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Abstract

In many numerical algorithms, integrals or derivatives of functions have
to be approximated by linear combinations of function values at nodes. This
ranges from numerical integration to meshless methods for solving partial
diffeential equations. The approximations should use as few nodal values as
possible and at the same time have a smallest possible error.For each fixed
set of nodes and each fixed Hilbert space of functions with continuous point
evaluation, e.g. a fixed Sobolev space, there is an error–optimal method avail-
able using the reproducing kernel of the space. But the choice of the nodes
is usually left open. This paper shows how to select good nodes adaptively
by a computationally cheap greedy method, keeping the erroroptimal in the
above sense for each incremental step of the node selection.This is applied
to interpolation, numerical integration, and numerical differentiation. The
latter case is particularly important for the design of meshless methods with
sparse generalized stiffness matrices. The greedy algorithm is described in
detail, and numerical examples are provided.

1 Introduction

We consider a continuous linear functionalλ on a reproducing kernel Hilbert space
(RKHS)H with positive definite kernelK and domainΩ, and we want to approxi-
mate it by

λ ( f )≈ ∑
j

α j f (x j) = ∑
j

α jδx j( f ) for all f ∈ H

by certain selections of pointsx j from a given discrete point setX ⊂ Ω. The rep-
resentation should be sparse, i.e. we do not want to use more points fromX than
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absolutely necessary. The technique to construct such approximations is briefly
mentioned in [11], but we give the algorithmic details and examples here. A gen-
eral paper on kernel–based approximations for the special case of numerical dif-
ferentiation is [1], while [10] applies the kernel–based error analysis behind this
paper to methods for PDE solving.

If the points are fixed to be from a setXn := {x1, . . . ,xn}, theerror functional is

ε(λ ;α1, . . . ,αn) := λ −
n

∑
j=1

α jδx j

and the corresponding error bound is
∣

∣

∣

∣

∣

λ ( f )−
n

∑
j=1

α j f (x j)

∣

∣

∣

∣

∣

≤ ‖ε(λ ;α1, . . . ,αn)‖H∗‖ f‖H

which is sharp for the function

fε(x) := εy(λ ;α1, . . . ,αn)K(x,y) = λ yK(x,y)−
n

∑
j=1

α jK(x,x j)

in H. Here and in what follows, the notationλ y means thatλ acts with respect to
the variabley.

Since we have
(λ ,µ)H∗ = λ xµyK(x,y) for all λ , µ ∈ H∗

in reproducing kernel Hilbert spaces, the norm of the error functional can be ex-
plicitly calculated via

‖ε(λ ;α1, . . . ,αn)‖2
H∗ = (ε(λ ;α1, . . . ,αn),ε(λ ;α1, . . . ,αn))H∗

= εx(λ ;α1, . . . ,αn)εy(λ ;α1, . . . ,αn)K(x,y)

= λ xλ yK(x,y)−2
n

∑
j=1

α jλ xK(x,x j)

+
n

∑
j=1

n

∑
k=1

α jαkK(x j,xk).

(1)

This implies that each approximation has an explicitly available error bound in
terms of a percentage of‖ f‖H , and this observation can easily be used to compare
approximations that come from very different backgrounds.
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The most important example is error evaluation in Sobolev space. If we takeH =
W m

2 (Rd) with m > d/2 for having continuous point evaluation, the reproducing
kernel is

K(x,y) =
21−m

Γ(m)
‖x− y‖m−d/2

2 Km−d/2(‖x− y‖2), x,y ∈ R
d

with the modified Bessel functionKm−d/2 of the second kind. Localized Sobolev
spacesW m

2 (Ω) for domainsΩ ⊂ R
d come out to be norm–equivalent to the global

spaces, as long as their domainsΩ satisfy a Whitney extension property or a have a
piecewise smooth boundary with a uniform interior cone condition. Therefore we
shall use the above kernels for evaluation of errors in Sobolev space throughout.

2 Optimal Kernel–Based Formulae

The error norm explicitly given via (1) now allows for optimization with respect
to the coefficients and nodes. Fixing the nodes first, optimalcoefficients are deter-
mined by solving the system

λ xK(x,xk) =
n

∑
j=1

α jK(x j,xk), for all k, 1≤ k ≤ n

by coefficientsα∗
j depending onλ and all points inXn. This follows from setting

the partial derivatives of (1) to zero. The square of the optimal error norm then is
the nonnegative number

P2
n (λ ) := ‖ε(λ ;α∗

1(λ ), . . . ,α∗
n (λ ))‖2

H∗ = λ xλ yK(x,y)−∑
j

α∗
j (λ )λ yK(x j,y).

