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Abstract

This paper simultaneously generalizes two standard classes of radial kernels,
the polyharmonic kernels related to the differential operator (—A)™ and the
Whittle-Matérn kernels related to the differential operator (—A + I)™. This
is done by allowing general differential operators of the form []7", (A + x71)
with nonzero k; and calculating their associated kernels. It turns out that
they can be explicity given by starting from scaled Whittle-Matérn kernels and
taking divided differences with respect to their scale. They are positive definite
radial kernels which are reproducing kernels in Hilbert spaces norm—equivalent
to W2"(R?). On the side, we prove that generalized inverse multiquadric kernels
of the form [T/, (r* + x3)~" are positive definite, and we provide their Fourier
transforms. Some numerical examples are added for illustration.

Keywords: radial basis functions, scattered data, kernels, matching pursuit,
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1. Introduction

Connections between either splines and Green’s functions or radial basis
functions and Green’s functions have repeatedly been used and made over the
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past decades (see e.g. [10], [6], [11] and [4] for other references). A very special
case are Polyharmonic splines introduced in and studied by several authors
because of their good properties (see e.g. [3], [7]).

The well-known polyharmonic kernels are fundamental solutions of elliptic
equations of the form (—A)™u = 0 on R%. They come as radial kernels or radial
basis functions ¢om—4(||z — yl|2) on R? in dimension-dependent form

(b ( ) B (_1)[mfd/2-\ r2m—d 2m —d ¢ 27,
2m—d\T") = (_1)1+m7d/2r2m7d logr 2m —d € 27

as powers or thin—plate splines, if
2m—d >0 (1)

holds. They have generalized Fourier transforms ||w||5*™ on R? up to positive
multiplicative constants, and they are conditionally positive definite of orders
[m —d/2] and 14 m — d/2, respectively. See the monographs [12] and [1] for
details concerning these notions.

Another prominent case under the condition () are the positive definite
radial Whittle-Matérn—Sobolev kernels

¢2m—d(7') = Tm_d/szfd/2(T)

involving the Bessel function K, of the third kind. They are reproducing kernels
of Sobolev spaces W3*(R?) and have Fourier transforms (||w||2 + 1)~™ up to
positive factors, and thus are related to elliptic differential operators (—A+1)™
instead of the operators (—A)™ related to polyharmonic kernels.

We shall generalize both classes of kernels simultanously by considering fun-
damental solutions of more general elliptic equations of the form

Lu:= ﬁ(—A—l—n?I)u:O (2)

Jj=1

with positive real numbers f<a , 1 <j < m and assuming ({l). These differential
operators have positive radlal Fourler transforms

m
= [Tl + &3
j=1

within bounds of the form

0< H w) < Cjw]|z™ for all w € RY.

Thus their fundamental solutions are inverse Fourier transforms of

m

[Tl + )", (3)

j=1
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and they exist classically as continuous radial kernels. Our main task will be to
present explicit formulas for them.

If all x; are equal and positive, we have to find the inverse Fourier transform
of (|Jw||3+ x%)~™, and by standard rules of Fourier transforms, the result is the
scaled Whittle-Matérn—Sobolev kernel

2t (llév —yll

m—1)! K

m—d/2

Smanlzis) = ) Kanlelle -yl @
for 2m > d,x > 0 and all z,y € R? It is a standard technique to prove
conditional positive definiteness of polyharmonic kernels by starting from (@)
and considering the limit x — 0 with appropriate multiplicative normalization.

In this paper, we shall explicitly calculate the inverse Fourier transform
of @) for general positive values of the x;. Since (@) is a product, this is
equivalent to calculating a convolution of polyharmonic kernels Si 4., with
Fourier transforms (||w||* + #3)~!, which seems to be a highly nontrivial task.
But we shall prove that the result can be written explicitly as a divided difference
with respect to the scale parameter x of S 4,. This suggests that we obtain
a large new class of kernels, but it will turn out that the final result can be
written as a standard Whittle-Matérn—Sobolev kernel () of a certain scale &
dependent on the «;.

We close the paper by a few numerical examples.

2. Basic Results
We shall assume (IJ) throughout, and treat the product in (B by the following
identity.

Lemma 2.1. Let the m—th divided difference of a multivariate function u with
respect to the variable z be written as [t1,...,tm].u(z,...). Then the formula

(-1t H(s + 1) =t st (s + 2) 7

holds for all s > 0 and all positive t, ..., ty,.

