and the UK data for the Recovered are a mess.

It should be noted that the available medical results on the COVID-19 disease

often state that Confirmed will die or survive after a more or less fixed number

of days. This would imply that the red curves for the Dead and the green curves

for the Recovered should roughly follow the blue curves for the Confirmed with a

fixed but measurable delay. This is partially observable, but much less accurately

for the Recovered.

3.3 The Johns Hopkins Data Model

The idea is to define a model that works exclusively with the Johns Hopkins data,

but comes close to a SIR model, without being able to use S. Since the SIR model

does not distinguish between recoveries and deaths, we set

RSIR ⇔ DJH +RJH

and let the Infectious be comparable, i.e.

ISIR ⇔ IJH :=CJH −DJH −RJH

which implies

(I +R)SIR ⇔CJH ,

and we completely omit the Susceptibles. From now on, we shall omit the sub-

script JH when we use the Johns Hopkins data, but we shall use SIR when we go

back to the SIR model.

Now we go back to (16) in section 2.16 and use

γ =
ṘSIR

ISIR

≈
(D+R)n+1 − (D+R)n

In

=: γn

b := β
SSIR

N
=

İSIR + γISIR

ISIR

=
İSIR + ṘSIR

ISIR

,

≈
Cn+1 −Cn

In
=: bn,
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Figure 5: Raw Johns Hopkins data in logarithmic presentation up to day 120, from

top: UK, Germany, Brazil, and France
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defining time series γn and bn that model γ and b = β · SSIR/N without knowing

SSIR. This is equivalent to the model

Cn+1 −Cn = bnIn,
In+1 − In = bnIn − γnIn,

(R+D)n+1 − (R+D)n− = γnIn

that maintains C = I +R+D, and we may call it a Johns Hopkins Data Model. It

is very close to a SIR model if the time series bn is not considered to be constant,

but just an approximation of β ·SSIR/N.

3.3.1 Estimating R

By brute force, one can consider

rn =
bn

γn

=
Cn+1 −Cn

Rn+1 +Dn+1 −Rn −Dn

(17)

as a data-driven substitute for

β

γ

SSIR

N
= R0

SSIR

N
.

Then there is a rather simple observation:

If rn is smaller than one, the Infectious decrease.

It follows from

Cn+1 −Cn = rn(Rn+1 +Dn+1 −Rn −Dn)
In+1 − In +Rn+1 −Rn +Dn+1 −Dn = rn(Rn+1 +Dn+1 −Rn −Dn)

In+1 − In = −(1− rn)(Rn+1 −Rn +Dn+1 −Dn),

but this is visible in the data anyway and not of much help.

Since rn models R0
SSIR

N
, it always underestimates R0. This underestimation gets

dramatic when it must be assumed that SSIR gets seriously smaller than N.

At this point, it is not intended to forecast the epidemics. The focus is on extracting

parameters from the Johns Hopkins data that relate to a background SIR-type

model.
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Figure 6: Estimates of R0 via the time series rn

3.3.2 Example

Figure 6 shows R0
SSIR

N
estimates via rn for the last four weeks before day 120, i.e.

March 21st . Except for the United States and Brazil, all countries were more or

less successful in pressing R0 below one. In all cases, SSIR/N is too close to one

to have any influence. The variation in rn is not due to the decrease in SSIR/N, but

should rather be attributed to political action. As mentioned above, the estimates

for R0 by rn are always too optimistic.

For the figure, the raw Johns Hopkins data were smoothed by a double action of

a 1/4,1/2,1/4 filter on the logarithms of the data. This smoother keeps constants

and linear sections of the logarithm invariant, i.e. it does not change local expo-

nential behaviour. This smoothing was not applied to Figure 5. It was by far not

strong enough to eliminate the apparent 7-day oscillations that are frequently in

the Johns Hopkins data, see the figure. Data from the Robert Koch Institute in

Germany have even stronger 7-day variations.
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3.3.3 Properties of the Model

As long as rn is roughly constant, the above approach will always model an expo-

nential outbreak or decay, but never a peak, because the difference equations are

linear. It can only help the user to tell if there is a peak ahead or behind, depending

on rn ≈ R0 being larger or smaller than 1. If rn is kept below one, the Confirmed

Infectious will not increase, causing no new threats to the health system. Then the

S/N factor will not decrease substantially, and a full SIR model is not necessary.

On the other hand, if a country manages to keep rn smaller than some r = b
γ < 1,

it is clear that it takes

j =
log(In)

− log(1+b− γ)

steps to bring the Confirmed Infectious down to 1, if we assume b and γ to be

constant. Making R0 ≈
b
γ < 1 small is not the best strategy. Instead, one should

maximize γ −b.

