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1 INTRODUCTION 2past deades (see e.g. [10℄, [6℄, [11℄ and [4℄ for other referenes). A very speialase are Polyharmoni splines introdued in [3℄ and studied by several authorsbeause of their good properties (see e.g. [5℄, [7℄).The well�known polyharmoni kernels are fundamental solutions of elliptiequations of the form (−∆)mu = 0 on R
d. They ome as radial kernels or radialbasis funtions φ2m−d(‖x− y‖2) on Rd in dimension�dependent form

φ2m−d(r) =

{
(−1)⌈m−d/2⌉r2m−d 2m− d /∈ 2Z

(−1)1+m−d/2r2m−d log r 2m− d ∈ 2Z

}as powers or thin�plate splines, if
2m− d > 0 (1)holds. They have generalized Fourier transforms ‖ω‖−2m

2 on Rd up to positivemultipliative onstants, and they are onditionally positive de�nite of orders
⌈m − d/2⌉ and 1 +m − d/2, respetively. See the monographs [12℄ and [1℄ fordetails onerning these notions.Another prominent ase under the ondition (1) are the positive de�niteradial Whittle�Matérn�Sobolev kernels

ψ2m−d(r) = rm−d/2Km−d/2(r)involving the Bessel funtion Kν of the third kind. They are reproduing kernelsof Sobolev spaes Wm
2 (Rd) and have Fourier transforms (‖ω‖22 + 1)−m up topositive fators, and thus are related to ellipti di�erential operators (−∆+I)minstead of the operators (−∆)m related to polyharmoni kernels.We shall generalize both lasses of kernels simultanously by onsidering fun-damental solutions of more general ellipti equations of the form

Lu :=

m∏

j=1

(−∆+ κ2jI)u = 0 (2)with positive real numbers κ2j , 1 ≤ j ≤ m and assuming (1). These di�erentialoperators have positive radial Fourier transforms
L̂(ω) =

m∏

j=1

(‖ω‖22 + κ2j)within bounds of the form
0 <

m∏

j=1

κ2j ≤ L̂(ω) ≤ C‖ω‖2m2 for all ω ∈ R
d.Thus their fundamental solutions are inverse Fourier transforms of

m∏

j=1

(‖ω‖22 + κ2j)
−1, (3)



2 BASIC RESULTS 3and they exist lassially as ontinuous radial kernels. Our main task will be topresent expliit formulas for them.If all κj are equal and positive, we have to �nd the inverse Fourier transformof (‖ω‖22+ κ2)−m, and by standard rules of Fourier transforms, the result is thesaled Whittle�Matérn�Sobolev kernel
Sm,d,κ(x, y) =

21−m

(m− 1)!

(‖x− y‖2
κ

)m−d/2

Km−d/2(κ‖x− y‖2) (4)for 2m > d, κ > 0 and all x, y ∈ Rd. It is a standard tehnique to proveonditional positive de�niteness of polyharmoni kernels by starting from (4)and onsidering the limit κ→ 0 with appropriate multipliative normalization.In this paper, we shall expliitly alulate the inverse Fourier transformof (3) for general positive values of the κj . Sine (3) is a produt, this isequivalent to alulating a onvolution of polyharmoni kernels S1,d,κj
withFourier transforms (‖ω‖2 + κ2j)

−1, whih seems to be a highly nontrivial task.But we shall prove that the result an be written expliitly as a divided di�erenewith respet to the sale parameter κ of S1,d,κ. This suggests that we obtaina large new lass of kernels, but it will turn out that the �nal result an bewritten as a standard Whittle�Matérn�Sobolev kernel (4) of a ertain sale κdependent on the κj .We lose the paper by a few numerial examples.2. Basi ResultsWe shall assume (1) throughout, and treat the produt in (3) by the followingidentity.Lemma 2.1. Let the m�th divided di�erene of a multivariate funtion u withrespet to the variable z be written as [t1, . . . , tm]zu(z, . . .). Then the formula
(−1)m−1

m∏

j=1

(s+ tj)
−1 = [t1, . . . , tm]z(s+ z)−1holds for all s ≥ 0 and all positive t1, . . . , tm.Proof: For distint t1, . . . , tm the result follows by indution on m, and foroalesing tj it follows by taking appropriate derivatives. By standard argu-ments for divided di�erenes with partially oalesing arguments, it follows ingeneral.Our entral result isTheorem 2.1.1. The inverse d�variate Fourier transform of (3) for arbitrary positive num-bers κ1, . . . , κm is the positive de�nite radial kernel

φ(r) = 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]z

(
r√
2z

)1−d/2

K1−d/2(r
√
2z).(5)



3 PROOFS 42. For a speial value κ between κ1, . . . , κm it takes the form (4), i.e. it is aspeially saled Whittle�Matérn�Sobolev kernel.3. The fundamental solution of a di�erential operator of the form (2) oin-ides with the fundamental solution of a di�erential operator
(−∆ + κ2I)m for a speial value κ between κ1, . . . , κm, i.e. it takes theform (4).Before we prove this, some remarks should be made.