Proof. For distinct tq,...,t,, the result follows by induction on m, and for
coalescing t; it follows by taking appropriate derivatives. By standard argu-
ments for divided differences with partially coalescing arguments, it follows in
general. O

Our central result is

Theorem 2.1.

1. The inverse d—variate Fourier transform of (3) for arbitrary positive num-
bers K1,...,km is the positive definite radial kernel

_ o—m+1(_qym—1y,.2 2 r\TY
o(r) =2 (-1) [£1/2,...,K5,/2]. NG Ki_q2(rv2z).
(5)
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3.

2.

3.

For a special value K between K1, ..., kKn it takes the form (), i.e. it is a
specially scaled Whittle-Matérn—Sobolev kernel.

The fundamental solution of a differential operator of the form (2) coin-
cides with the fundamental solution of a differential operator

(—A + k21)™ for a special value k between ki, ..., Ky, i.e. it takes the

form ().

Before we prove this, some remarks should be made.

It is well-known that linear combinations of positive definite kernels with
positive coefficients yield positive definite kernels, but divided differences
have alternating factors. In spite of that, (&) is a positive definite kernel.

A direct way to calculate the kernel would be to use convolution implied
by the factorization of the Fourier transform (3]). But our approach gives
an explicit formula for the result of the convolution.

For d > 2, the kernels involved in the divided differences will have singu-
larities at zero. But the divided differences cancel these, and the resulting
kernel is well-defined at zero, as indicated by the third assertion.

All scaled Whittle-Matérn—Sobolev kernels (@) are reproducing kernels
in Hilbert spaces that are norm-equivalent to Sobolev space Wi (R?),
the norm equivalence constants being dependent on m, d and the scale
k. Our approach generates new variations of “multiply scaled” Sobolev—
type spaces, but the third assertion proves that we do not leave the set of
norm-equivalent spaces to Wi (R%).

The above technique can be put upside-down, proving that generalized
inverse multiquadrics of the form (B) are positive definite, their Fourier
transforms being of the form (&).

After this, one could possibly use the standard technique to go to non—
inverse multiquadrics by analytic continuation and allowing generalized
Fourier transforms, but we leave this to future research.

It would be interesting to see what happens if part of the x; tend to zero.
This would possibly yield new conditionally positive definite kernels that
are products of polyharmonic and Whittle-Matérn—Sobolev kernels, but
we again leave this to future research.

Proofs

The connection between items 1 and 2 of Theorem 2.1 suggest that we need
to take derivatives of kernels Sy, 4, of @) with respect to the scale parameter x.
This can be done by a useful technique for handling derivatives of radial kernels,
as summarized in |2] and given as detailed MATLAB programming instructions
in [8]. It could be bypassed for proving the first part of the theorem via Lemma
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2.1l and standard Fourier transforms, but for simplicity of presentation, we shall
use it throughout.
In short, a radial kernel

K(z,y) = ®(x —y) = ¢(lz — yl2)
on R? can be rewritten in the form
o(r) = f(r*/2) for all r > 0,
and then its d—variate Fourier transform ® can be recovered analogously from
d(w) = g(||jw||2/2) for all w € RY

with the function

o(s) = / RO H, (1)t

and v = (d — 2)/2 > —1. This is a reformulation of the standard Hankel
transform of radial functions (see [9]), based on

(f)w Jo(2) = H,(22/4)

2
with
N (=)"
B, (1) := n;l n(n+v+1)

This reformulation of the Fourier transform has a lot of advantages, see [€] and
[2]. In particular, the inverse Fourier transform is exactly the same, and there
are handy rules for derivatives of kernels in this form. Furthermore, it allows
Fourier transforms in spaces of fractal dimension, and it allows to take fractional
derivatives [9].

