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Abstract

In many numerical algorithms, integrals or derivativeswidtions have
to be approximated by linear combinations of function valaenodes. This
ranges from numerical integration to meshless methodsdieing partial
diffeential equations. The approximations should useasfedal values as
possible and at the same time have a smallest possible Eooeach fixed
set of nodes and each fixed Hilbert space of functions withicoous point
evaluation, e.g. afixed Sobolev space, there is an erramalhethod avail-
able using the reproducing kernel of the space. But the ehafithe nodes
is usually left open. This paper shows how to select good siadeptively
by a computationally cheap greedy method, keeping the eptimal in the
above sense for each incremental step of the node sele@tiimis applied
to interpolation, numerical integration, and numericdledentiation. The
latter case is particularly important for the design of mleshimethods with
sparse generalized stiffness matrices. The greedy aigori described in
detail, and numerical examples are provided.

1 Introduction

We consider a continuous linear functiolabn a reproducing kernel Hilbert space
(RKHS) H with positive definite kernek and domair2, and we want to approxi-
mate it by
A(f) =~ Zaj f(xj) = ZGjéxj(f) forall f e H
] ]

by certain selections of pointg from a given discrete point s&¢ C Q. The rep-
resentation should be sparse, i.e. we do not want to use neores from X than
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absolutely necessary. The technique to construct suclodppations is briefly
mentioned in[[11], but we give the algorithmic details andreples here. A gen-
eral paper on kernel-based approximations for the speasd of numerical dif-
ferentiation is[[1], while[[10] applies the kernel-basedoemnalysis behind this
paper to methods for PDE solving.

If the points are fixed to be from a s¥f := {Xq,..., X}, theerror functional is
n
eA;aq,...,0n)=A— Z ajd
=1
and the corresponding error bound is

<lle(A;a,....an)[ne [ fllH

which is sharp for the function
fe(X) == &Y(A;a1,...,an)K(Xy) = AYK(Xy) — Z ajK(x,x;)

in H. Here and in what follows, the notatior¥ means tha@ acts with respect to
the variabley.

Since we have
(A, ) = AWK (x,y) forall A, u e H*

in reproducing kernel Hilbert spaces, the norm of the emwoictional can be ex-
plicitly calculated via

||E()\;al>"'7an)‘ a* = (E()\;alv"'7an)7£()\;alv"'7an))H*
= &XA;a,.. an)sy()\ ai,...,0n)K(XYy)
= AMAYK(xy)— 220{)\ K(x,xj) 1)

i=
K (X}, X)-

HM:

e

This implies that each approximation has an explicitly @é error bound in
terms of a percentage Of
approximations that come from very different backgrounds.
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The most important example is error evaluation in SobolecespIf we takeH =
W2m(IR{d) with m > d/2 for having continuous point evaluation, the reproducing
kernel is

1-m

2 —d/2
KO6Y) = Fry IV Karallix = l2), xy € B

with the modified Bessel functioky, 4, of the second kind. Localized Sobolev
spaces\;"(Q) for domainsQ C RY come out to be norm—equivalent to the global
spaces, as long as their domaidsatisfy a Whitney extension property or a have a
piecewise smooth boundary with a uniform interior cone dior Therefore we
shall use the above kernels for evaluation of errors in Ssbgphace throughout.

2 Optimal Kernel-Based Formulae

The error norm explicitly given vid{1) now allows for optinaition with respect
to the coefficients and nodes. Fixing the nodes first, optouafficients are deter-
mined by solving the system

A K (%, %) = ZorJ (Xj, %), forallk, 1<k<n

by coefficientsa|” depending or and all points inX,. This follows from setting
the partial derivatives of{1) to zero. The square of theratierror norm then is
the nonnegative number

Pr(A) = lle(A;a1(A),.... a3 (A))]

2. = MAYK(x,y) — Za JIAYK(X],Y).

