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1 Introduction

Let fB

i

; i 2 Ig be some collection of scalar valued functions satisfying

B

i

(x) � 0;

X

i2I

B

i

(x) = 1; x 2 
 (1)

on some �xed parameter domain 
 � IR

s

. If I is in�nite, we assume that

jI(x)j <1; I(x) := fi 2 I j B

i

(x) 6= 0g; x 2 
:

Using control nets b := fb

i

g

i2I

2 B := R

I

of vectors from some normed linear space R we

consider the space

L(B) :=

(

L(b) :=

X

i2I

b

i

B

i

j b = fb

i

g

i2I

2 B

)

of R{valued functions on 
. A standard technique in CAGD is the replacement of L(b) by the

control net b itself or by a simple function which in turn depends on b, e.g. a piecewise linear

interpolant of b. Starting with a coarse control net over a large domain, re�nement techniques

like subdivision or knot insertion are applied until the re�ned control nets b

h

:= fb

h

i

j i 2 I

h

g

over domains 


h

satisfy certain \
atness tests" and can be used as approximations to L(b).

Error estimates for this process were mainly given in the form

kb

h

i

� L(b)(�

h

i

)k � C(b)h

2

; i 2 I

h

; h! 0 (2)

0
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indicating quadratic convergence of the re�ned control net points b

h

i

towards the function L(b)

de�ned by the coarse control net, evaluated at certain points �

h

i

2 
 (see results of Prautzsch

[6], Dahmen, Dyn, and Levin [4], and Dahmen [3]). Within this approach, the order 2 has

been proven by Dahmen [3] to be optimal. Higher orders were proven by Prautzsch [6] and

Dahmen, Dyn, and Levin [4] to hold locally for the box spline case. Equation (2) follows from

reproduction of linear polynomial curves or surfaces. In general, O(h

r

) error bounds usually

result for schemes of polynomial precision r � 1. Such error bounds go back at least to the

theory of Bramble and Hilbert [2] and to the practice of Barnhill and Gregory [1], using Sard's

work, with others having contributed since.

This paper uses a very simple method to derive some rather general error estimates for ap-

proximations to L(b) depending on the control net b. As a consequence, it turns out that error

estimates like (2) have nothing to do with re�nement processes; they simply follow from the

\linear precision" [5] of the representation process b 7! L(b). Furthermore, our error estimates

� cover NURBS and are

� uniform rather than pointwise,

� numerically accessible, and

� of more that second order for speci�c applications.

The following preliminary examples serve to give the reader an idea of the applications of the

results of this paper. They easily generalize to surfaces, but are given in terms of curves, for

simplicity.

Example 1.1 For polynomial curves of degree n in Bernstein{B�ezier form on 
 := [�; �] 2 IR

we have I := f0; 1; . . . ; ng and

L(b)(x) =

n

X

i=0

b

i

B

(n)

i

(x) =

n

X

i=0

b

i

�

n

i

��

� � x

� � �

�

n�i

�

x� �

� � �

�

i

: (3)

If 
 is small enough, replacement of L(b) with the polygon de�ned by the control net b =

fb

0

; . . . ; b

n

g produces an error of O(� � �)

2

, usually proven in the discrete form

kb

i

� L(b)(�+

i

n

(� � �))k � C(� � �)

2

:

Our approach yields the uniform and computable bound

kL(b)(x)� b

0

�

x� �

� � �

(b

n

� b

0

)k � max

1�i�n�1

kb

i

� b

0

�

i

n

(b

n

� b

0

)k (4)

for all x 2 [�; �], and the right{hand side is proven to be of the order (� � �)

2

when L(b)

represents a �xed polynomial over varying domains 
 = [�; �]. Note that the intermediate

control points b

1

; . . . ; b

n�1

are unnecessary within the approximation on the left{hand side

of (4); the simple linear interpolant between the control points b

0

and b

n

produces su�cient

accuracy. Equation (4) resembles a \
atness test" (or, more precisely, a \linearity test").

