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ABSTRACT: Let f be a smooth curve in IR

d

, parametrized by arclength. If a large

sample of data points p

i

= f(t

i

) at unknown parameter values t

i

< t

i+1

is given, one can

use local n{th degree polynomial interpolation at parameters s

i

= kP

i

� P

`

ksgn(i � `) of

data points P

i

around a �xed point P

`

to calculate approximations to the derivatives f

(j)

(t

`

)

with accuracy O(h

n+1�j

), where h := max(t

i

� t

i�1

) and 0 � j � k� 1 � n. Using these as

data for properly parametrized Hermite interpolation problems for polynomials of degree

� 2k � 1 � n between successive data points, one can construct GC

k�1

interpolants of f

with accuracy O(h

2k

).

1. Introduction

The classical problem of numerical di�erentiation consists in �nding an approximation of

the j{th derivative f

(j)

(t

�

) of some smooth real{valued function f on [a; b] � IR in a given

point t

�

2 [a; b], if n+ 1 nodes

a � t

0

< t

1

< . . .< t

n

� b

and n+ 1 real function values

f(t

0

); f(t

1

); . . . ; f(t

n

)

are given. The standard approach simply takes the j{th derivative of the n{th degree poly-

nomial p interpolating these data, and the error is easily evaluated from the representation

f(t)� p(t) =

 

n

Y

i=0

(t� t

i

)

!

�

n+1

(t

0

; t

1

; . . . ; t

n

; t)f; (1::0:1)

where �

i

(t

0

; . . . ; t

i

)f is the i{th divided di�erence of f with respect to the nodes t

0

; t

1

; . . . ; t

i

.

The j{th derivative of (1.1) at t

�

2 [t

0

; t

n

] can then be bounded by

jf

(j)

(t

�

)� p

(j)

(t

�

)j � c � h

n+1�j

t

� max

0�i�j

kf

(n+1+i)

k

1;[a;b]

(1::0:2)
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with

h

t

:= max

1�i�n

(t

i

� t

i�1

) (1::0:3)

and a constant c which does not depend on f and the node distribution. Other approach-

es, like Sard's optimal approximation of linear functionals [4][5], and Micchelli's optimal

recovery schemes [3], try to �nd a formula of a certain type, e.g.:

f

0

(t

�

) �

n

X

i=0

�

i

f(t

i

)

where the weights �

i

are chosen to minimize the error in some well{de�ned sense.

In Computer{Aided{Design applications the situation is di�erent. The given data only

consist of an ordered set of points P

0

; P

1

; . . . ; P

n

in IR

d

, which can be considered as a

sample from the range R := f([a; b]) of a smooth and regular curve f : [a; b] ! IR

d

. In

particular, the points P

i

may be written as P

i

= f(s

i

) for some parameter values s

i

which

are not available and depend on the parametrization of f . Of course, the s

i

might be

chosen arbitrarily, but this will introduce some additional and hypothetical information.

By geometrical di�erentiation we denote methods that construct data like tangent

directions, curvature or torsion values at the P

i

by exclusive use of the point sequence

P

0

; . . . ; P

n

and the geometry of the range R of the curve.

Given the range R of f , a canonical parametrization of f by arclength t can theoretically be

constructed, and this parametrization depends only on R. Thus P

i

= f(t

i

) can be assumed

for the unknown arclength parametrization in order to derive error estimates.

The \mesh width" of the sample can be described by either

h

s

:= max

1�i�n

kP

i

� P

i�1

k

2

= max

1�i�n

kf(t

i

)� f(t

i�1

)k

2

(1::0:4)

or (1.3) as the maximum of chordlengths or arclengths between successive points.

Clearly, chordlength is numerically accessible while arclength is not. However, once arc-

length is small enough, the two are equivalent in the sense used for the notion of equivalence

of norms:

Lemma 1.5 If f : [0; L] ! IR

d

is a C

1

curve, parametrized by arclength, then there is a

constant h

0

(f) 2 (0; L) such that for any two arguments t and t + h with

0 � t < t+ h � L; 0 < h � h

0

(f)

the inequalities

1

p

d+ 1

h � kf(t+ h)� f(t)k

2

�

p

dh (1::0:6)

hold.
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Proof. If we consider just one coordinate x of f , we have

jx(t+ h)� x(t)j = jx

0

(�)jh; t < � < t + h; (1::0:7)

and since arclength parametrization implies jx

0

(t)j

2

� kf

0

k

2

2

= 1, we get the right{hand side

of (1.6) by summing squares of components. Since kf

0

k

2

2

= 1 holds everywhere, there is a

constant h

0

(f) such that on every subinterval I of [0; L] of length h � h

0

(f) there is some

component of f

0

whose absolute value is at least (d+1)