Consequently, this optimal approximation outperformso#tier approximations
errorwise, if the nodes and the spdteare fixed. Users can applyl (1) to see how
far their favourite approximation is from the optimum. Thigplies, for instance,
when meshless methods approximate functionalsAiké) = (Af)(z) in terms of
values at nodes, using variations of Moving Least Squadmigues([3].

3 Recursive Construction

If we already have such an approximation with poixis ..,x,, we now want to
find the next pointx,,1 such thatP? ,(A) is smallest. To this end, we have to
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do some calculations that involve all available poixtsand we use the recursive
power kernel techniquel[8, 4]

Ko(xy) = K(xy)
K XK ,
Kira(%y) = Ki(xy)— k(xé:(l)(k 31 i;i)ik;)l y)
AMKo(xy) = AK(xy)
AXK XK ’
MKk (xy) = A*Ki(xy) — k(X 1, X Kic(Xier-1,Y)

Kk (X115 Xk 1)
for k > 0 and theNewton basis calculations[[5, 6] in the form

Kk(xk+17 X)

K (X1, Xk4-1)
k+1

Kisslxy) = KOy = 3 iRV ()
2

= Kk(X, y) — Vk+1 (X)Vk+l (y)

Vir1(X) =

where theNewton basis vi, ..., V, is orthonormal inH, satisfiesvi(x;) =0, 1 <
j <k <nand spans the spaces

span{vy,...,w} = span{K(-,x1),...,K(,X)}.
Then the standarBower Function is

P&1(3) = [&(3¢ai(8),--, 05, 1(80)I[
Ki+1(X,X)

= BA8) Va0
k+1

= K(xx)— Zlvjz(x)
=

and the generalized one is

Pea(A) = lle(Aai (), a1 (M)
Ax)\ka-l-l(Xay)
= P2A) = A(Vierr)?
k+1 ,
= AMAYK(xyY) — Y A(vj)~.
,; j

This follows from the fact[[4] thaK is the reproducing kernel in the Hilbert sub-
space oH that is orthogonal to aK(-,x;), 1 < j <k
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Thus the error norm reduction when going fropoints ton+- 1 points isA (Vp1)?,
but this depends or,.1, and we want the reduction as a functionxgf,. Since
we have the formula

K , X
Kn(Xn+1,Xn+1)
we also have (K )
,X

Kn(Xn+1,%n+1)
as a function ok, 1. Thus the error reduction by usiz@sx,. 1 is

_ (AKn(zx))?
RTZ‘I(Z) T Kn(Z, Z)

as a function of, and we should choose its argmax over all available poiots fr
the full setXy = {Xa,...,Xxn} a@s the new poink,.;. In examples below, we shall
show plots of this function on fine point sets.

4 Numerical Calculation

We now describe how to calcula® on all N points of Xy = {xq,...,x}, in
a handy form for programming. This data vector is written aolmn vector
R, € RN, and in the following formulae we shall always work dk-column—
vectors in boldface. In particular, we nelevectors

Kn = (Kn(Xj,Xj))1<j<n
Ln = (A*Kn(XXj))1<j<n
for n > 0 and start with calculating g andL g to form

Rn = Ln./\z./Kn

in MATLAB notation for n = 0. We find the point ;) where this is maximal,
building an index set recursively, using the notatioyy := (1) for shorthand.
Then the first Newton basis function on tNepoints is the vector

Vii= kl./\/ Ko
with the N—vector
k1= (Ko(X(1),Xj))1<j<N-

For the general recursion, we assume that we already KawendL ,, an index
setl of nindices of selected points, and all vectéfg 1 < j < n of the Newton
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basis vectors belonging to the points= X(j), 1 < j < n. Then we can find
Yn+1 = Xj(ns1) DY maximizing R = Ln.%./K,, and we are left to describe the
update process.

We needV 1= Kny1./vKn With Knp1 := (Kn(Ynt1,Xj))1<j<n. The latter can be
calculated starting frorRin, 10 := (K(Yn+1,Xj))1<j<n by applying the formula
n
Kn(Yne1:X) = K(¥nr1,Xj) = D Vk(Yne)Vi(X),
K=1

n
kn+1 = kn+1,0_ Z e;r(rH,l)Vkaa
=]
n
= Knt10— ) Vi Vi
=]

The update oK, proceeds via
Kn+1 = Kj _Vn+1'/\2

like in the Newton basis case. This vector, containing tteesof the square of the
standard power function, should be nonnegative and vamisdl goints selected
so far. This gives some roundoff control.