In particular, the scaled Whittle-Matérn—Sobolev kernels of (@) take the

form
217m

ml{d/2fm(2t)m/27d/4Km_d/2(K\/%)

fm,d,n(t) =

after transformation t = r2/2 = ||z — y||3/2. Their d—variate Fourier transforms
are (k% + ||lw||2)”", and we transform them by s = |[w]|3/2 to get

—m o /{2 -m
e e C D e ©)
such that the Fourier transform relations
Imits(s) = [ St OF B, Fontnlt) = [ gman()s" Hult)ds
0 0

hold for v = (d — 2)/2.
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We exploit the standard transformation to rewrite [B)) in the form
Hg 1(T + K] Hho= 2_mH;‘n:1(7“2/2+"$?/2)_1
and consider

ﬁ s—|—f£2/2

We want to find an explicit formula for

m

f®) = /000 g(8)s"H, (ts)ds =27™ /000 s"H,(ts) H(s + Ii?/Q)_ldS (7)

j=1

for v=(d —2)/2 > —1, and we shall use Lemma 2.1 Then
fit)y = 27m(=1)m! / sYH, (ts)[K1/2,..., k2, /2].(s + 2) " tds
0

= 27 (=1)""1K2/2,. ..,mfn/2]z/Ooo(s—i—z)_ls”H,j(ts)ds

::g,,,z(t)
and we use that in the Sobolev case we have
1 -1
91,4z (8) = 5 (2 +8) 7 = 914, 55(2)-
Then

/Oo(s +2)7 sV H, (ts)ds
0

oo

= 2 91 a3z (8)s" Hy(ts)ds
0
2f1,d,x/£(9

V2z
2<ﬁ> K, (V22v2t)

holds, but the integral in the first line needs

gu,Z(t)

—l<v<l/2or0<d<4

in order to exist classically. However, we shall later use the more general final
line which extends the first line by analytic continuation from the above values
for v. Then we arrive at

F@) = 27 (=)™ KT /2, e /2]ag0s (1)
= 2N ) k22, k2, /20 g (D)

We now invert the transformation ¢ = 72 /2 and get

(r)
= f(r?/2)
= 2_m+1(_1)m_1[’€%/27' "7572n/2]2f1,d,\/5(r2/2)

.\ 142
= 2w () KV
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which is the first assertion of Theorem 211

The left—-hand side, rewritten in the form (@), exists for all m and d > 1
with m > d/2, as well as the right-hand side. Since the other parameters are
fixed and positive, both sides are analytic functions of the formal parameter d.
Since both sides allow all complex values of d in an open subset of C containing
the real interval (1/2,2m) , we get the above identity for m > d/2 by analytic
continuation with respect to d.

We now want to exploit the fact that an m-th divided difference coincides
with an m—th derivative at some point and up to the factor m!. This requires
that we take the derivatives with respect to z of

Nor v
upt(z) = <%> K, (\/Z\/%)

for v = (d — 2)/2, using K, = K_, and t = 72/2. We set s := 22t, i.e.
V25 = v/22v/2t and rewrite the expression as

Uy (2) = <@>VKV (@) =(2t)7" (\/%)UKV (\/%) :

2t

:3'91/(5)

From [8] we get the derivative relation

yu(s) = —yu-1(s),

and then
dk dk
r(z) = 20Oy (s)
= (@)@ ( "1y ()
= (20" (-1F (V2 ) — (V2s)
(20" (=1)* (V2= ) C Ky (V22V2)

1)k
1)k
Vo
— (—1) <m> Ki (\/Zx@)
leading because of k — v =m — d/2 to

—m+1 po\ M2
jkkuyt() = %(E) Kp_qs2 (r 2z). (8)

Taking the divided difference in (Bl) at values z; = m? /2, we get the above
function at some place z = x2/2 for some k between the values 51, ..., k,,. This
means that we get a suitably scaled version of the standard kernel generating
Sobolev space W3 (R%), proving the second assertion of Theorem 21l The third
assertion is a reformulation of the second, in terms of fundamental solutions of
differential operators. O
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Figure 1: m =3, k1 = 2.3, kg =3, k3 = 4.

. Numerical Examples

In this section we show the 1D radial plots of (@) for m = 3 and d = 2. In

Fig. 1 we have set k1 = 2.3, ko = 3, k3 = 4, while in Fig. 2 we have x; =9,
ko = 10, and k3 = 15. We can observe the tension effect as the values of k;
grow.

We have also computed experimentally the scales « for which the considered

functions agree with the form (). In the first case x ~ 3.0516 and with this
value the maximum absolute error (computed on 151 equispaced points) between

@)

abs

1

2]

3]

[4]

5]

and () is 3.3e — 5. In the second case k = 11.1524 provides a maximum
olute error equal to 1.8e — 7.
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Figure 2: m =3, k1 =9, k2 = 10, k3 = 15.
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