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1 INTRODUCTION 2past de
ades (see e.g. [10℄, [6℄, [11℄ and [4℄ for other referen
es). A very spe
ial
ase are Polyharmoni
 splines introdu
ed in [3℄ and studied by several authorsbe
ause of their good properties (see e.g. [5℄, [7℄).The well�known polyharmoni
 kernels are fundamental solutions of ellipti
equations of the form (−∆)mu = 0 on R
d. They 
ome as radial kernels or radialbasis fun
tions φ2m−d(‖x− y‖2) on Rd in dimension�dependent form

φ2m−d(r) =

{
(−1)⌈m−d/2⌉r2m−d 2m− d /∈ 2Z

(−1)1+m−d/2r2m−d log r 2m− d ∈ 2Z

}as powers or thin�plate splines, if
2m− d > 0 (1)holds. They have generalized Fourier transforms ‖ω‖−2m

2 on Rd up to positivemultipli
ative 
onstants, and they are 
onditionally positive de�nite of orders
⌈m − d/2⌉ and 1 +m − d/2, respe
tively. See the monographs [12℄ and [1℄ fordetails 
on
erning these notions.Another prominent 
ase under the 
ondition (1) are the positive de�niteradial Whittle�Matérn�Sobolev kernels

ψ2m−d(r) = rm−d/2Km−d/2(r)involving the Bessel fun
tion Kν of the third kind. They are reprodu
ing kernelsof Sobolev spa
es Wm
2 (Rd) and have Fourier transforms (‖ω‖22 + 1)−m up topositive fa
tors, and thus are related to ellipti
 di�erential operators (−∆+I)minstead of the operators (−∆)m related to polyharmoni
 kernels.We shall generalize both 
lasses of kernels simultanously by 
onsidering fun-damental solutions of more general ellipti
 equations of the form

Lu :=

m∏

j=1

(−∆+ κ2jI)u = 0 (2)with positive real numbers κ2j , 1 ≤ j ≤ m and assuming (1). These di�erentialoperators have positive radial Fourier transforms
L̂(ω) =

m∏

j=1

(‖ω‖22 + κ2j)within bounds of the form
0 <

m∏

j=1

κ2j ≤ L̂(ω) ≤ C‖ω‖2m2 for all ω ∈ R
d.Thus their fundamental solutions are inverse Fourier transforms of

m∏

j=1

(‖ω‖22 + κ2j)
−1, (3)



2 BASIC RESULTS 3and they exist 
lassi
ally as 
ontinuous radial kernels. Our main task will be topresent expli
it formulas for them.If all κj are equal and positive, we have to �nd the inverse Fourier transformof (‖ω‖22+ κ2)−m, and by standard rules of Fourier transforms, the result is thes
aled Whittle�Matérn�Sobolev kernel
Sm,d,κ(x, y) =

21−m

(m− 1)!

(‖x− y‖2
κ

)m−d/2

Km−d/2(κ‖x− y‖2) (4)for 2m > d, κ > 0 and all x, y ∈ Rd. It is a standard te
hnique to prove
onditional positive de�niteness of polyharmoni
 kernels by starting from (4)and 
onsidering the limit κ→ 0 with appropriate multipli
ative normalization.In this paper, we shall expli
itly 
al
ulate the inverse Fourier transformof (3) for general positive values of the κj . Sin
e (3) is a produ
t, this isequivalent to 
al
ulating a 
onvolution of polyharmoni
 kernels S1,d,κj
withFourier transforms (‖ω‖2 + κ2j)

−1, whi
h seems to be a highly nontrivial task.But we shall prove that the result 
an be written expli
itly as a divided di�eren
ewith respe
t to the s
ale parameter κ of S1,d,κ. This suggests that we obtaina large new 
lass of kernels, but it will turn out that the �nal result 
an bewritten as a standard Whittle�Matérn�Sobolev kernel (4) of a 
ertain s
ale κdependent on the κj .We 
lose the paper by a few numeri
al examples.2. Basi
 ResultsWe shall assume (1) throughout, and treat the produ
t in (3) by the followingidentity.Lemma 2.1. Let the m�th divided di�eren
e of a multivariate fun
tion u withrespe
t to the variable z be written as [t1, . . . , tm]zu(z, . . .). Then the formula
(−1)m−1

m∏

j=1

(s+ tj)
−1 = [t1, . . . , tm]z(s+ z)−1holds for all s ≥ 0 and all positive t1, . . . , tm.Proof: For distin
t t1, . . . , tm the result follows by indu
tion on m, and for
oales
ing tj it follows by taking appropriate derivatives. By standard argu-ments for divided di�eren
es with partially 
oales
ing arguments, it follows ingeneral.Our 
entral result isTheorem 2.1.1. The inverse d�variate Fourier transform of (3) for arbitrary positive num-bers κ1, . . . , κm is the positive de�nite radial kernel