Consequently, this optimal approximation outperforms allother approximations
errorwise, if the nodes and the spaceH are fixed. Users can apply (1) to see how
far their favourite approximation is from the optimum. Thisapplies, for instance,
when meshless methods approximate functionals likeλz( f ) = (∆ f )(z) in terms of
values at nodes, using variations of Moving Least Squares techniques [3].

3 Recursive Construction

If we already have such an approximation with pointsx1, . . . ,xn, we now want to
find the next pointxn+1 such thatP2

n+1(λ ) is smallest. To this end, we have to



3 RECURSIVE CONSTRUCTION 4

do some calculations that involve all available pointsx j, and we use the recursive
power kernel technique [8, 4]

K0(x,y) := K(x,y)

Kk+1(x,y) := Kk(x,y)−
Kk(xk+1,x)Kk(xk+1,y)

Kk(xk+1,xk+1)
λ xK0(x,y) = λ xK(x,y)

λ xKk+1(x,y) = λ xKk(x,y)−
λ xKk(xk+1,x)Kk(xk+1,y)

Kk(xk+1,xk+1)

for k ≥ 0 and theNewton basis calculations [5, 6] in the form

vk+1(x) :=
Kk(xk+1,x)

√

Kk(xk+1,xk+1)

Kk+1(x,y) = K(x,y)−
k+1

∑
j=1

v j(x)v j(y)

= Kk(x,y)− vk+1(x)vk+1(y)

where theNewton basis v1, . . . ,vn is orthonormal inH, satisfiesvk(x j) = 0, 1 ≤
j < k ≤ n and spans the spaces

span{v1, . . . ,vk}= span{K(·,x1), . . . ,K(·,xk)}.

Then the standardPower Function is

P2
k+1(δx) := ‖ε(δx;α∗

1(δx), . . . ,α∗
k+1(δx))‖2

H∗

= Kk+1(x,x)
= P2

k (δx)− v2
n+1(x)

= K(x,x)−
k+1

∑
j=1

v2
j(x)

and the generalized one is

P2
k+1(λ ) = ‖ε(λ ;α∗

1(λ ), . . . ,α∗
k+1(λ ))‖2

H∗

= λ xλ yKk+1(x,y)
= P2

k (λ )−λ (vk+1)
2

= λ xλ yK(x,y)−
k+1

∑
j=1

λ (v j)
2.

This follows from the fact [4] thatKk is the reproducing kernel in the Hilbert sub-
space ofH that is orthogonal to allK(·,x j), 1≤ j ≤ k.
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Thus the error norm reduction when going fronn points ton+1 points isλ (vn+1)
2,

but this depends onxn+1, and we want the reduction as a function ofxn+1. Since
we have the formula

vn+1(x) :=
Kn(xn+1,x)

√

Kn(xn+1,xn+1)

we also have

λ (vn+1) =
λ x(Kn(xn+1,x))
√

Kn(xn+1,xn+1)

as a function ofxn+1. Thus the error reduction by usingz asxn+1 is

R2
n(z) :=

(λ xKn(z,x))2

Kn(z,z)

as a function ofz, and we should choose its argmax over all available points from
the full setXN = {x1, . . . ,xN} as the new pointxn+1. In examples below, we shall
show plots of this function on fine point sets.

4 Numerical Calculation

We now describe how to calculateR2
n on all N points of XN = {x1, . . . ,xN}, in

a handy form for programming. This data vector is written as acolumn vector
Rn ∈ R

N , and in the following formulae we shall always work onN–column–
vectors in boldface. In particular, we needN–vectors

K n := (Kn(x j,x j))1≤ j≤N

L n := (λ xKn(x,x j))1≤ j≤N

for n ≥ 0 and start with calculatingK0 andL0 to form

Rn := L n.
∧2./K n

in MATLAB notation for n = 0. We find the pointxI(1) where this is maximal,
building an index setI recursively, using the notationy1 := xI(1) for shorthand.
Then the first Newton basis function on theN points is the vector

V1 := k1./
√

K0

with theN–vector
k1 := (K0(xI(1),x j))1≤ j≤N .

For the general recursion, we assume that we already haveK n andL n, an index
setI of n indices of selected points, and all vectorsV j, 1≤ j ≤ n of the Newton
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basis vectors belonging to the pointsy j = xI( j), 1 ≤ j ≤ n. Then we can find
yn+1 = xI(n+1) by maximizingRn = L n.

∧2./K n, and we are left to describe the
update process.