�1=2

on I . If x is such a component

for given points t and t+ h with h � h

0

(t), then (1.7) implies

kf(t+ h)� f(t)k

2

� jx(t+ h)� x(t)j

2

�

1

d+ 1

h

2

:

2

The main consequence of Lemma 1.1 is the equivalence of O(h

k

s

) and O(h

k

t

) error estimates

for h

s

! 0 or h

t

! 0: both arclength and chordlength can be used to handle the asymptotics

of error bounds. Thus we will generally use h as a symbol to mean h

t

or h

s

, if a �xed

multiplicative constant does not matter.

Now let F be a real{valued functional, not necessarily linear, on a set S of smooth regular

curves, parametrized on some interval [0; L], e.g.: curvature

F (f) = �

f

(�) =

kf

0

(�)� f

00

(�)k

kf

0

(�)k

3

2

; (1::0:8)

and let G

h

be an approximation of F , based on data with density h. The quality of G

h

can

be measured by comparison to F on smooth regular curves f , parametrized by arclength,

in the sense of

De�nition 1.9 A functional G

h

is an m{th order approximation of F with respect to S

and h! 0, if there is a constant c such that for all f 2 S there are positive constants h

0

(f)

and K(f) with

jF (f)�G

h

(f)j � c � h

m

�K(f)

for all h 2 (0; h

0

(f)]. 2

The goal of this paper is to develop a general method for constructing high{oder approxima-

tions for geometric data of smooth and regular curves, e.g.: tangent directions, curvature or

torsion values, or derivatives thereof with respect to arclength. Interpolation of curves will

be a major application, because there are good high{order methods [1] requiring tangent

or curvature data which must be constructed from positional data, if they are not available

from other sources.
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2. Local Polynomial Interpolants

If arclength values t

i

of the data P

i

= f(t

i

) were known and if the functional F had

the form F (f) = f

(j)

(t

�

), then vector{valued polynomial interpolation would be a very

convenient tool to construct approximations of F . As a variation of this idea, one can

consider polynomial interpolation at approximations s

i

of the actual arclengths t

i

. This

requires a straightforward variation of the standard error estimate (1.2) for polynomial

interpolation:

Lemma 2.10 Let f be a C

n+k

curve on [a; b] � IR; 1 � k � n, parametrized by arclength.

Consider n{th degree polynomial interpolation to given data P

i

= f(t

i

); 0 � i � n, at

perturbed parameter values s

i

; 0 � i � n, satisfying

'(s

i

) = t

i

; 0 � i � n; c � s

0

< s

1

< . . . < s

n

� d (2::0:11)

for a strictly monotonic reparametrization function

' : [c; d]! [a; b]; ' 2 C

n+k

[c; d]:

Then the interpolant p to P

i

= f(t

i

) at s

i

has the classical error representation (1.1) in the

form

(f � ')(s)� p(s) =

 

n

Y

i=0

(s� s

i

)

!

�

n+1

(s

0

; . . . ; s

n

; s)(f � ') (2::0:12)

and the derivatives satisfy

k(f � ')

(j)

(s)� p

(j)

(s)k � h

n+1�j

s

�K(n; k; f � ')

for all s 2 [s

0

; s

n

], all j 2 f0; . . . ; k� 1g, where

h

s

:= max

1�i�n

(s

i

� s

i�1

):

2

Here, K is dependent on the data distribution, because it contains derivatives of f � ' up

to order n+ k. Furthermore, (2.12) is still dependent on the reparametrization function ',

and the next two sections will address this drawback.

3. Smoothly re�nable parametrizations

We now consider strategies for determining \good" parameter values s

i

. If convergence

orders of Lemma 2.1 are to be kept as large as possible, the reparametrization functions '

of (2.11) should have derivatives of order up to n+k, which can be bounded independently

of the density or position of the s

i

and t

i

, if the mesh width in the sense of (1.4) and (1.3)

tends to zero. We then call such a strategy smoothly re�nable of order n+ k.
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Example 3.13 The most obvious parametrization strategy uses successive chordlengths

s

i

� s

i�1

= kP

i

� P

i�1

k

2

= kf(t

i

)� f(t

i�1

)k;

and sets s

0

= t

0

= 0 without loss of generality. For uniformly distributed data on a

circular arc one can easily show that parametrization by successive chordlengths is smoothly

re�nable of arbitrary order. In general, successive chordlengths can be smoothly re�nable

only up to order three, as may be shown by taking divided di�erences of non{uniform

samples of circular data. 2

This eliminates successive chordlength parametrization as a tool for higher order geometric

di�erentiation.