φ(r) = 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]z

(
r√
2z

)1−d/2

K1−d/2(r
√
2z).(5)



3 PROOFS 42. For a spe
ial value κ between κ1, . . . , κm it takes the form (4), i.e. it is aspe
ially s
aled Whittle�Matérn�Sobolev kernel.3. The fundamental solution of a di�erential operator of the form (2) 
oin-
ides with the fundamental solution of a di�erential operator
(−∆ + κ2I)m for a spe
ial value κ between κ1, . . . , κm, i.e. it takes theform (4).Before we prove this, some remarks should be made.

• It is well�known that linear 
ombinations of positive de�nite kernels withpositive 
oe�
ients yield positive de�nite kernels, but divided di�eren
eshave alternating fa
tors. In spite of that, (5) is a positive de�nite kernel.
• A dire
t way to 
al
ulate the kernel would be to use 
onvolution impliedby the fa
torization of the Fourier transform (3). But our approa
h givesan expli
it formula for the result of the 
onvolution.
• For d ≥ 2, the kernels involved in the divided di�eren
es will have singu-larities at zero. But the divided di�eren
es 
an
el these, and the resultingkernel is well�de�ned at zero, as indi
ated by the third assertion.
• All s
aled Whittle�Matérn�Sobolev kernels (4) are reprodu
ing kernelsin Hilbert spa
es that are norm�equivalent to Sobolev spa
e Wm

2 (Rd),the norm equivalen
e 
onstants being dependent on m, d and the s
ale
κ. Our approa
h generates new variations of �multiply s
aled� Sobolev�type spa
es, but the third assertion proves that we do not leave the set ofnorm�equivalent spa
es to Wm

2 (Rd).
• The above te
hnique 
an be put upside�down, proving that generalizedinverse multiquadri
s of the form (3) are positive de�nite, their Fouriertransforms being of the form (5).
• After this, one 
ould possibly use the standard te
hnique to go to non�inverse multiquadri
s by analyti
 
ontinuation and allowing generalizedFourier transforms, but we leave this to future resear
h.
• It would be interesting to see what happens if part of the κj tend to zero.This would possibly yield new 
onditionally positive de�nite kernels thatare produ
ts of polyharmoni
 and Whittle�Matérn�Sobolev kernels, butwe again leave this to future resear
h.3. ProofsThe 
onne
tion between items 1 and 2 of Theorem 2.1 suggest that we needto take derivatives of kernels Sm,d,κ of (4) with respe
t to the s
ale parameter κ.This 
an be done by a useful te
hnique for handling derivatives of radial kernels,as summarized in [2℄ and given as detailed MATLAB programming instru
tionsin [8℄. It 
ould be bypassed for proving the �rst part of the theorem via Lemma



3 PROOFS 52.1 and standard Fourier transforms, but for simpli
ity of presentation, we shalluse it throughout.In short, a radial kernel
K(x, y) = Φ(x − y) = φ(‖x− y‖2)on R

d 
an be rewritten in the form
φ(r) = f(r2/2) for all r ≥ 0,and then its d�variate Fourier transform Φ̂ 
an be re
overed analogously from

Φ̂(ω) = g(‖ω‖22/2) for all ω ∈ R
dwith the fun
tion

g(s) =

∫ ∞

0

f(t)tνHν(ts)dtand ν = (d − 2)/2 > −1. This is a reformulation of the standard Hankeltransform of radial fun
tions (see [9℄), based on
(z

2

)−ν

Jν(z) = Hν(z
2/4)with

Hν(t) :=

∞∑

n=1

(−t)n
n!Γ(n+ ν + 1)