As long as countries keep rn clearly below one, e.g. below 1/2, this would mean

that R0 ≈ rn
N

SSIR
stays below one if SSIR ≥ N/2, i.e. as long as the majority of

the population has not been in contact with the SARS-CoV-2 virus. This is good

news. But observing a small rn can conceal a situation with a large R0 if SSIR/N

is small. This is one reason why countries need to get a grip on the Susceptibles

nationwide.

It is tempting to use the above technique for prediction in such a way that the

bn and the γn are fitted to a constant or a linear function, and using the values

of the fit for running the system into the future. This is very close to extending

the logarithmic plots of Figure 5 by lines, using pencil and ruler, and thus hardly

interesting. It would extend also all effects due to political measures.

So far, the above argument cannot replace a SIR model. It only interprets the

available data. However, monitoring the Johns Hopkins data in the above way

will be very useful when it comes to evaluate the effectivity of certain measures

taken by politicians. It will be highly interesting to see how the data of Figure 6

continue, in particular when countries relax their contact restrictions.

3.4 Extension Towards a SIR Model

For cases where one still has to expect R0 > 1, e.g. US and Brazil (see Figure

6), the challenge remains to predict a possible peak. Using the estimates from
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the previous section is questionable, because they concern the subpopulation of

Confirmed and are systematically underestimating R0. The “real” SIR model will

have different parameters, and it needs the Susceptibles to model a peak or to make

the rn estimates realistic. So far, the Johns Hopkins data work in a range where

S/N is still close to one, and the Susceptibles are considered to be abundant. But

the bad news for countries with rn > 1 is that rn underestimates R0.

Anyway, if one trusts the above time series as approximations to β and γ , one

can run a SIR model, provided one is in the case R0 > 1 and has reasonable start-

ing values. But these are a problem, because the unconfirmed Infectious and the

unconfirmed Recovered are not known, even if, for simplicity, one assumes that

there are no unconfirmed COVID-19 deaths.

For an unrealistic scenario, consider Total Registration, i.e. all Infected are auto-

matically confirmed. Then the Susceptibles in the Johns Hopkins model would be

Sn = N −Cn = N − In −Rn −Dn. Now the estimate for R0 must be corrected to

rn
N

Sn

= rn
N

N −Cn

= rn

(

1+
Cn

N −Cn

)

but this change will not be serious during the outbreak.

If the time series βn = bn
N
Sn

= bn
N

N−Cn
for β and γn for γ are boldly used as predic-

tors for β and γ in a SIR model, and if the model is started using Sn = N −Cn =
N − In −Dn −Rn in the discretized form

Sn+1 −Sn = −β
Sn

N
In,

In+1 − In = +β
Sn

N
In − γIn,

(R+D)n+1 − (R+D)n = −γIn,

one gets a crude prediction of the peak in case R0 = β/γ > 1.

Figure 7 shows results for two cases. The top shows the case for the United States

using data from day 109 (May 10th) and estimating β and γ from the data one

week before. The peak is predicted at day 473 (May 9th, 2021) with a total rate

of 33% Infectious, i.e. about 124 million people. With an infection fatality rate of

0.005%, this means about 600000 casualties in the two weeks around the peak. To
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Figure 7: Brute force SIR modeling for US and Germany using last week’s data,

at days 109 and 75, respectively.

see how crude the technique is, the second plot shows the case of Germany using

data up to day 75 (April 6th, 2020), i.e. before the peak, and the peak is predicted

at day 230 (Sept. 8th, 2020) with about 16% Infected. This would imply about

65000 casualties around the peak. At day 75, R0 was estimated at 2.01, but a few

days later the estimate went below 1 (Figure 6) by political intervention changing

bn considerably. See Figure 11 for a much better prediction using data only up to

day 67.

4 Extended SIR Model

To get closer to reality, one should combine the data-oriented Johns Hopkins Data

Model with a SIR model that accounts for what happens outside of the Confirmed.
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We introduce the time series

S for the Susceptibles like in the SIR model,

M for the Infectious, not yet confirmed, (M standing for mysterious),

H for the unconfirmed Recovered (H standing for healed).

This implies that all deaths occur within the Confirmed, though this is a highly

debatable issue. It assumes that persons with serious symptoms get confirmed,

and nobody dies of COVID-19 without prior confirmation.

4.1 The Hidden Model

The Removed from the viewpoint of a global SIR model including H and M are

H +C, and thus the SIR model is

Sn+1 −Sn = −β
Sn

N
Mn,

Mn+1 −Mn = β
Sn

N
Mn − γMn,

(H +C)n+1 − (H +C)n = γMn.