To overcome the di�culties with successive chordlength parametrization, one can take

chordlengths with respect to a �xed point P

`

; 0 � l � n, and de�ne

s

i

= s

`

+ kP

i

� P

`

k � sgn(i� `); 0 � i � n:

We call this a locally centered chordlength parametrization and get

Lemma 3.14 If f 2 C

m

[a; b]; m > 2, is parametrized by arclength, then any locally cen-

tered chordlength parametrization is smoothly re�nable of order m.

Proof: Let P

`

= f(0) be the center of a given chordlength parametrization, and de�ne the

real{valued function

s(t) := kf(t)� f(0)k

2

sgn(t); t 2 [a; b] 3 0:

Then s(t

i

) = s

i

holds for 0 � i � n, and s

�1

= ' is our candidate for a reparametrization

function. Clearly, a simple Taylor expansion implies that

s

2

(t) = kf(t)� f(0)k

2

2

= t

2

+ t

4

� q(t)

is a smooth function with q 2 C

m�2

[a; b], and s(t) has the form

s(t) = t

p

1 + t

2

q(t);

the square root taken to be positive. Around t = 0 the function s(t) is in C

m

and strictly

monotonic. Thus ' = s

�1

exists and shares these properties. 2

Applications of locally centered chordlength parametrization should make sure that the

mesh width h

s

of data P

i

is small enough to make the s

i

monotonic with respect to i.

Combining Lemmas 2.1 and 3.1 we get approximations of order h

n+1�j

to j{th derivatives

of f �' at the data points, whenever 0 � j � k�1 and f is a C

n+k

function, interpolated by

n{th degree{polynomials at centered chordlength parameters. The details of the numerical

realization are summarized in steps A1{A3 of the algorithm in section 7.
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4. Elimination of parametrization

The results of the previous section yield high{order approximations of (f � ')

(j)

, but not

of f itself. To eliminate the (unknown) reparametrization function ', we de�ne

g(s) = (f �')(s)

and use g

0

(s) = (f

0

� ')(s) � '

0

(s) to get derivatives

'

0

(s) = kg

0

(s)k

2

'

(j)

(s) =

d

j�1

ds

j�1

kg

0

(s)k

2

; j = 2; 3; . . .

(4::0:15)

of ' from the derivatives of g. Clearly,

(f

0

� ')(s) = g

0

(s)=kg

0

(s)k

directly yields f

0

at t = '(s), and higher derivatives require the solution of equations

g

00

(s) = (f

0

�')(s)('

0

(s))

2

+ (f

0

� ')(s)'

00

(s)

g

(j)

(s) = (f

(j)

� ')(s)('

0

(s))

j

+ (f

0

� ')(s)'

(j)

(s) + lower derivatives

(4::0:16)

for f

(j)

at t = '(s). If the data are dense enough, and if locally centered chordlength

parametrization is used, there will be no problems with (4.15) because '

0

� 1 for small h.

The sample of points P

i

can be rejected as being not dense enough, if the numerical test

�

�1

� kg

0

k = k'

0

k � � > 0 for some � 2 (0; 1) is not satis�ed. Details are given in steps

A4 and A5 of the algorithm in section 7.

If j{th derivatives of g contain an error of order h

n+1�j

, some elementary calculations

prove that j{th derivatives of ' and f , the latter taken at unknown arclength values t =

'(s), also have errors of order O(h

n+1�j

), provided that the data are dense enough. The

resulting derivatives of f at arclength parameters are now (asymptotically) independent of

the parametrization chosen to supply the intermediate derivative of f � '. Of course, this

strategy for this elimination of parametrization e�ects will work in general, not just for the

centered chordlength parametrization of the previous section.

Another approach to eliminate parametrization e�ects is to calculate curvature, torsion

(or derivatives thereof with respect to arclength) directly from the derivatives of the curve

g = f � '. Since these results do not depend on parametrization, the contribution of ' is

asymptotically eliminated.