We needVn+1 := kn+1./
√

K n with kn+1 := (Kn(yn+1,x j))1≤ j≤N . The latter can be
calculated starting fromkn+1,0 := (K(yn+1,x j))1≤ j≤N by applying the formula

Kn(yn+1,x j) = K(yn+1,x j)−
n

∑
k=1

vk(yn+1)vk(x j),

kn+1 = kn+1,0−
n

∑
k=1

eT
I(n+1)VkVk,

= kn+1,0−
n

∑
k=1

Vk,I(n+1)Vk.

The update ofK n proceeds via

K n+1 = K n −Vn+1.
∧2

like in the Newton basis case. This vector, containing the values of the square of the
standard power function, should be nonnegative and vanish on all points selected
so far. This gives some roundoff control.

We finally needL n+1 = (λ xKn+1(x,x j))1≤ j≤N and apply the formulae

λ xKn+1(x,x j) = λ xKn(x,x j)−
λ xKn(yn+1,x)Kn(yn+1,x j)

Kn(yn+1,yn+1)

L n+1 = L n −
L n,I(n+1)

K n,I(n+1)
kn+1

which need no additional recursive calculations.

This is enough to carry out the induction step, but we do not yet have the actual
valuesP2

n (λ ) bounding the RKHS error. To start with, we need the valueP2
0 (λ ) =

λ xλ yK(x,y). Then
P2

n+1(λ ) = P2
n (λ )−R2

n(yn+1)

is the cheap update formula. The progress of the algorithm can be monitored this
way, but even without knowingP2

n (λ ) one can stop ifR2
n(yn+1) is smaller than a

tolerance.

The above update step needsO(N · n) operations in total, and it is the core of
the whole calculation. The overall computational complexity for reachingn final
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points isO(n2N). Since theK , L , and k vectors can be overwritten, the total
storage requirement isO(nN) for theV vectors.

But it is still open how to calculate the optimal weights. They can be written as
α∗

j = λ (u j) for the Lagrange basisu1, . . . ,un based on the selected pointsy1 =
xI(1), . . . ,yn = xI(n), but this implies that they will change from step to step when
stepping through the algorithm. Thus we refrain from givingan update formula,
since updating will be as costly as an a-posteriori calculation. Instead, we propose
to calculate the weights after finding the selected points. If Ṽ is then× n matrix
of the Newton basis function values on the selected points [6] (rows as points,
columns as functions, i.e. a selection of rows ofV), this matrix is lower triangular
and nonsingular. For the vectors and matrices below, we always use a tilde to
denote restriction to the selectedn points. Then the weight vectorã can be obtained
by solving the two triangularn×n systems

Ṽz̃ = L̃0

ṼT ã = z̃

at O(n2) computational complexity. This follows from the fact that the kernel
matrix Ã on the selected points has the Cholesky factorizationÃ = Ṽ · ṼT , while
the Lagrange form of the weights is obtained by solvingÃã= L̃0. Calculating the
Newton basis recursively yields thẽV matrix for free.

A greedy algorithm for vectorial cases is in [13],and it alsouses the Newton basis
technique.

5 Optimal Evaluation Points

This section is a detour that turns the previous argument upside–down. Imagine
that a user of a meshless method has already determined the nodes where function
values are needed, selects a small setXn = {x1, . . . ,xn} of local neighbor points, and
wants to find the pointz where(∆ f )(z) can be best approximated using the values
of f at the points ofXn. This process is repeated for all small sets of neighboring
points, and the corresponding optimalz points are then used for collocation.

We thus consider approximations of functionals of the form

λz( f ) := (L( f ))(z) =: Lx
z f (x)

with a linear differential operatorL evaluated at a pointz ∈ Ω, and we want to find
a placez where the available data atXn = {x1, . . . ,xn} allows to reconstructλz best.
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Since we have

P2
n (λz) = λ x

z λ y
z K(x,y)−

n

∑
j=1

λz(v j)
2,

we have to minimize this function overz, either on all ofΩ or on a large discrete
point set. This works with

λz(vk) =
λz(Kk−1(x,xk))
√

Kk−1(xk,xk)
, 1≤ k ≤ n

λz(Kk+1(x,y)) = λz(K(x,y))−
k+1

∑
j=1

λz(v j)v j(y)

λz(Kk+1(x,xk)) = Lx
zKk(x,xk)−

Lx
zKk(xk+1,x)Kk(xk+1,xk)

Kk(xk+1,xk+1)
.