(18)

To run this hidden model with constant N = S +M +H +C, one needs initial

values and good estimates for β and γ , which are not the ones of the Johns Hopkins

Data Model of section 3.3.

4.2 The Observable Model

The Johns Hopkins variables D and R are linked to the hidden model via C =
I −R−D. They follow an observable model

In = Cn −Rn −Dn,
Dn+1 −Dn = γiCDIn,
Rn+1 −Rn = γiCRIn

(19)

with instantaneous case death and recovery rates γiCD and γiCR for the Confirmed

Infectious. These rates can be estimated separately from the available Johns Hop-

kins data, and we shall do this below. We call thes rates instantaneous, because

they artificially attribute the new deaths or recoveries at day n+ 1 to the previ-

ous day, not to earlier days. In this sense, they are rather artificial, and we shall

address this question. They are case rates, because they concern the Confirmed.
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The observable model is coupled to the hidden model only by Cn. Any data-

driven Cn from the observable model can be used to enter the H +C variable of

the hidden model, but in an unknown ratio. Conversely, any version of the hidden

model produces H +C values that do not determine the C part. Summarizing,

there is no way to fit the hidden model to the data without additional assumptions.

Various possibilites were tried to connect the Hidden to the Observable. Two will

be presented now.

4.3 Fatality Rates

4.3.1 Infection Fatality Rate

Recall that the parameter γiCD in the observable model (19) relates case fatalities

to the confirmed Infectious of the previous day. In contrast to this, the infec-

tion fatality rate in the standard literature, denoted by γIF here, is relating to the

infection directly, independent of the confirmation, and gives the probability to

die of COVID-19 after infection with the SARS-CoV-2 virus, whatever the de-

lay between infection and death is. It was estimated as γIF = 0.56% by an der

Heiden/Buchholz [2] and 0.66% by Verity et al. [22], but specialized for China.

Recent data from the Heinsberg study by Streeck et. al. [21] gives a value of

0.36% for the Heinsberg population in Germany. For the UK, Ferguson et al. [7]

arrive at 0.9%. We shall later use 0.5% for our predictions. But it is very desir-

able to get more information on infection fatality rates, in particular for different

countries. So far, we use thus a single value globally.

The idea to use the infection fatality rate for information about the hidden system

comes from Bommer/Vollmer [3]. The way to use it will depend on how to handle

delays, and it turned out to be difficult to use these rates in a stable way.

4.3.2 Estimation of Case Fatality Rates

Let us focus on probabilities to die either after an infection or after confirmation

of an infection. The first is the infection fatality rate given in the literature, but

what is latter, the case fatality rate γCF when using the Johns Hopkins data? It is

clearly not the γiCD in (19), giving the ratio of new deaths at day n+1 as a fraction

of the confirmed Infectious at day n. The deaths at day n+1 must be assigned to

various earlier days instead.
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Case fatality rates in the literature vary strongly, and they are country-dependent.

Countries have different ways to detect cases, and because the mortality is age-

dependent, different age structures will have a serious influence. The Robert-

Koch-Institute [18] mentions 10.5% for Europe and 4.6% for Germany, while De

Brouwer et al. [5] has 10.0% for Italy, 4.0% for China, 6.0% for Spain, and

4.3% worldwide. According to Streeck et al.[21], the current estimate of the case

fatality rate in Germany by the World Health Organization (WHO) is between

2.2% and 3.4%.

We cannot clean up these inconsistencies. Instead, we now describe a way to es-

timate case fatality rates per country from the Johns Hopkins data. The basic ide-

alistic assumption is that COVID-19 diseases end after k days from confirmation

with either death or recovery. Let us call this the k-day rule. Suggested values for

k start from 14 days for mild cases (an der Heiden/Buchholz [2] WHO [1]) and go

up to 30 days, composed of an incubation time of about 5 days and various values

between 11 and 25 days for hospitalization, depending on the amount of intensive

care (an der Heiden/Buchholz [2], Robert Koch-Institut [18], Verity et al. [22],

Mohring et al. [17]).

Following Schaback [19], one can estimate the probability to survive on day k+1

after confirmation, and this works in a stable way per country, based only on C

and D, not on the unstable R data. In [19] this approach was used to produce R

values that comply with the k-day rule, but here we use it for estimating the case

fatality. The technique of [19] performs a fit

Dn −Dn−1 ≈
k

∑
i=1

qi(Cn−i −Cn−i−1),

qi = pi

i−1

∏
j=1

(1− p j), 1 ≤ i ≤ k+1

(20)

i.e. it assigns all new deaths at day n to previous new infections on previous days

in a hopefully consistent way, minimizing the error in the above formula under

variation of the probabilities pi to die on day i after confirmation. If the pi are

known for days 1 to k, the case fatality rate is

γCF =
k

∑
i=1

qi = 1−qk+1.