In both cases there may be numerical problems due to cancellation e�ects and roundo�, if

h is still large and high-order derivatives are calculated.
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5. Application to curve interpolation

The previous section provided O(h

n+1�j

) approximations to j{th derivatives of curves

f 2 C

n+k

; 1 � j � k � 1, parametrized by arclength. These can be put into existing

Hermite interpolation schemes to generate piecewise interpolating curves. This is put on a

rigorous basis by

Theorem 5.17 Let f 2 C

n+k

[0; h

0

] with h

0

> 0 and 1 � k � n be given, and let p

h

be the

two{point Hermite interpolation polynomial of degree � 2k � 1 to data

y

0;j

= f

(j)

(0) + �

0;j

; j�

0;j

j � ch

n+1�j

; 0 � j � k � 1

y

h;j

= f

(j)

(h) + �

h;j

; j�

n;j

j � ch

n+1�j

; 0 � j � k � 1

(5::0:18)

on [0; h] for h 2 (0; h

0

]. Then there exists a constant C, independent of h, such that the

error bound

jf(t)� p

h

(t)j � C � h

min(2k;n+1)

holds for all t 2 [0; h].

Proof: Let q

h

be the Hermite interpolation polynomial to exact data of f . Then the error

has the classical representation

f(t)� q

h

(t) = t

k

(h� t)

k

�

2k

(k#0; k#h; t)f

involving the (2k){th generalized divided di�erence of f with repeated arguments, i.e.: the

notation k#x means k repetitions of x as an argument. Since f is in C

2k

, we get

jf(t)� q

h

(t)j � C

1

h

2k

; 0 � t � h;

where C

1

=

1

(2k)!

kf

(2k)

k

1;[0;h

0

]

.

Both p

h

and q

h

can be represented via divided di�erences, and thus

p

h

(t)� q

h

(t) =

2k�1

X

j=0

t

m(j)

(h� t)

j�m(j)

�

j

(m(j + 1)#0; (j + 1�m(j + 1))#h)(p

h

� q

h

)

where m(j) = min(j; k). Therefore it su�ces to prove

j�

j

(m(j + 1)#0; (j + 1�m(j + 1))#h)(p

h

� q

h

)j � C

2

h

n+1�j

(5::0:19)

inductively for j = 0; 1; . . . ; 2k � 1. But these divided di�erences can be evaluated on the

� values of (5.18), and all j{th divided di�erences with fully coalescing arguments are of

order O(h

n+1�j

) by de�nition, where 0 � j � k � 1. If divided di�erences are formed via

the usual recursive relation, the order drops by one. This proves (5.19). 2
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Theorem 5.17 has quite a number of applications. First consider the de{Boor{H�ollig{Sabin

method [1] for piecewise GC

2

interpolation of planar data by cubics. According to the �rst

part of this paper, local interpolation by quintic polynomials at centered chordlengths will

su�ce to generate O(h

6�j

) estimates of j{th derivatives for j = 1; 2 to produce full order

O(h

6

) of the interpolation process. This follows from the proof technique in [1] and from

Theorem 5.17 for k = 3; n = 5. Note that we require f 2 C

8

for this method.

Piecewise GC

1

Hermite interpolation of planar data by quadratics was studied in [8], to-

gether with a direct method of determining tangent directions with accuracy O(h

3

). The

approach of the previous sections can also be used to supply such derivative estimates,

using local cubic interpolants on centered chordlength parameters (case k = 2; n = 3 of

Theorem 5.17).

For data in IR

d

with arbitrary d one can use the \h=3{rule" to determine a GC

1

piecewise

cubic interpolant of accuracy O(h

4

) from two positions P

0

; P

1

and normalized tangent

directions r

0

; r

1

in P

0

; P

1

by constructing Bernstein{B�ezier control points

P

0

; P

0

+

h

3

r

0

; P

1

�

h

3

r

1

; P

1

where h = kP

0

� P

1

k is the local chordlength. This method can be applied to purely

positional data without loss of accuracy, if approximations of �rst derivatives of order O(h

3

)

are provided via �rst derivatives of local third{degree interpolants at centered chordlength

parameters. This application will also be covered by Theorem 5.17 for k = 2; n = 3

together with the basic proof technique of [1]. Note that all of the simpler strategies for

tangent estimation will not produce full fourth{order accuracy. For instance, the method of

McConalogue [2] uses three{point estimates of tangents via quadratic interpolation, giving

O(h

2

) accuracy of tangent directions and an overallO(h

3

) error of interpolation, as Theorem

5.17 shows for k = n = 2.

6. Two{point Hermite interpolation

In case of prescribed parameter values t

i

one can always generate a piecewise polynomial

C

k�1

interpolant from Lagrange data by the following purely local algorithm:

1. performing local interpolation on sets of 2k consecutive data points by polynomials

of degree at most 2k � 1;

2. taking derivatives of order j = 0; 1; . . . ; k� 1 of these local interpolants,

3. solving a symmetric two{point Hermite interpolation problem for polynomials of de-

gree � 2k � 1 on each pair of consecutive data points, using the derivatives of the

previous step.