On N points as a function ofz and stored asN–vectorsM j := (λz(v j)), m :=
(λ x

z λ y
z K(x,y)), we have to find the minimum of the vector

m−
n

∑
j=1

M j.
∧M j,

which can be recast as a single MATLAB statement

m− (sum((M .∗M)′))′

if M has the columnsM j. To calculate

M n = (λz(vn)) =
λ x

z Kn−1(x,xn)
√

Kn−1(xn,xn)

we define
mk := λ x

z Kk(x,xn)

and need a recursion starting fromm0 and proceeding via

mk+1 = λ x
z Kk+1(x,xn)

= λ x
z Kk(x,xn)−λz(vk+1)vk+1(xn)

= mk −M k+1Vk+1,n

to end up with

M n =
mn−1

√

Kn−1(xn,xn)
.

This needs storageO(Nn) andO(Nn2) operations.
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6 Examples

6.1 Interpolation

We start our examples with optimal sparse recovery off (0) from valuesf (x j) for
randomly scattered points near the origin, using radial kernels. In such cases it
is clear thatR2

n is maximal atz = 0 and equalsP2
n (δ0) there, butz will usually

not be among thex j. In many cases,R2
n has a sharp single peak atz = 0, andR2

n
vanishes at then points selected so far, because there is no error decrease when
re–selecting one of the already chosen points. This means that the algorithm will
prefer neighbors ofz at first, and the local behavior ofRn aroundz = 0 will not
change much after all nearest neigbors are chosen. Plenty ofexamples show this
behavior.

Figures 1 to 3 show three examples picking 15 out of 75 offeredpoints, depicted
in the middle plot with circles around the selected points. The method prefers near
neighbors toz = 0, but does not stricly take the nearest neighbors. For kernels with
finite smoothness, it turns out to make no sense to take many points, in contrast
to the Gaussian case. Also, the preference of near neighborsis stronger for non–
smooth kernels. In view of the theory of flat limits [2, 9], this is not surprising,
because there everything behaves much like an approximation by polynomials, and
good point choices should be unisolvent for high–degree polynomials. All kernels
were used at scale 1 in[−1,1]2.

6.2 Integration

The next series of examples concerns integration. If we takeλ to be the global
integral over all ofR2, and if we use globally integrable radial kernels, the algo-
rithm will work. The integration formula always yields the exact integral over the
interpolant, and this always exists, though the functionalλ is not in the dual of the
Hilbert space, since‖λ‖2

H = λ xλ yK(x,y) = P2
0 (λ ) is infinite. TheRn function is

still defined, and one can pick the maximum ofRn over all available points. For-
mally, the algorithm is used with the finite constantK(x,x) as a replacement for
P2

0 (λ ), and since theRn values are large and subtracted from this, the “error norm”
in the following figures gets negative.

In these cases, the selected points spread over the domain, and theRn function is
large near the boundary. A point in the upper left corner is desperately needed (but
not available), and using more points in the interior will not pay off.
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Figure 1:Gaussian kernel, interpolation, 15 out of 75 points

The next series of experiments in Figures 7 to 9 uses the finiteintegral

λ ( f ) =
∫ +1

−1

∫ +1

−1
f (x,y)dxdy.

The results are similar to the case with the infinite integral. The examples were all
bound to work with only 15 selected points in order not to overload the graphics.
Of course, 15 points are not enough to yield a good integration accuracy.

6.3 Differentiation

Again, we use the same 75 offered data locations and the same three kernels, but
this time we approximate the functionalλ ( f ) := (∆ f )(0). The results are in fig-
ures 10 to 12. For the Wendland kernel. we had to goC4 and scale 10. Note that
sparsity of final collocation matrices does not necessarilyrequire compactly sup-
ported kernels. It suffices to use sparse approximations to each functional. This is
particularly important for localized meshless methods fo solving PDEs. Examples
for such techniques are in [7, 12, 14, 15, 16], for instance.
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Figure 2:WendlandC2 kernel, interpolation, 15 out of 75 points

7 Conclusion

The proposed greedy selection algorithm for nodes that yield good approximations
to linear functionals is computationally efficient and yields optimal results, error–
wise. Of course, a total minimization of (1) with respect to weightsand nodes
would yield even smaller errors, but it is computationally much too involved.

For interpolation and evaluation of derivatives, the strong localization of theRn

functions near the evaluation pointz supports an observation already made in [11],
namely that choosing nearest neighbors is a good suboptimalstrategy.
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Figure 5:WendlandC2 kernel, infinite integration, 15 out of 75 points
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Figure 7:Gaussian kernel, finite integration, 15 out of 75 points
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Figure 9:Matern kernelm = 5, finite integration, 15 out of 75 points
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Figure 10:Gaussian kernel, Laplacian, 15 out of 75 points
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Figure 11:WendlandC4 kernel, scale 10, Laplacian, 15 out of 75 points
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Figure 12:Matern kernelm = 5, Laplacian, 15 out of 75 points
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