.This reformulation of the Fourier transform has a lot of advantages, see [8℄ and[2℄. In parti
ular, the inverse Fourier transform is exa
tly the same, and thereare handy rules for derivatives of kernels in this form. Furthermore, it allowsFourier transforms in spa
es of fra
tal dimension, and it allows to take fra
tionalderivatives [9℄.In parti
ular, the s
aled Whittle�Matérn�Sobolev kernels of (4) take theform
fm,d,κ(t) =

21−m

(m− 1)!
κd/2−m(2t)m/2−d/4Km−d/2(κ

√
2t)after transformation t = r2/2 = ‖x− y‖22/2. Their d�variate Fourier transformsare (κ2 + ‖ω‖22

)−m
, and we transform them by s = ‖ω‖22/2 to get

(
κ2 + ‖ω‖22

)−m
= 2−m

(
κ2

2
+ s

)−m

=: gm,d,κ(s) (6)su
h that the Fourier transform relations
gm,d,κ(s) =

∫ ∞

0

fm,d,κ(t)t
νHν(ts)dt, fm,d,κ(t) =

∫ ∞

0

gm,d,κ(s)s
νHν(ts)dshold for ν = (d− 2)/2.



3 PROOFS 6We exploit the standard transformation to rewrite (3) in the form
∏m

j=1(r
2 + κ2j)

−1 = 2−m
∏m

j=1(r
2/2 + κ2j/2)

−1and 
onsider
g(s) := 2−m

m∏

j=1

(s+ κ2j/2)
−1.We want to �nd an expli
it formula for

f(t) =

∫ ∞

0

g(s)sνHν(ts)ds = 2−m

∫ ∞

0

sνHν(ts)

m∏

j=1

(s+ κ2j/2)
−1ds (7)for ν = (d− 2)/2 > −1, and we shall use Lemma 2.1. Then

f(t) = 2−m(−1)m−1

∫ ∞

0

sνHν(ts)[κ
2
1/2, . . . , κ

2
m/2]z(s+ z)−1ds

= 2−m(−1)m−1[κ21/2, . . . , κ
2
m/2]z

∫ ∞

0

(s+ z)−1sνHν(ts)ds

︸ ︷︷ ︸

=:gν,z(t)and we use that in the Sobolev 
ase we have
g1,d,

√
2z(s) =

1

2
(z + s)

−1
= g1,d,

√
2s(z).Then

gν,z(t) =

∫ ∞

0

(s+ z)−1sνHν(ts)ds

= 2

∫ ∞

0

g1,d,
√
2z(s)s

νHν(ts)ds

= 2f1,d,
√
2z(t)

= 2

(√
2z√
2t

)ν

Kν(
√
2z

√
2t)holds, but the integral in the �rst line needs

−1 < ν < 1/2 or 0 < d < 4in order to exist 
lassi
ally. However, we shall later use the more general �nalline whi
h extends the �rst line by analyti
 
ontinuation from the above valuesfor ν. Then we arrive at
f(t) = 2−m(−1)m−1[κ21/2, . . . , κ

2
m/2]zgν,z(t)

= 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]zf1,d,

√
2z(t).We now invert the transformation t = r2/2 and get

φ(r)
= f(r2/2)
= 2−m+1(−1)m−1[κ21/2, . . . , κ

2
m/2]zf1,d,

√
2z(r

2/2)

= 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]z

(
r√
2z

)1−d/2

K1−d/2(r
√
2z)



3 PROOFS 7whi
h is the �rst assertion of Theorem 2.1.The left�hand side, rewritten in the form (7), exists for all m and d ≥ 1with m > d/2, as well as the right�hand side. Sin
e the other parameters are�xed and positive, both sides are analyti
 fun
tions of the formal parameter d.Sin
e both sides allow all 
omplex values of d in an open subset of C 
ontainingthe real interval (1/2, 2m) , we get the above identity for m > d/2 by analyti

ontinuation with respe
t to d.We now want to exploit the fa
t that an m�th divided di�eren
e 
oin
ideswith an m�th derivative at some point and up to the fa
tor m!. This requiresthat we take the derivatives with respe
t to z of
uν,t(z) :=

(√
2z√
2t

)ν

Kν

(√
2z

√
2t
)for ν = (d − 2)/2, using Kν = K−ν and t = r2/2. We set s := 2zt, i.e.√

2s =
√
2z

√
2t and rewrite the expression as

uν,t(z) :=

(√
2s

2t

)ν

Kν

(√
2s
)