If the data P

i

= f(t

i

) are sampled from a C

2k

function f , this process will have accuracy

O(h

2k

), as follows from Lemma 2.1 and Theorem 5.17.

We now proceed to generalize this method to the parametric case. The data now consist of

a large sample of points P

i

= f(t

i

); 0 � i � N of a smooth and regular curve f with values

8



in IR

d

, parametrized by arclength, but we do not know the arclength values t

i

. We can

assume that the methods of the previous sections have been applied to yield approximative

derivatives of f with respect to arclength up to order k� 1 at the P

i

. For this we make the

implicit assumption that N is large enough with respect to k.

We now pick a pair P

`

; P

`+1

of consecutive data points and want to apply polynomial

Hermite interpolation of degree � 2k � 1 between P

`

= f(t

`

) and P

`+1

= f(t

`+1

). This

makes it necessary to introduce some parametrization again, because the exact arclength

�

`

= t

`+1

� t

`

is not known. Furthermore, the interpolation should produce an overall

GC

k�1

curve when several patches are joined together. This will require C

k�1

continuity

after a suitable reparametrization.

We simply use chordlength �

`

:= kP

`+1

� P

`

k to parametrize the interpolant locally over

[0; �

`

], using the reparametrization function '

`

of locally centered chordlength at P

`

, i.e.

s

i

= s

`

+ kP

i

� P

`

k � sgn(i� `); t

i

= '

`

(s

i

):

This will satisfy

'

`

(0) = t

`

; '

`

(�

`

) = t

`+1

if we set s

`

= 0 without loss of generality. Thus, we apply nonparametric two{point Hermite

interpolation to f � '

`

.

Data at the left endpoint s

`

= 0 should then be

f

(0)

`

= P

`

(f � '

`

)

(j)

(s

`

); 1 � j � k � 1;

(6::0:20)

while at the right endpoint s

`+1

= �

`

we should interpolate the values

f

(0)

`+1

= P

`+1

; 0 � j � k � 1

(f �'

`

)

(j)

(s

`+1

)

0

(6::0:21)

If f and '

`

were known, including all derivatives of order � k�1, this approach would work

easily. In fact, each interpolant would be a piecewise Hermite interpolant to k derivatives

of f with respect to arclength after elimination of the local parametrizations, which are

uniformly bounded together with their derivatives. The overall accuracy would still be

O(h

2k

), as follows from the proof technique of de Bo0r, H�ollig, and Sabin [1].

To make the method feasible in practice, we have to take a closer look at the numerical

process which replaces (f � '

`

)

(j)

by accessible values. Let p

`

be the polynomial used for

local Lagrange interpolation of degree � 2k � 1 with centered chordlengths around P

`

,

including P

`+1

. This will interpolate f � '

`

at centered chordlength abscissae such that

p

(j)

`

(s) = (f � '

`

)

(j)

(s)

9



holds exactly for j = 0 and certain chordlength values s

i

including s

`

and s

`+1

, while an

error of order 2k�j occurs for j > 0 or arbitrary arguments near s

`

. The method of section

4 is then applied to get approximate values

f

(j)

`

:= f

(j)

(t

`

) + O(h

2k�j

); 0 � j � k � 1

'

(j)

`;i

:= '

(j)

`

(s

i

) + O(h

2k�j

) 1 � j � k � 1

(6::0:22)

for i = `; `+ 1. In (6.20) we can use the data p

(j)

`

(s

`

) directly, but then in (6.21) we run

into a problem caused by

(f �'

`

)

(j)

(s

`+1

) 6= p

(j)

`+1

(s

`+1

);

as used in the next segment. Note that the discrepancy in the above formula is only of

order O(h

2k�j

), but we cannot ignore it without losing GC

k�1

continuity.

We avoid this di�culty by modifying the actual interpolation data at s

`+1

in a suitable

way: if we eliminate '

`

from the data at s

`+1

, we should arrive at f

(j)

`+1

, the approximate

chordlength derivative of f at s

`+1

in the next segment. This is accomplished by using

(4.16) backwards, starting from the derivatives

f

(j)

`+1

= f

(j)

(t

`+1

) + O(h

2k�j

); 0 � j � k � 1

'

(j)

`;`+1

= '

(j)

`

(s

`+1

) + O(h

2k�j

); 1 � j � k � 1

and synthesizing an O(h

2k�j

) approximation

^

f

(j)

`+1

of (f � '

`

)

(j)

(s

`+1

) by evaluating the

chain rule for (4.16).