This argument can also be seen the other way round: the new Confirmed Cn−Cn−1

at day n enter into Dn+1 −Dn with probability q1 = p1, into Dn+2 −Dn+1 with
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Figure 8: Left: case fatality rate for Germany based on data at day 109, as func-

tions of k and the data backlog. Right: Root mean-square error.

probability q2 = p2(1− p1) and so on. The rest enters into the new Recovered at

day n+ k with probability qk+1 if we set pk+1 = 0. Thus the case fatality rate can

be expressed as 1−qk+1 like above.

At this point, there is a hidden assumption. Persons that are new to the Confirmed

at day n are not dead and not recovered. The change Cn+1 −Cn to the Confirmed

is therefore understood as the number of new registered infections. Otherwise,

one might replace Cn−i −Cn−i−1 by In−i − In−i−1 in (20), but this would connect

a cumulative function to a non-cumulative function. Furthermore, this would use

the unsafe data of the Recovered.

In fact, equation (20) is unexpectedly reliable, provided one looks at 1−qk+1 or

qk+1, not at single probabilities p j. This follows from series of experiments that

we do not document fully here, except for Figure 8. In [19], data for 2k days

backwards were used for the estimation, and results did not change much when

more or less data were used or when k was modified. Here, the range 7 ≤ k ≤ 21

was tested, and backlogs of up to 50 days from day 109. See Figure 8 below for

an example. It is typical here and for many other cases that a value of k = 14

performs well, with a backlog of 2k = 28 days for the fit in (20). Using larger k

needs a larger backlog, but then the estimation is not time-local enough to produce

current estimates, because outdated values are used. Figure 8 shows the variation

of the case fatality rate estimation when k and the backlog are varied.

See the first column of Table 1 for estimates of case fatality rates for different
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Country Death Detection

rate rate

Germany 0.047 0.106

Brazil 0.094 0.053

Russia 0.012 0.407

Italy 0.138 0.036

Spain 0.085 0.059

Sweden 0.157 0.032

Austria 0.052 0.096

France 0.122 0.041

UK 0.145 0.035

US 0.067 0.075

Table 1: Case fatality and detection rates, estimated on day 109 using the 14-day

rule and a backlog of 28 days

countries, calculated on day 109 (May 10th) for k = 14 and a backlog of 28 days.

They comply with the values from the literature cited above, and depend strongly

on the strategy for confirmation. In particular, they are high when only serious

cases are confirmed, e.g. cases that need hospital care. If many more people are

tested, confirmations will contain plenty of much less serious cases, and then the

case fatality rates are low.

The instantaneous case death rate γiCD of (19) for the Johns Hopkins data comes

out around 0.004 for Germany on day 109 by direct inspection of the data via

γiCD ≈
Dn+1 −Dn

In
, (21)

while the Case Fatality Rate γCF in Table 1 is about 0.047. The deaths have to be

attributed to different days using the k-day rule, they cannot easily be assigned to

the previous day without making the rate smaller.

4.3.3 Using Fatality Rates for the Hidden Model

If the case fatality rates γCF of Table 1 are used with a known infection fatality

rate γIF , one should obtain an estimate of the total Infectious. If the formula (20)
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is written as

k

∑
i=1

qi(Cn−i −Cn−i−1)≈ Dn −Dn−1 ≈
k

∑
i=1

q̃i(Sn−i−1 −Sn−i)

in terms of the previous new infections Sn−i−1 −Sn−i with infection fatality prob-

abilities q̃i, one should maintain

γCF =
k

∑
i=1

qi and γIF =
k

∑
i=1

q̃i

and this works by setting

Cn −Cn−1 =
γIF

γCF

(Sn−1 −Sn) (22)

in general, without using the unstable pi.

4.3.4 The Detection Rate

The quotient
γIF

γCF
can be called the detection rate, stating the fraction of Infectious

that is entering confirmation. See the second column of Table 1. The rate depends

on good estimates of the infection fatality rate, and the new value by Streeck et al.

[21] will roughly double the detection rate for Germany.

All of this is comparable to the findings of Bommer/Vollmer [3] and uses the basic

idea from there, but with a somewhat different technique and different results.

There, the values were 7% for March 23rd and 9% for March 30th, while Mohring

et al. [17] assume 20%.