We finally need_ ;1 = (A*Kn11(X,Xj))1<j<n @nd apply the formulae

A*Kn(Ynt 1, X)Kn (Yt 1,Xj)
Kn(Ynt1,Ynt1)

kn+1

AMKnpai(X, X)) = AKn(X,Xj) —

I-n7|(n—&-1)
Kn.I(nJrl)

I—n—&-l = I—n_

which need no additional recursive calculations.

This is enough to carry out the induction step, but we do nohgee the actual
valuesP?(A) bounding the RKHS error. To start with, we need the vagie\ ) =
A*AYK(x,y). Then

P21(A) = PI(A)—Ri(yns1)

is the cheap update formula. The progress of the algorithmbeamonitored this
way, but even without knowin§?(A) one can stop iR2(yn, 1) is smaller than a
tolerance.

The above update step need$N - n) operations in total, and it is the core of
the whole calculation. The overall computational comgiekor reachingn final
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points is @(n?N). Since theK, L, andk vectors can be overwritten, the total
storage requirement i8(nN) for theV vectors.

But it is still open how to calculate the optimal weights. Yhmn be written as
a; = A(uj) for the Lagrange basis,,...,u, based on the selected points=

X (1)5---»Yn = Xi(n), but this implies that they will change from step to step when
stepping through the algorithm. Thus we refrain from givargupdate formula,
since updating will be as costly as an a-posteriori calmiatinstead, we propose
to calculate the weights after finding the selected poirft&/ is then x n matrix
of the Newton basis function values on the selected poirdtgrfévs as points,
columns as functions, i.e. a selection of rows/9f this matrix is lower triangular
and nonsingular. For the vectors and matrices below, weyalwae a tilde to
denote restriction to the selecteg@oints. Then the weight vectarcan be obtained
by solving the two triangulan x n systems

<
N
|
Nt ™
o

at ﬁ(n{) computational complexity. This follows from the fact thaetkernel
matrix A on the selected points has the Cholesky factorizatioa V VT, while
the Lagrange form of the weightsjs obtained by solvixiy= L. Calculating the

Newton basis recursively yields thematrix for free.

A greedy algorithm for vectorial cases is in [13],and it alses the Newton basis
technique.

5 Optimal Evaluation Points

This section is a detour that turns the previous argumeritepdown. Imagine
that a user of a meshless method has already determineddhs where function
values are needed, selects a smalkget {xi,...,X,} of local neighbor points, and
wants to find the point where(Af)(z) can be best approximated using the values
of f at the points ofX,,. This process is repeated for all small sets of neighboring
points, and the corresponding optinzgloints are then used for collocation.

We thus consider approximations of functionals of the form

A(f) = (L(F)(2) = L7 F(x)

with a linear differential operatdr evaluated at a poirte Q, and we want to find
a placezwhere the available data ¥ = {xi,...,xn} allows to reconstruck, best.
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Since we have
P2(Az) = AAYK(x,y) — z Az(vj)?,

we have to minimize this function over either on all ofQ or on a large discrete
point set. This works with

Az(Ki1(%, %))

Av) = T2 1<k<n
A4 Kk—l(Xkan) -
k1
Az(Kia(xy)) = z)‘ vi)vily

L Kk(Xk+1> X) Kie(Xiet-1, %)
Kk (Xie+-1, Xie+1) '

Ax(Kipa (%)) = LzKi(x %) —

On N points as a function ot and stored af\-vectorsM; := (A;(vj)), m =
(AXAZK(x,y)), we have to find the minimum of the vector

n
m-— Mj./\Mj,
&

which can be recast as a single MATLAB statement
m — (sum((M.xM)"))’
if M has the columni ;. To calculate
_ AZKn-1(X, Xn)
Kn—1(Xn,%n)

we define
mi = ASKk(X,%n)

and need a recursion starting frany and proceeding via
M1 = AKira (X, %)