We still have to prove that this process maintains overall GC

k�1

continuity and O(h

2k

)

accuracy. The latter fact is clear because our modi�cations do not spoil the accuracy, being

of order O(h

2k�j

) when referring to j{th derivatives. To prove CC

k�1

continuity we intro-

duce the reparametrization function  

`

which is a Hermite interpolant of the numerically

obtained derivative values '

(j)

`;i

of (6.22) together with '

(0)

`;i

:= '

`

(s

i

) for i = `; `+ 1. Then

'

`

�  

`

= O(h

2k

) holds between s

`

and s

`+1

. because the derivatives of '

`

are uniformly

bounded. If h is small enough,  

`

we be strictly monotonic. If q

`

is the Hermite interpolant

to the data p

(j)

`

(s

`

) and

^

f

(j)

`+1

, 0 � j � k � 1 at s = s

`

and s = s

`+1

, respectively, our

construction guarantees that q

`

�  

�1

`

interpolates the data f

(j)

`

and f

(j)

`+1

; 0 � j � k � 1

at t = t

`

and t = t

`+1

respectively, because we used the exact chain rule for derivative

values of q

`

and  

`

. But this means that the functions q

`

form a GC

k�1

curve, since after

reparametrization they coincide of order k � 1 at the breakpoints. We summarize:

Theorem 6.23 Let f be a regular C

2k

curve, parametrized by arclength. The the above

process, given in algorithmic form in the next section, provides a piecewise polynomial

GC

k�1

interpolant of accuracy O(h

2k

). 2

Of course, the above approach is biased towards the left endpoint P

`

, because we used the

local chordlength parametrization '

`

centered at P

`

. A similar interpolation can be done on

10



[��

`

; 0], using local chordlengths centered at P

`+1

, and we found it practically useful to take

means of the two solutions in order to maintain symmetry and to avoid instabilities due to

the calculations based on (4.15) and (4.16). Furthermore, the local estimation of derivatives

via interpolation at centered chordlengths should be of order � 2k instead of 2k� 1 to get

symmetry-preserving formulae based on an odd number of points. Both modi�cations do

not a�ect our theoretical results, and they are incorporated into the algorithmic formulation

of the method in the next section.

7. Algorithm

For quick reference and easier programming, we summarize our method in algorithmic form.

Data: N 2 IN; d 2 IN; P

0

; . . . ; P

N

2 IR

d

with P

i

6= P

i�1

for 1 � i � N . It is implicitly

assumed that the data are a large sample of points P

i

= f(t

i

) from the range of a smooth and

regular curve with values in IR

d

, parametrized by arclength, for arclength values satisfying

t

i�1

< t

i

; 1 � i � N .

Parameters: Choose numbers k 2 IN

�0

with 2k � N and � 2 (0; 1). The �nal order

of accuracy is O(h

2k

) if f 2 C

2k

, and overall GC

k�1

continuity will be achieved. Large

values of � increase the safety of the method, but will at the same time restrict the range

of admissible applications.

Step A: Local Interpolation at centered chordlengths.

For all ` with 0 � ` � N do :

A1: Calculate centered chordlength values around P

`

:

`

�

:= max(k;min(N � k; `)) =

8

<

:

k 0 � ` < k

` k � ` � N � k

N � k N � k < ` � N

9

=

;

s

i

:= kP

i

� P

`

k sgn(i� `); `

�

� k � i � `

�

+ k:

A2: If the s

i

are not strictly monotonic, give up. The data do not form a su�ciently

dense sample from a smooth and regular curve. Use a more robust, but less accurate

method.

A3: Calculate a local interpolant p

`

around P

`

:

p

`

:= polynomial interpolant of data (s

i

; P

i

);

`

�

� k � i � `

�

+ k; of degree � 2k

N

`

:=

8

<

:

f`; `+ 1g ` = 0

f`� 1; `; `+ 1g 1 � ` < N

f`� 1; `g ` = N

9

=

;

Evaluate p

(j)

`

(s

i

) for all 0 � j < k, all neighbors s

i

for i 2 N

`

, and store these values.

11



A4: Use (4.15) to get approximate derivatives of the reparametrization function '

`

via

'

(1)

`;i

:= kp

0

`

(s

i

)k

2

for k � 2

'

(2)

`;i

:= p

0

`

(s

i

)

T

p

00

`

(s

i

)='

(1)

`;i

for k � 3

'

(3)

`;i

:= (p

00

`

(s

i

)

T

p

00

`

(s

i

) + p

0

`

(s

i

)

T

p

000

`

(s

i

)� ('

(2)

`;i

)

2

)='

(1)

`;i

for k � 4

'

(4)

`;i

:= (3p

00

`

(s

i

)

T

p

000

`

(s

i

) + p

0

`

(s

i

)

T

p

(4)

`

(s

i

)� 3'

(2)

`;i

'

(3)

`;i

)='

(1)

`;i

for k � 5

etc.

for i 2 N

`

and store these values. After evaluating '

(1)

`;i

, test for

0 < � � '

(1)

`;i

� 1=�

and give up, if the test fails. In this case the data are no su�ciently dense sample

from a smooth and regular curve. Use a more robust, but less accurate method.