A simple way to understand the quotient
γIF

γCF
as a detection rate is to ask for the

probability p(C) for Confirmation. If the probability to die after Confirmation is

γCF , and if there are no deaths outside confirmation, then

p(D) = p(C) · p(D|C),

and

p(C) =
p(D)

p(D|C)
=

γIF

γCF

.

It is tempting to replace S by M in (22), but this would make M cumulative.
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4.3.5 Local Estimation of Fatality Rates

Under political changes of the parameters β and γ , and when the testing strategies

are changed, the estimation of the Case Fatality Rate should be made locally, not

globally. Using the experience of Schaback [19] and section 4.3.2, we shall do

this using a fixed k = 14 for the k-day rule and data for a fixed backlog of 2k days.

4.4 Recovery Rates

We need another parameter to connect the hidden to the observable model. There

are many choices, and after some failures we selected the constant γiIR in a model

equation

Hn+1 −Hn = γiIRMn.

Following what was mentioned about instantaneous rates in section 4.2, this is an

instantaneous Infection Recovery Rate, relating the new unregistered Recovered

to the unregistered Infections the day before.

4.4.1 Estimation of Recovery Rates

A good value of γiIR can come out of a field experiment that produces a time series

for M and H, i.e. for unregistered Infectious and unregistered Recovered. Then

the instantaneous Infection Recovery rate γiIR can be obtained directly by

Hn+1 −Hn

Mn
≈ γiIR.

The Infection Recovery rate γIR = 1− γIF does not help much, because we need

an instantaneous rate that has no interpretation as a probability.

With the risk of using unstable data of the Recovered, we can look at the instanta-

neous Case Recovery rate
Rn+1 −Rn

In
≈ γiCR (23)

that is available from the Johns Hopkins data, and comes out experimentally to be

rather stable, provided that countries have useful data for the Recovered. Other-

wise, we have to use the technique of Schaback [19]. The rate γiIR must be larger,

because we now are not in the subpopulation of the Confirmed, and nobody can
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die without going first into the population of the Confirmed. As long as no better

data are available, we shall use the formula

γiIR =
1− γIF

1− γCF

γiCR =
γIR

γCR

γiCR =
γiCR

γCR

γIR (24)

that implements two meaningful arguments:

1. the value γiCR is increased by the ratio of Recovered probabilities for the

Infected and the Confirmed,

2. the value γIR is multiplied by a factor for transition to immediate rates, and

this factor is the transition factor for the Confirmed Recovered.

The above strategy is debatable and may be the weakest point of this approach.

However, others turned out to be worse, mainly due to instability of results. On the

positive side, the final prediction does not need it. It enters only in the intermediate

step when S, M, and H are calculated in the time range of the available Johns

Hopkins data, see section 4.5. And, finally, there is hope that there will be field

experiments that yield reliable values directly.

4.4.2 Practical Approximation of Recovery Rates

In (24) the rate γIR is fixed, and the rate γCR is determined locally via section 4.3.5.

The rate γiCR follows from the time series

Rn+1 −Rn

In
≈ γiCR

as in (19). This works for countries that provide useful data for the Recovered. In

that case, and in others to follow below, we can take the time series itself as long

as we have data. For prediction, we estimate the constant from the time series

using a fixed backlog of m days from the current day, i.e. we take the mean of the

last m+ 1 values. Since many data have a weekly oscillation, due to data being

not properly delivered during weekends, the backlog should not be less than 7.

But for certain countries, like the United Kingdom, the data for the Recovered are

useless. In such cases, we employ the technique of Schaback [19] to estimate the

Recovered using the k-day rule and a backlog of 2k days, like in section 4.3.5 for

the case fatality rates.
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4.5 Model Completion

We now have everything to run the hidden model, but we do it first for days that

have available Johns Hopkins data. This leads to estimations of S, M, and H from

the observed data of the Johns Hopkins source, without any need for sophisticated

fitting algorithms, With the parameters from above, we use the new relations

Cn+1 −Cn =
γIF

γCF

(Sn −Sn+1),

Hn+1 −Hn = γiIRMn

(25)

in a specific way. We set up the second model equation in (18) for M as

Mn+1 −Mn = Sn −Sn+1 − γnMn

=
γCF

γIF
(Cn+1 −Cn)− γnMn

=
γCF

γIF

(Cn+1 −Cn)− (Cn+1 −Cn +Hn+1 −Hn)

=

(

γCF

γIF
−1

)

(Cn+1 −Cn)− γiIRMn

(26)

that can be solved if an initial value M̃0 is prescribed. Then (25) is run to produce

the Sn and Hn, with starting values that we describe in section 4.5.1. If βn and γn

are calculated by

βn
Sn

N
Mn = Sn −Sn+1,

γnMn = Cn+1 −Cn +Hn+1 −Hn,
(27)

respectively, the balance equation N = S+M+H +C follows from (26).