ASKK(X, %n) — Az(Vir1) Vies-1(%n)
= Mk— M 1Vikian

to end up with
Mnp-1

Kn—1(Xn, Xn) '
This needs storagé (Nn) and & (Nn?) operations.

n—
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6 Examples

6.1 Interpolation

We start our examples with optimal sparse recovery(0) from valuesf (x;) for
randomly scattered points near the origin, using radiahddst In such cases it
is clear thatR? is maximal atz= 0 and equal$?(&) there, butz will usually

not be among the;. In many casesR2 has a sharp single peak & 0, andR2
vanishes at th@ points selected so far, because there is no error decrease wh
re—selecting one of the already chosen points. This meanshh algorithm will
prefer neighbors of at first, and the local behavior &, aroundz = 0 will not
change much after all nearest neigbors are chosen. Pleeatyaafiples show this
behavior.

Figured1 td B show three examples picking 15 out of 75 off@adts, depicted
in the middle plot with circles around the selected pointse Thethod prefers near
neighbors t@= 0, but does not stricly take the nearest neighbors. For kewith
finite smoothness, it turns out to make no sense to take manyspi contrast
to the Gaussian case. Also, the preference of near neigistionger for non—
smooth kernels. In view of the theory of flat limifs [2, 9], ghis not surprising,
because there everything behaves much like an approximagipolynomials, and
good point choices should be unisolvent for high—degregnoohials. All kernels
were used at scale 1 [r-1,1]2.

6.2 Integration

The next series of examples concerns integration. If we dake be the global
integral over all ofR?, and if we use globally integrable radial kernels, the algo-
rithm will work. The integration formula always yields thgaet integral over the
interpolant, and this always exists, though the functigna not in the dual of the
Hilbert space, sincéiA || = AXAYK(x,y) = P2(A) is infinite. TheR, function is
still defined, and one can pick the maximumRyf over all available points. For-
mally, the algorithm is used with the finite constdfx,x) as a replacement for
Pg()\ ), and since th&, values are large and subtracted from this, the “error norm”
in the following figures gets negative.

In these cases, the selected points spread over the domditheR, function is
large near the boundary. A point in the upper left corner spdeately needed (but
not available), and using more points in the interior wilt pay off.
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R function after 15 steps
x 10

Contours of R function after 15 steps~Error norm as function of n
1 10

10"

107

-15

10

Figure 1:Gaussian kernel, interpolation, 15 out of 75 points

The next series of experiments in Figurés to 9 uses the iinégral

A(F) :/_zl/jllf(x,y)dxdy.

The results are similar to the case with the infinite integfale examples were all
bound to work with only 15 selected points in order not to tesi the graphics.
Of course, 15 points are not enough to yield a good integratazuracy.

6.3 Differentiation

Again, we use the same 75 offered data locations and the sap®kernels, but
this time we approximate the function&l f) := (Af)(0). The results are in fig-
uresI0 té_IR. For the Wendland kernel. we had t€fand scale 10. Note that
sparsity of final collocation matrices does not necessaeityuire compactly sup-
ported kernels. It suffices to use sparse approximationadbo inctional. This is
particularly important for localized meshless methodsdiwiag PDEs. Examples
for such techniques are in[7,]12, 14] 15} 16], for instance.
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R function after 15 steps . .
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Figure 2:WendlandC? kernel, interpolation, 15 out of 75 points

7 Conclusion

The proposed greedy selection algorithm for nodes thad gebd approximations
to linear functionals is computationally efficient and geloptimal results, error—
wise. Of course, a total minimization dfl(1) with respect teightsand nodes
would yield even smaller errors, but it is computationallyah too involved.

For interpolation and evaluation of derivatives, the sgrémcalization of theR,
functions near the evaluation pomsupports an observation already made in [11],
namely that choosing nearest neighbors is a good subopdinagégy.