A5: Use (4.16) to eliminate the parametrization e�ect from derivatives of p

`

f

(0)

`

:= P

`

for k � 1

f

(1)

`

:= p

0

`

(s

`

)='

(1)

`;`

for k � 2

f

(2)

`

:= (p

00

`

(s

`

)� '

(2)

`;`

f

(1)

`

)=('

(1)

`;`

)

2

for k � 3

f

(3)

`

:= (p

000

`

(s

`

)� '

(3)

`;`

f

(1)

`

� 3'

(1)

`;`

'

(2)

`;`

f

(2)

`

)=('

(1)

`;`

)

3

for k � 4

f

(4)

`

:= (p

(4)

`

(s

`

)� '

(4)

`;`

f

(1)

`

� 4'

(1)

`;`

'

(3)

`;`

f

(2)

`

�3('

(2)

`;`

)

2

f

(2)

`

� 6('

(1)

`;`

)

2

'

(2)

`;`

f

(3)

`

)=('

(1)

`;`

)

4

for k � 5

etc.

and store these values, which will be the \geometric" Hermite data for the next step.

Step B: Local two-point Hermite interpolation.

For all ` with 0 � ` � N � 1 do :

B1: Prepare data for interpolation between P

`

and P

`+1

, using (4.16) and the reparametriza-
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tion function '

`

:

�

`

:= kP

`

� P

`+1

k

2

b

f

(0)

`+1

:= f

(0)

`+1

b

f

(1)

`+1

:= '

(1)

`;`+1

f

(1)

`+1

b

f

(2)

`+1

:= '

(2)

`;`+1

f

(1)

`+1

+ ('

(1)

`;`+1

)

2

f

(2)

`+1

b

f

(3)

`+1

:= '

(3)

`;`+1

f

(1)

`+1

+ 3'

(1)

`;`+1

'

(2)

`;`+1

(�

`

)f

(2)

`+1

+ ('

(1)

`;`+1

)

3

f

(3)

`+1

b

f

(4)

`+1

:= '

(4)

`;`+1

f

(1)

`+1

+ 3('

(2)

`;`+1

)

2

(�

`

)f

(2)

`+1

+ 4'

(1)

`;`+1

'

(3)

`;`+1

f

(2)

`+1

+5('

(1)

`;`+1

)

2

'

(2)

`;`+1

f

(3)

`+1

+ ('

(1)

`;`+1

)

4

f

(4)

`+1

etc.

for the appropriate values of k.

B2: Let bq

`

be the nonparametric Hermite interpolant of degree � 2k � 1 of data p

(j)

`

(s

`

)

at 0 and of

b

f

(j)

`+1

at �

`

, where 0 � j < k. Store bq

`

in some form or other.

B3: Prepare data for interpolation between P

`

and P

`+1

, now using the reparametrization

function '

`+1

:

e

f

(0)

`

:= f

(0)

`

e

f

(1)

`

:= '

(1)

`+1;`

f

(1)

`

e

f

(2)

`

:= '

(2)

`+1;`

f

(1)

`

+ ('

(1)

`+1;`

)

2

f

(2)

`

e

f

(3)

`

:= '

(3)

`+1;`

f

(1)

`

+ 3'

(1)

`+1;`

'

(2)

`+1;`

f

(2)

`

+ ('

(1)

`+1;`

)

3

f

(3)

`

e

f

(4)

`

:= '

(4)

`+1;`

f

(1)

`

+ 3('

(2)

`+1;`

)

2

f

(2)

`

+ 4'

(1)

`+1;`

'

(3)

`+1;`

f

(2)

`

+5('

(1)

`+1;`

)

2

'

(2)

`+1;`

f

(3)

`

+ ('

(1)

`+1;`

)

4

f

(4)

`

etc.

for the appropriate values of k.

B4: Let eq

`

be the nonparametric Hermite interpolant of degree � 2k � 1 of data

e

f

(j)

`

at

��

`

and of p

(j)

`+1

(�

`+1

) at 0, where 0 � j < k. Store eq

`

in some form or other.