4.5.1 Starting Values

Since the populations are large, the starting values for S are not important. Starting

at the full population N from a very early day, the S values are calculated from

(25), just to get values S j for starting at later days.

Then the first day j is taken where C j is at least 100, and the start value for H

there is set as

H j =C j−k

γCF

γIF
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using the k-day rule with k = 14. This divides the C j−k > I j−k value by the detec-

tion rate, i.e. roughly all estimated undetected Infectious at time j−k are assumed

to be healed k days later, i.e. at day j. Then the starting value for M j is calculated

via the balance equation N = S j +M j +H j +C j.

The starting value for H is irrelevant for H itself, because only differences enter,

but it determines the starting value for M due to the balance equation. Anyway,

it turns out experimentally that the starting values do not matter, if the model is

started early. The hidden model (18) depends much more strongly on C than on

the starting values.

Figure 11 contains a wide variation of the starting value H = N − S−C at the

starting point, by multipliers between 1/32 and 32. This has hardly any effect on

the results, the lines getting somewhat thicker. The variation in starting values get

more visible in other cases, see the right-hand plot in Figure 11 for the United

States. But the influence on predictions is negligible.

4.5.2 Examples

The figures to follow in section 5.2 show the original Johns Hopkins data together

with the hidden variables S, M, and H that are calculated by the above technique.

Note that the only ingredients beside the Johns Hopkins data are the number k =
14 for the k-day rule, the Infection Fatality Rate γIF from the literature, equations

(25), and the backlog m = 7 for estimation of constants from time series.

5 Predictions using the Full Model

To let the combined model predict the future, or to check what it would have

predicted if used at an earlier day, we take the completed model of the previous

sections up to a day n and use the values Sn, Mn, Hn,Cn, In, Rn and Dn for starting
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the prediction. With the variable HC := H +C, we use the recursion

Si+1 = Si −β
Si

N
Mi,

Mi+1 = Mi +β
Si

N
Mi − γMi,

HCi+1 = HCi + γMi,
Ci+1 = Ci + γIF(Si −Si+1)/γCF ,
Ri+1 = Ri + γiCRIi,
Di+1 = Di + γiCDIi,
Ii+1 = Ci+1 −Ri+1 −Di+1,

Hi+1 = HCi+1 −Ci+1.

(28)

This needs fixed values of β and γ that we estimate from the time series for βn

and γn by using a backlog of 7 days, following Section 4.5. The instantaneous

rates γiCR and γiCD can be calculated via their time series, as in (23) and (21),

using the same backlog. We do this at the starting point of the prediction, and

then the model runs in what can be called a no political change mode. Examples

will follow in section 5.2.

5.1 Properties of the Full Model

The first part of the full model (28) runs as a standard SIR model for the variables

S, M and H +C, and inherits the properties of these as described in section 2. It

does not use the γiIR parameter of the second equation in (25), and it uses the first

the other way round, now determining C from S, not S from C.

The balances N = S+M+H +C and C = I+D+R are maintained automatically,

and the time series for S,C, R, H +C, and D stay monotonic as long as M and I

are nonnegative. To check the monotonicity of H, consider

Hi+1−Hi = HCi+1 −HCi −Ci+1 +Ci

= γMi −
γIF

γCF

(Si −Si+1)

=

(

γ −β
γIF

γCF

Si

N

)

Mi.

The bracket is positive if

R0 =
β

γ
<

γCF

γIF

N

Si
≥

γCF

γIF
,
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which is enough for practical purposes as long as detection rates are high and R0

is not excessively large.

The slopes of S and C are always connected by (22), and those of R and D are

connected by

Ri+1 −Ri =
γiCR

γiCD

(Di+1−Di)

in the prediction part. But the figures below will show logarithms, and therefore

the slope parallelism will not be visible.

By section 2.11, the hidden Infectious M will always go to zero, and the variables

S and H +C will level out in the long run. Since C is increasing, it must level out

as well, and I must go to zero because R and D level out. The asymptotic levels

of S and H +C follow from 2.11, but not the interesting asymptotic level of D. If

the prediction is started at day n, then

R∞ −Rn =
γiCR

γiCD

(D∞−Dn)

connects the asymptotic deaths and confirmed recoveries. From the connection of

S and C we likewise get

C∞ −Cn =
γiIF

γCF

(Sn −S∞).