2



Example 1.2We now assume n � 3 and replace the linear interpolant of the previous example

by a simple cubic H

b

(x) de�ned via Hermite interpolation at � and �. For � := (x��)=(���)

we construct H

b

canonically as

H

b

(x) = b

0

(1 � � )

3

+ (b

0

+

n

3

(b

1

� b

0

)) � 3(1� � )

2

�

+(b

n

�

n

3

(b

n

� b

n�1

)) � 3�

2

(1 � � ) + b

n

�

3

and get the explicit error estimate

kL(b)(x)�H

b

(x)k � max

2�i�n�2

kb

i

�

e

b

i

k; (5)

where

e

b

i

:= (b

0

(n� i)(n� i� 1)(n� i� 2) + b

n

i(i� 1)(i� 2)

+3(b

0

+

n

3

(b

1

� b

0

))i(n� i)(n� i� 1)

+ 3(b

n

�

n

3

(b

n

� b

n�1

))i(i� 1)(n� i)

�

=(n(n� 1)(n � 2))

are the control points obtained when raising the degree of H

b

from 3 to n. The error estimate is

of fourth order with respect to the interval size, if a �xed polynomial is represented over various

domains.

If there is an e�cient method for evaluating cubic polynomials (e.g.: in case of special hardware

or an assembler routine) subdivision need be carried out only until the right{hand side of (5)

is small enough, and this occurs when (� � �)

4

is su�ciently small.

2 Approximations from control nets

The properties (1) of the functions B

i

imply the simple but very useful error estimate

kL(b)(x)� L(c)(x)k � max

i2I(x)

kb

i

� c

i

k for b; c 2 B; x 2 
: (6)

Now we choose certain control nets c = fc

i

j i 2 Ig 2 B, constructed from the given control

net b, such that

� L(c) is much easier to evaluate than L(b),

� the error estimate (6) is numerically accessible and

� of su�ciently high order.

To get an idea of the scope of (6) one can imagine that c = c(b) might be constructed such that

the left hand side of (6) is zero for polynomials L(b) of degree r. Then one can expect the left

hand side of (6) to be bounded by the (r+ 1){th power of the diameter of 
. If the functions

B

i

satisfy a \uniform stability property" in the sense of Dahmen [3], such a bound carries over

to the right{hand side. This is how \linear precision" of L(b) implies quadratic convergence of

re�nement algorithms. Furthermore, in this setting there need not be a saturation bound like

r � 1 as given in [3], and uniform stability implies that the error estimates of type (6) are

sharp up to constants.
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3 Linear precision

We now assume \linear precision" in the sense of Farin [5] of the functions (1) in the form

x =

X

i2I(x)

�

i

B

i

(x); x 2 
; (7)

for a control net � := f�

i

g

i2I

of points from IR

s

� 
. Then, for any a�ne map T : IR

s

� 
! R

we can use c

i

:= T (�

i

) in (6) and get

kL(b)(x)� T (x)k � max

i2I(x)

kb

i

� T (�

i

)k; x 2 
: (8)

Thus L(b) can be approximated by an a�ne function T as good as the control net b can be

approximated by the control net c = T (�). Now T could be optimally chosen to minimize the

right{hand side of (8); however, some handy suboptimal choices of T will be su�cient in most

cases.

The properties of the partition (1) of unity immediately imply another useful error bound,

which does not require (7), but involves a change of parametrization within the approximation:

Theorem 3.1 If T is any a�ne map IR

s

� 
! R, and if points �

i

2 
; 0 � i � n are chosen

arbitrarily, then there is a transformation � : 
! 
 such that

kL(b)(x)� T (�(x))k � max

i2I(x)

kb

i

� T (�

i

)k; x 2 
: (9)

Proof: Because of (1),

�(x) :=

X

i2I(x)

�

i

B

i

(x); x 2 
;

maps 
 into itself. Then

T (�(x)) =

X

i2I(x)

T (�

i

)B

i

(x); x 2 
;

and the assertion follows.2

Example 3.1 To cover the situation of Example 1.1 we use

�

i

= �+

i

n

(� � �) and T (x) = b

0

+

x� �

� � �

(b

n

� b

0

): (10)

Theorem 3.2 If a �xed vector{valued polynomial p is given in Bernstein{B�ezier representation

(3) over a domain 
 = [�; �], the error term in (4) is bounded by C(p)(���)

2

with a constant

depending only on p, not on the representation.