References

[1] O. Davydov and R. Schaback. Error bounds for kernel-thamenerical dif-
ferentiation. Draft, 2013.

[2] T. Driscoll and B. Fornberg. Interpolation in the limif ocreasingly flat
radial basis functionsComput. Math. Appl., 43:413-422, 2002.

[3] D. Mirzaei, R. Schaback, and M. Dehghan. On generalizeding least
squares and diffuse derivativeMA J. Numer. Anal., 32, No. 3:983-1000,
2012. doi: 10.1093/imanum/drr030.



REFERENCES 12

Figure 3:Matern kernem= 5, interpolation, 15 out of 75 points

[4] M. Mouattamid and R. Schaback. Recursive kernAlsglysisin Theory and
Applications, 25:301-316, 2009.

[5] S. Miiller and R. Schaback. A Newton basis for kernel spadeurnal of
Approximation Theory, 161:645-655, 2009. doi:10.1016/}.jat.2008.10.014.

[6] M. Pazouki and R. Schaback. Bases for kernel-based sp@oenputational
and Applied Mathematics, 236:575-588, 2011.

[7] B. Sarler. From global to local radial basis functionloohtion method for
transport phenomena. Advances in meshfree techniques, volume 5 ofCom-
put. Methods Appl. Sci., pages 257-282. Springer, Dordrecht, 2007.

[8] R. Schaback. Reconstruction of multivariate functioffem scat-
tered data. Manuscript, available via http://www.num mai-
goettingen.de/schaback/research/group.html, 1997.

[9] R. Schaback. Limit problems for interpolation by anayiadial basis func-
tions. J. Comp. Appl. Math., 212:127-149, 2008.

[10] R. Schaback. A computational tool for comparing all -lin
ear PDE solvers. submitted, http://www.num.math.uni-
goettingen.de/schaback/research/group.html, 2013.



REFERENCES 13

Figure 4:Gaussian kernel, infinite integration, 15 out of 75 points

[11] R. Schaback. Direct discretizations with applicasiorio mesh-
less methods for PDEs. submitted, http://www.num.math.un
goettingen.de/schaback/research/group.html, 2013.

[12] R. Vertnik and B. Sarler. Local collocation approach $olving turbulent
combined forced and natural convection problerdv. Appl. Math. Mech.,
3(3):259-279, 2011.

[13] D. Wirtz and B. Haasdonk. A vectorial kernel orthogogatedy algorithm.
Preprint, Stuttgart Research Centre for Simulation Teldgyp 2012.

[14] G. Yao, B. Sarler, and C. S. Chen. A comparison of threglieik local
meshless methods using radial basis functioiBsg. Anal. Bound. Elem.,
35(3):600-609, 2011.

[15] G. Yao, S. ul Islam, and B. Sarler. A comparative studglobal and local
meshless methods for diffusion-reaction equati@MES Comput. Model.
Eng. i, 59(2):127-154, 2010.

[16] G. Yao, S. ul Islam, and B. Sarler. Assessment of global lcal mesh-
less methods based on collocation with radial basis funstior parabolic
partial differential equations in three dimensiori&ng. Anal. Bound. Elem.,
36(11):1640-1648, 2012.



REFERENCES

R function after 15 steps

Contours of R function after 15 steps ,Error norm as function of n
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Figure 5:WendlandC? kernel, infinite integration, 15 out of 75 points
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Figure 6:Matern kernem= 5, infinite integration,15 out of 75 points
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R function after 15 steps
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Figure 7:Gaussian kernel, finite integration, 15 out of 75 points
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Figure 8:WendlandC? kernel, finite integration, 15 out of 75 points
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Figure 9:Matern kernem= 5, finite integration, 15 out of 75 points

R fungction after 15 steps
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Figure 10:Gaussian kernel, Laplacian, 15 out of 75 points
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Figure 11:WendlandC* kernel, scale 10, Laplacian, 15 out of 75 points
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Figure 12:Matern kernem = 5, Laplacian, 15 out of 75 points
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