With C∞ = R∞ +D∞ we now have three independent equations for the unknowns

C∞, D∞, R∞. Because the theory of Section 2.11 yields S∞ and H∞ +C∞ in terms

of β and γ , we can also get H∞. But if the simulation is run long enough, one can

read the asymptotic values off the plots.

5.2 Examples of Predictions

Figure 9 shows predictions on day 122, May 23rd, for Germany, Brazil, France,

and US, from the top. The plots for countries behind their peak are rather similar

to those for Germany and France. The other two countries are selected because

they still have to face their peak, if no action is taken to change the parameters.

The plots show that Germany can expect to get away with no more than 10000

casualties in the long run, while Brazil goes for a peak of about 20 million hidden

Infectious in fall 2020 (M, symbol ✷) and a final death toll of about 1 million
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(D, symbol +). The United States would have to face a peak of hidden Infectious

of about 25 million in mid-January 2021, and more than 1 million COVID-19

deaths in October 2021, and still rising. But of course, these predictions assume

that reality follows the model and that there are no parameter changes by political

action.

The estimated R0 values are 0.65, 2.19, 0.4s, and 1.75, respectively. Note that

these are not directly comparable to Figure 6, because they are the fitted constants

to the backlog of a week, and using (27) instead of (17), avoiding the systematic

underestimation of the latter. The hidden M and H (symbols ✷ and ⋄) follow

roughly the observable I and C (symbols O and x), but with a factor due to the de-

tection rate that is different between countries, see Table 1. To enhance visibility,

not all points in the plots are marked with symbols. The C, R, I and D data left of

the vertical line are the original Johns Hopkins data. The S, M, H data there are

calculated by section 4, while to the right the data are predictions for all variables

by the full model (28).

All test runs were made for the infection fatality rate γIF = 0.005, the delay k = 14

for estimating case fatalities, and a backlog of 7 days when estimating constants

out of recent values of time series. The choice γIF = 0.005 is somewhat between

0.56% from an der Heiden/Buchholz [2], 0.66% from Verity et al. [22], and 0.36%

from Streeck et al. [21]. New information on infection fatality rates should be

included as soon as they are available, and if possible different values for different

countries.

When used within estimation routines, the Johns Hopkins data were smoothed by

a double application of the 1/4, 1/2, 1/4 filter on the logarithms, like for Figure 6.

But the plots show the original data.

5.3 Evaluation of Predictions

To evaluate the prediction quality, one should go back and start the predictions for

earlier days, to compare with what happened later. Figure 10 shows overplots of

predictions for days 94, 108, and 122, each a fortnight apart. The starting points

of the predictions are marked by vertical lines again. For better visibility, only the

death count D (symbol +) and the two non-cumulative variables M and I for the

hidden and confirmed Infectious (symbols ✷ and O) are shown. Each prediction

has slightly different estimates for S, M, and H due to different available data, and
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Figure 9: Predictions for countries Germany, Brazil, France, and US on day 122

marked by the vertical dotted line
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therefore there are different M curves even left of the leftmost prediction day. Re-

call that the determination of these variables is done while there are Johns Hopkins

data available, following section 4.5, and will be dependent on the data-driven es-

timations described there. In particular, the case fatality rates and detection rates

of Table 1 change with the starting point of the prediction, and they determine

S, M, and H backwards. The leftmost prediction on day 94 roughly matches the

data available up to day 122 in all cases. One can see that the Brazil parameters

do not change much, while the three predictions for the United States get better.

Germany was slightly better off on day 94 than on days 108 and 122. This might

be used to assess effectivity of administrative efforts to handle the pandemics.

For an early case in Germany, Figure 11 shows the prediction based on data of

day 67, March 27 th. The peak of about 20 million Infected is predicted on day

121, May 22nd , with roughly 20 million unconfirmed Infectious and about 70,000

casualties at the peak and about 200,000 finally. A good reason to act politically.

Note that the real death count is about 8300 on May 23rd , and the prediction of

the day, in Figure 9, targets a final count of below 10,000.

Quantitative commitments to predictions are rare in the literature, except for rough

estimations of dramatic outbreak scenarios. On April 3rd, after the last public

restrictions in Germany of March 22nd, 2020, Germany had 1107 deaths and

Khailaie et al. [14] predicted 10,000 deaths for early May. Roughly the same

is predicted by this model using the same data, but also a final death toll of 25,000

in the long run. The true deaths were 6812 on May 3rd.

On March 16th, Ferguson et al. [7] predicted deaths in the order of 250,000 in GB,

and 1.1 to 1.2 million in the USA. If the model (28) is run on data up to March

16th, it predicts 2 million deaths in the USA and 300,000 for the UK. Again, there

were non-pharmaceutic interventions in between that brought the figures down.