Proof: Let M

p

(x

1

; . . . ; x

n

) be the unique symmetric multia�ne function corresponding to p,

i.e.

p(x) =M

p

(n#x); x 2 [�; �];

where the symbol n#x means \n repetitions of x". Then (see e.g. Seidel [7]) we have

b

i

= M

p

((n� i)#�; i#�)

4



and expansion around n#� yields

b

i

= b

0

+

@M

p

@x

1

�

�

�

�

n#�

� i(� � �) +O((� � �)

2

);

proving the assertion.2

Clearly, (10) is not the best possible choice. It can be improved by adding

1

n+1

P

b

i

�

1

2

(b

0

+b

n

),

gaining a factor of circa

1

2

in the error estimate. In theory, this modi�cation is optimal with

respect to minimization of

n

X

i=0

kb

i

� c� �

i

dk

2

2

over all c; d 2 R. Such modi�cations are possible in most of the examples of this paper.

Furthermore, the restriction to the �

i

is unnecessary because of Theorem 3.1. If an a�ne map

T represents a suitably parametrized line, the restriction of the �

i

in Theorem 3.1 to 
 is no

problem. Therefore the error in (9) can be bounded by the generalized distance of the whole

control net from a line.

Example 3.2 Following the lines of the last example, it is fairly easy to get an error estimate for

tensor product polynomial surfaces over rectangles, given in Bernstein{B�ezier representation.

The four \corners" b

00

; b

m0

; b

0n

; b

mn

of the B�ezier net b = fb

ij

j 0 � i � m; 0 � j � ng de�ne a

bilinear approximation of the surface, and the corresponding error is explicitly bounded by

max fk�

ij

k j 1 � i � m� 1; 1 � j � n� 1g ;

�

ij

:= b

ij

� b

00

�

i

m

(b

m0

� b

00

)�

j

n

(b

0n

� b

00

)�

i

m

j

n

(b

mn

� b

m0

� b

0n

+ b

00

):

The error bound has the behavior O(diam

2

(
)) when a �xed polynomial is represented over

small domains 
.

Example 3.3 Univariate splines can be written as

s(x) =

m

X

i=0

b

i

N

(n)

i

(x)

in the B{spline basis N

(n)

i

of degree n with a knot sequence

t

0

= . . . = t

n

< t

n+1

� . . . � t

m

< t

m+1

= . . . = t

n+m+1

satisfying t

i

< t

i+n+1

for i = 0; . . . ;m (notation as in [7]). They enjoy linear precision (7) with

the Greville abscissae �

i

= t

�

i

=

1

n

(t

i+1

+ . . . + t

i+n

); 0 � i � m, and we get the explicit error

estimate

ks(x)� b

j�n

�

x� �

j�n

�

j

� �

j�n

(b

j

� b

j�n

)k

� max

j�n+1�i�j�1

kb

i

� b

j�n

�

�

i

� �

j�n

�

j

� �

j�n

(b

j

� b

j�n

)k

(11)

for x 2 [t

j

; t

j+1

), where I(x) = fi j j � n � i � jg.
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Theorem 3.3 If a �xed polynomial piece p of degree n is represented over [t

j

; t

j+1

), the error

term in (11) can be bounded by

C �

�

max

j�n+1�i�j+n

jt

i

� �

j�n

j

�

2

or C � (t

j+n

� t

j�n+1

)

2

;

where C depends on p only.

Proof: From [7] we use the multia�ne representation

b

i

= M

p

(t

i+1

; . . . ; t

i+n

) for j � n � i � j (12)

and expand around n#�

j�n

to get

b

i

� p(�

j�n

) +

@M

p

@x

1

�

�

�

�

n#�

j�n

� n(�

i

� �

j�n

)

up to terms of the asserted order. 2

When re�nement is done by knot insertion into [t

j

; t

j+1

), the polynomial p does not change and

we get quadratic convergence of the re�nement.

A similar analysis is possible for tensor product B{spline surfaces.