B5: For evaluation of the solution between P

`

and P

`+1

, use the polynomial

q(s) :=

1

2

(bq

`

(s) + eq

`

(s� �

`

)) ; s 2 [0; �

`

];

or a similar weighted mean between bq and eq.

Remarks

There can be m additional data points between the endpoints P

`

, P

`+1+m

of a local Hermite

interpolation. The degree must then be 2k � 1 +m and the approximation order will be

13



O(h

2k+m

), provided that geometric di�erentiation of data from f 2 C

2k+m

is done with

local polynomials of degree at least 2k � 1 +m.

At the end of the range of points, e.g. on [P

0

; P

1

] or [P

N�1

; P

N

], one does not need deriva-

tive values, because no GC

k�1

continuity must be guaranteed. Then a non{symmetric

Hermite interpolation problem with chordlength parameters locally centered at P

1

or P

N�1

is su�cient, giving the same order of accuracy. This improvement was not incorporated

into the examples of the last section.

An alternative approach would avoid the reparametrization of the f

(j)

`

values by direct

interpolation on [0; t

�

] for a high{accuracy estimate t

�

of the actual arclength t

`+1

� t

`

.

However, it then seems to be di�cult to reach O(h

2k

) accuracy at comparable costs.

We note that our method is not convexity preserving in general, and it may produce bad

results for coarse or noisy data sets. It is designed for su�ciently dense samples of exact

data from smooth curves, and its major feature is its convergence order, which may be

arbitrarily high for su�ciently smooth curves. So far, the convexity preserving method of

highest approximation order is the rational GC

2

interpolation of [6][7], being of order four.

8. Examples

We start with an equidistant sample of 17 points on a semi{circle. Figure 1 will show the

O(h

4

) solution with GC

1

continuity, obtained by our method for k = 2, together with a

plot of curvature. The curvature discontinuities are not visible, but the actual curvature

is not constant, as can be seen from the curvature derivative in Figure 2. The plots of

interpolant and curvature look all the same for higher order solutions, and therefore we

only show higher derivatives of curvature in Figures 3 and 4. The e�ect of the boundary is

quite substantial, because there we have to evaluate the local high-order interpolant p

`

of

steps A3-A5 near the endpoints of its range.

Figure 1: 17 points on a semi{circle, k = 2, with curvature plot

Figure 5 shows polygonal interpolation of 33 points sampled from part of a spiral in IR

3

,

seen from above and from the side. The spiral takes a 270 degree turn and has monotonic

14



Figure 2: Same data, k = 2, �rst derivative of curvature

Figure 3: Same data, k = 4, �rst derivative of curvature

Figure 4: Same data, k = 5, second derivative of curvature
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and nonzero curvature and torsion. Reproduction of the curve shape was perfect within plot

precision in all cases. Thus we plot some of the instances where problems like discontinuities

or peaks for higher derivatives of curvature and torsion occur.

Figure 5: 33 points on spiral in IR

3

, k = 1, polygonal interpolant

Figure 6: Same data, k = 2, �rst derivative of curvature

Figure 7: Same data, k = 2, torsion

One can clearly see that the degree of the local interpolants is too high; there are \unnec-

essary" wiggles in the curves of Figures 10 and 11, which still have to be continuous by

construction.

Figure 12 shows polygonal interpolation of 71 points sampled from part of a Lissajous type

�gure in IR

3

, seen from above and from the side. There are two peaks of curvature and

torsion which should be reproduced by the interpolant. Again, we found that reproduction

of the curve shape was perfect within plot precision in all cases, and thus we plot only some
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Figure 8: Same data, k = 3, second derivative of curvature

Figure 9: Same data, k = 3, �rst derivative of torsion

Figure 10: Same data, k = 5, second derivative of curvature

Figure 11: Same data, k = 5, �rst derivative of torsion
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Figure 12: 71 points on space curve, polygonal interpolant

Figure 13: Same data, k = 2; GC

1

, discontinuous curvature

Figure 14: Same data, k = 2; GC

1

, discontinuous torsion

Figure 15: Same data, k = 3; GC

2

, curvature
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Figure 16: Same data, k = 3; GC

2

, discontinuous torsion

Figure 17: Same data, k = 4; GC

3

, �rst derivative of curvature

Figure 18: Same data, k = 4; GC

3

, torsion
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curvature and torsion data. Here, the relative heights of the peaks of curvature and

torsion are about 9.5 and 30.0.

Further research should try to achieve high orders of accuracy with low polynomial de-

grees, e.g.: along the lines of the paper [1] by deBoor, H�ollig, and Sabin, or by rational

interpolation.
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