The use of the Infection Fatality Rate is somewhat different from Streeck et al.

[21] and Bommer/Vollmer [3], but results are similar. If the rate 0.0036 of [21]

is used in a test run based on data of May 2nd, the estimated number of Infected

comes out as 1.54 million, while [21] gets 1.8 million by the formula (Mn+Cn) =
Dn/0.0036 for the same day.

The parameter changes by political measures turned out to be rather effective, like

in many countries that applied similar strategies. But since parts of the population
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Figure 10: Predictions for countries Germany, Brazil, France, and USA on days

122, 108, and 94, marked by vertical dotted lines. Legend as in Figure 9.



6 CONCLUSION AND OPEN PROBLEMS 46

want to go back to their previous lifestyle, all of this is endangered, and the figures

should be monitored carefully.

Of course, all of this makes sense only under the assumption that reality follows

the model, in spite of all attempts to design a model that follows reality.

6 Conclusion and Open Problems

So far, the model presented here seems to be useful, combining theory and practi-

cally available data. It is data-driven to a very large extent, using only the infection

fatality rate from outside for prediction, and the approximation (24) for calibra-

tion.

On the downside, there is quite a number of shortcomings:

• Like the data themselves, the model needs regular updating. As far as the

Johns Hopkins data are concerned, the model updates itself by using the

latest data, but it needs changes as soon as new information on the hidden

infections come in.

• There may be better ways of estimating the hidden part of the epidemics.

However, it will be easy to adapt the model to other parameter choices. If

time series for the unknown variables get available, the model can easily be

adapted to being data-driven by the new data.

• The treatment of delays is unsatisfactory. In particular, infected persons get

infectious immediately, and the k-day rule is not followed at all places in

the model. But the rule is violated as well in the data (Schaback [19]).

• There is no stochastics involved, except for simple things like estimating

constants by means, or for certain probabilistic arguments on the side, e.g.

in section 4.3.2. But it is not at all clear whether there are enough data to do

a proper probabilistic analysis.

• As long as there is no probabilistic analysis, there should be more simu-

lations under perturbations of the data and the parameters. A few were

included, e.g. for section 4.3.2 and Figures 8 and 11, but a large number

was performed in the background when preparing the paper, making sure

that results are stable. However, there are never too many test simulations.



6 CONCLUSION AND OPEN PROBLEMS 47

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Predictions for Germany backwards from day 67 

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Predictions for US backwards from day 67 

Figure 11: Predictions for Germany and USA on day 67, March 27th, with varying

starting values. Legend as in Figure 9.
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Figure 12: Infectious in Göttingen city and county, as of April 22nd, 2020 in the

local newspaper “Göttinger Tageblatt”. No exponential outbreak.

• Totally different models were not considered, e.g. the classical ones with

delays (Hoppenstaedt/Waltman [11, 12].

• Under certain circumstances, epidemics do not show an exponential out-

break, in particular if they hit only locally and a prepared population. See

Figure 12 for the COVID-19 cases in Göttingen and vicinity.

MATLAB programs and more recent predictions will be on the research website

http://num.math.uni-goettingen.de/schaback/research/group.html of

the author. Special thanks go to Tara Fickle, Viola Priesemann, Jalda Schaback,

and Wolfgang Warth for comments and corrections. All links in the references

were verified on June 2nd, 2020.

http://num.math.uni-goettingen.de/schaback/research/group.html
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Appendix, not for publication:

The suppressed argument:

Between 0 and τI:

s(τI) ≤ s(τ) ≤ s(0)
i(0) ≤ i(τ) ≤ i(τI)

−R0i(0)s(τI) ≥ −R0i(τ)s(τ) ≥ −R0i(τI)s(0)

−R0i(0)s(τI)τ ≥ log

(

s(τ)

s(0)

)

≥ −R0i(τI)s(0)τ

−R0i(0)s(τI)τI ≥ log

(

s(τI)

s(0)

)

≥ −R0i(τI)s(0)τI

+R0i(0)s(τI)τI ≤ log(s(0)R0) ≤ +R0i(τI)s(0)τI

i(0)s(τI) ≤
log(s(0)R0)

R0τI
≤ i(τI)s(0)

i(0)

R0
≤

log(s(0)R0)

R0τI
≤ s(0)

(

1−
1

R0
−

log(s(0)R0)

R0

)

i(0) ≤
log(s(0)R0)

τI

≤ s(0)(R0 −1− log(s(0)R0))

log(s(0)R0)

s(0)(R0 −1− log(s(0)R0))
≤ τI ≤

log(s(0)R0)

i(0)
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