Example 3.4 For an n{th degree polynomial surface in Bernstein{B�ezier representation in

barycentric coordinates

x = (u; v; w) 2 [0; 1]

3

; u+ v + w = 1

over a triangle, we have a control net

fb

ijk

j 0 � i; j; k � n; i+ j + k = ng

and get an error estimate

kL(b)(x)� T (x)k

= k

n

X

i; j; k = 0

i+ j + k = n

b

ijk

n!

i!j!k!

u

i

v

j

w

k

� (b

n00

u+ b

0n0

v + b

00n

w)k

� max

�

kb

ijk

� (b

n00

i

n

+ b

0n0

j

n

+ b

00n

k

n

)k j 0 � i; j; k < n; i+ j + k = n

	

:

4 Higher{order approximations

A general way to exploit (6) is to take only part of the information in the control net b to

construct a simple approximation T

b

: 
 ! R to L(b). Then T

b

is written in the basis B

i

by

use of a standard technique (degree elevation or knot insertion), and a representation

T

b

(x) =

X

i2I(x)

B

i

(x)c

i

(b) = L(c(b)) (13)

6



is the result, giving

kL(b)(x)� T

b

(x)k � max

i2I(x)

kb

i

� c

i

(b)k: (14)

Therefore (14) can also be seen as an error estimate for degree reduction or knot elimination.

Whenever the basis B

i

(x) satis�es a uniform stability condition

~c �max

i2I

kb

i

k � sup

x2


kL(b)(x)k � max

i2I

kb

i

k; b 2 B;

where ~c does not depend on domain scalings, the estimate (14) is asymptotically sharp for

domain sizes tending to zero. This gives a number of easy applications: just take a simple

approximation of well{known order (e.g. the Hermite cubic interpolant of Example 1.2), embed

it into the full space L(B) by degree elevation or knot insertion, and use the resulting formulae

for the new control points c

i

(b) for error estimation.

Example 4.1 For the univariate B{spline setting of Example 3.3 we can generate higher{order

methods by specializing (14) to

kL(b)(x)�

r

X

s=0

a

s

x

s

k � max

j�n�i�j

kb

i

�

r

X

s=0

a

s

�

n

s

�

�1

S

(n)

s

(t

i+1

; . . . ; t

i+n

)k

for x 2 [t

j

; t

j+1

); r � n, where S

(n)

s

is the s{th degree elementary symmetric function of n

variables. This follows easily from (12) when applied to the representation of a polynomial as

a linear combination of B{splines. Good choices of the a

s

will compensate the �rst r+1 terms

of the expansion of

b

i

= M

p

(t

i+1

; . . . ; t

i+n

) =

n

X

s=0

d

s

�

n

s

�

�1

S

(n)

s

(t

i+1

; . . . ; t

i+n

) (15)

around a �xed argument, e.g. �

j�n

, resulting in approximations of order r + 1. Example 3.3

covers the case r = 1, and higher{order cases can easily be calculated explicitly from (15).

We treat the case r = 2 by introducing the generalized Greville abscissae

�

(s)

i

:=

�

n

s

�

�1

S

(n)

s

(t

i+1

; . . . ; t

i+n

); �

i

:= �

(1)

i

;

for a �xed degree n which is suppressed in the notation. Expressing the coe�cients in (15)

approximately in terms of the control net we �nd a third{order approximation

T

b

(x) = b

j�n

+ (x� �

j�n

)[j; j � n]b

+

�

x

2

� �

(2)

j�n

� (x� �

j�n

)[j; j � n]�

(2)

�

�

~

d

2

;

~

d

2

:=

[j; j � n]b� [k; j � n]b

[j; j � n]�

(2)

� [k; j � n]�

(2)

;

7



where we use the divided di�erence operators [i; j]u := (u

i

� u

j

)=(�

i

� �

j

) with respect to the

standard Greville abscissae and took some k midway between j � n and j. The control points

c

i

(b) to be checked are

c

i

(b) = b

j�n

+ (�

i

� �

j�n

)[j; j � n]b

+

�

�

(2)

i

� �

(2)

j�n

� (�

i

� �

j�n

)[j; j � n]�

(2)

�

�

~

d

2

:

5 Minimal error bounds in L

2

Consider an approximation L(c) with c from a subspace C � B of B�ezier nets, where we

have in mind that the net c should be easily computable from b and L(c) should be a simple

approximation of L(b). Then (14) implies that one should best{approximate the control net b

by c 2 C. Replacing (14) by an estimate in L

2

we get

kL(b)(x)� L(c)(x)k � k

P

i2I(x)

B

i

(x)(b

i

� c

i

)k

�

P

i2I(x)

jB

i

(x)jkb

i

� c

i

k

�

�

P

i2I(x)

jB

i

(x)j

2

�

1=2

�

P

i2I(x)

kb

i

� c

i

k

2

�

1=2

� 1 �

�

P

i2I(x)

kb

i

� c

i

k

2

�

1=2

=: kb� ck

2;I(x)

because of (1). Now one can minimize kb� ck

2;I(x)

or kb� ck

2;I

over all c 2 C, and the result

can be written in the form of a linear operator C(x) or C : B ! B, which can be calculated

beforehand and implemented as a simple matrix operation.