= (2t)−ν
(√

2s
)ν

Kν

(√
2s
)

︸ ︷︷ ︸

=:yν(s)

.From [8℄ we get the derivative relation
yν(s)

′ = −yν−1(s),and then
dk

dzk
uν,t(z) = (2t)−ν(2t)k

dk

dsk
yν(s)

= (2t)−ν(2t)k(−1)kyν−k(s)

= (2t)k−ν(−1)k
(√

2s
)ν−k

Kν−k

(√
2s
)

= (2t)k−ν(−1)k
(√

2z
√
2t
)ν−k

Kν−k

(√
2z
√
2t
)

= (−1)k

(√
2t√
2z

)k−ν

Kk−ν

(√
2z

√
2t
)leading be
ause of k − ν = m− d/2 to

dk

dzk
uν,t(z) =

2−m+1

(m− 1)!

(
r√
2z

)m−d/2

Km−d/2

(

r
√
2z
)

. (8)Taking the divided di�eren
e in (5) at values zj = κ2j/2, we get the abovefun
tion at some pla
e z = κ2/2 for some κ between the values κ1, . . . , κm. Thismeans that we get a suitably s
aled version of the standard kernel generatingSobolev spa
eWm
2 (Rd), proving the se
ond assertion of Theorem 2.1. The thirdassertion is a reformulation of the se
ond, in terms of fundamental solutions ofdi�erential operators.
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Figure 1: m = 3, κ1 = 2.3, κ2 = 3, κ3 = 4.4. Numeri
al ExamplesIn this se
tion we show the 1D radial plots of (5) for m = 3 and d = 2. InFig. 1 we have set κ1 = 2.3, κ2 = 3, κ3 = 4, while in Fig. 2 we have κ1 = 9,
κ2 = 10, and κ3 = 15. We 
an observe the tension e�e
t as the values of κigrow.We have also 
omputed experimentally the s
ales κ for whi
h the 
onsideredfun
tions agree with the form (4). In the �rst 
ase κ ≈ 3.0516 and with thisvalue the maximum absolute error (
omputed on 151 equispa
ed points) between(5) and (8) is 3.3e − 5. In the se
ond 
ase κ = 11.1524 provides a maximumabsolute error equal to 1.8e− 7.[1℄ M. D. Buhmann. Radial Basis Fun
tions. Cambridge Monographs on Ap-plied and Computational Mathemati
s. Cambridge University Press, 2004.[2℄ St. De Mar
hi and R. S
haba
k. Nonstandard kernels and their appli
a-tions. Preprint Göttingen, to appear, 2010.[3℄ J. Du
hon. Interpolation des fon
tions de deux variables suivant le prin
ipede la �exion des plaques min
es. Rev. Française Automat. Informat. Re
h.Opér. Anal. Numer., 10:5�12, 1976.[4℄ G. F. Fasshauer. Green's fun
tions: Taking another look at kernel approx-imation, radial basis fun
tions and splines. Approximation Theory XIII:San Antonio 2010, to appear.[5℄ A. Iske. Multiresolution methods in s
attered data modelling, volume 37 ofLe
ture Notes in Computational S
ien
e and Engineering. Springer-Verlag,Berlin, 2004.
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Figure 2: m = 3, κ1 = 9, κ2 = 10, κ3 = 15.[6℄ J. Kybi
, T. Blu, and M. Unser. Generalized sampling: A variationalapproa
h� Part I: Theory. IEEE Trans. Signal Pro
. Networks, 50:1965�1976, 2002.[7℄ C. Rabut and M. Rossini. Polyharmoni
 multiresolution analysis: anoverview and some new results. Numer. Algorithms, 48:135�160, 2008.[8℄ R. S
haba
k. Programming hints for kernel-based methods. Te
hni
alreport, 2009. Göttingen.[9℄ R. S
haba
k and Z. Wu. Operators on radial basis fun
tions. J. Comp.Appl. Math., 73:257�270, 1996.[10℄ L.L. S
humaker. Spline Fun
tions: Basi
 Theory. Wiley�Inters
ien
e, 1981.[11℄ M. Unser and T. Blu. Cardinal exponential splines: Part I � Theory and�ltering algorithms. IEEE Trans. Signal Pro
. Networks, 53:1425�1438,2005.[12℄ H. Wendland. S
attered Data Approximation. Cambridge University Press,2005.
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