Speci�c examples of this type can easily be generated from formulae for degree elevation or

knot insertion. The nets c then are linear functions of very coarse control nets d which are

re�ned to the basis (1) to yield the nets c. Then the best approximation of b by such c can be

described by a linear transformation D : d 7! c, which can be explicitly calculated by classical

L

2

minimization techniques.

Example 5.1 A linear curve with control points d

0

; d

1

, when raised to degree n, has control

points c

i

= d

0

+

i

n

(d

1

� d

0

); 1 � i � n. The best L

2

approximation of a control net b

i

by such

a simple control net in the sense de�ned above is given by

d

0

:=

�

b
�

~

b
=2 :=

1

n+1

P

n

i=0

b

i

�

1

2

~

b
;

d

1

� d

0

:=

~

b
:=

12n

n+2

�

1

n(n+1)

P

n

i=0

ib

i

�

1

2

�

b

�

:

6 Rational curves and surfaces

Any set (1) of functions yields a projectively invariant family of rational functions

�

(
)

i

(x) := B

i

(x)


i

=

X

j2I

B

j

(x)


j

; i 2 I(x); x 2 
;

8



where 
 = f


i

g

i2I

is a vector of positive weights. We assume linear precision of the B

i

in the

form (7) and get

x

0

@

X

i2I(x)

B

i

(x)


i

1

A

�1

=

X

i2I(x)

�

i




i

�

(
)

i

(x)

for the rational counterpart. Now let c 2 R be a vector and D : IR

s

! R be a linear transfor-

mation. Then the rational map

T (x) = c+Dx �

0

@

X

i2I(x)

B

i

(x)


i

1

A

�1

is a generalization of the a�ne maps of section 3, and we get

k

X

i2I(x)

b

i

�

(
)

i

(x)� T (x)k � max

i2I(x)

kb

i

� c�D�

i

� 


�1

i

k:

The rational representation can therefore be approximated by the rational mapping T as well

as the control net can be approximated by an a�ne map of the points �

i




�1

i

. Examples for

rational curves and surfaces, including splines, can easily be constructed using the techniques

of the previous examples. Note that this case is also covered by Theorem 3.1.

Another approach to rational representations uses homogeneous coordinates in R � IR and

applies former results. Clearly, linear precision (10) implies

�

x

1

�

=

X

i2I(x)

B

i

(x)

�

�

i

1

�

;

and a control net

�

b

i




i




i

�

�

�

b

i

1

�

yields the estimate



















X

i2I(x)

B

i

(x)

�

b

i




i




i

�

�

�

T

1

(x)

T

2

(x)

�



















� max

i2I(x)













�

b

i




i




i

�

�

�

T

1

(�

i

)

T

2

(�

i

)

�













for a�ne maps T

1

: IR

s

! R; T

2

: IR

s

! IR. If both transformations are chosen to give

quadratic order, the resulting order for the rational representation is quadratic, as long as both

the 


i

and the T

2

(�

i

) are bounded from below by a positive constant.

Example 6.1 For rational curves of degree n over [�; �] the results of Example 1.1 carry over

when we use

T

2

(x) = 


0

+

x� �

� � �

(


n

� 


0

);

T

1

(x) = b

0




0

+

x� �

� � �

(b

n




n

� b

0




0

);

�

i

= � +

i

n

(� � �):
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If 


i

� 
 > 0, we have T

2

(�

i

) � 
, and the rational representation has the error bound































n

X

i=0

B

i

(x)b

i




i

n

X

i=0

B

i

(x)


i

�

T

1

(x)

T

2

(x)































�

1




max

1�i�n�1

kb

i




i

� b

0




0

�

i

n

(b

n




n

� b

0




0

)k

+

1
















T

1

(x)

T

2

(x)













max

1�i�n�1

k


i

� 


0

�

i

n

(


n

� 


0

)k;

where we applied

a

b

�

r

s

=

a� r

b

+

r

s

�

s� b

b

:

This technique can easily be adapted to more general rational representations (surfaces and

splines).
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