• It is well�known that linear ombinations of positive de�nite kernels withpositive oe�ients yield positive de�nite kernels, but divided di�ereneshave alternating fators. In spite of that, (5) is a positive de�nite kernel.
• A diret way to alulate the kernel would be to use onvolution impliedby the fatorization of the Fourier transform (3). But our approah givesan expliit formula for the result of the onvolution.
• For d ≥ 2, the kernels involved in the divided di�erenes will have singu-larities at zero. But the divided di�erenes anel these, and the resultingkernel is well�de�ned at zero, as indiated by the third assertion.
• All saled Whittle�Matérn�Sobolev kernels (4) are reproduing kernelsin Hilbert spaes that are norm�equivalent to Sobolev spae Wm

2 (Rd),the norm equivalene onstants being dependent on m, d and the sale
κ. Our approah generates new variations of �multiply saled� Sobolev�type spaes, but the third assertion proves that we do not leave the set ofnorm�equivalent spaes to Wm

2 (Rd).
• The above tehnique an be put upside�down, proving that generalizedinverse multiquadris of the form (3) are positive de�nite, their Fouriertransforms being of the form (5).
• After this, one ould possibly use the standard tehnique to go to non�inverse multiquadris by analyti ontinuation and allowing generalizedFourier transforms, but we leave this to future researh.
• It would be interesting to see what happens if part of the κj tend to zero.This would possibly yield new onditionally positive de�nite kernels thatare produts of polyharmoni and Whittle�Matérn�Sobolev kernels, butwe again leave this to future researh.3. ProofsThe onnetion between items 1 and 2 of Theorem 2.1 suggest that we needto take derivatives of kernels Sm,d,κ of (4) with respet to the sale parameter κ.This an be done by a useful tehnique for handling derivatives of radial kernels,as summarized in [2℄ and given as detailed MATLAB programming instrutionsin [8℄. It ould be bypassed for proving the �rst part of the theorem via Lemma



3 PROOFS 52.1 and standard Fourier transforms, but for simpliity of presentation, we shalluse it throughout.In short, a radial kernel
K(x, y) = Φ(x − y) = φ(‖x− y‖2)on R

d an be rewritten in the form
φ(r) = f(r2/2) for all r ≥ 0,and then its d�variate Fourier transform Φ̂ an be reovered analogously from

Φ̂(ω) = g(‖ω‖22/2) for all ω ∈ R
dwith the funtion

g(s) =

∫ ∞

0

f(t)tνHν(ts)dtand ν = (d − 2)/2 > −1. This is a reformulation of the standard Hankeltransform of radial funtions (see [9℄), based on
(z

2

)−ν

Jν(z) = Hν(z
2/4)with

Hν(t) :=

∞∑

n=1

(−t)n
n!Γ(n+ ν + 1)

.This reformulation of the Fourier transform has a lot of advantages, see [8℄ and[2℄. In partiular, the inverse Fourier transform is exatly the same, and thereare handy rules for derivatives of kernels in this form. Furthermore, it allowsFourier transforms in spaes of fratal dimension, and it allows to take frationalderivatives [9℄.In partiular, the saled Whittle�Matérn�Sobolev kernels of (4) take theform
fm,d,κ(t) =

21−m

(m− 1)!
κd/2−m(2t)m/2−d/4Km−d/2(κ

√
2t)after transformation t = r2/2 = ‖x− y‖22/2. Their d�variate Fourier transformsare (κ2 + ‖ω‖22

)−m
, and we transform them by s = ‖ω‖22/2 to get

(
κ2 + ‖ω‖22

)−m
= 2−m

(
κ2

2
+ s

)−m

=: gm,d,κ(s) (6)suh that the Fourier transform relations
gm,d,κ(s) =

∫ ∞

0

fm,d,κ(t)t
νHν(ts)dt, fm,d,κ(t) =

∫ ∞

0

gm,d,κ(s)s
νHν(ts)dshold for ν = (d− 2)/2.



3 PROOFS 6We exploit the standard transformation to rewrite (3) in the form
∏m

j=1(r
2 + κ2j)

−1 = 2−m
∏m

j=1(r
2/2 + κ2j/2)

−1and onsider
g(s) := 2−m

m∏

j=1

(s+ κ2j/2)
−1.We want to �nd an expliit formula for

f(t) =

∫ ∞

0

g(s)sνHν(ts)ds = 2−m

∫ ∞

0

sνHν(ts)

m∏

j=1

(s+ κ2j/2)
−1ds (7)for ν = (d− 2)/2 > −1, and we shall use Lemma 2.1. Then

f(t) = 2−m(−1)m−1

∫ ∞

0

sνHν(ts)[κ
2
1/2, . . . , κ

2
m/2]z(s+ z)−1ds

= 2−m(−1)m−1[κ21/2, . . . , κ
2
m/2]z

∫ ∞

0

(s+ z)−1sνHν(ts)ds

︸ ︷︷ ︸

=:gν,z(t)and we use that in the Sobolev ase we have
g1,d,

√
2z(s) =

1

2
(z + s)

−1
= g1,d,

√
2s(z).Then

gν,z(t) =

∫ ∞

0

(s+ z)−1sνHν(ts)ds

= 2

∫ ∞

0

g1,d,
√
2z(s)s

νHν(ts)ds

= 2f1,d,
√
2z(t)

= 2

(√
2z√
2t

)ν

Kν(
√
2z

√
2t)holds, but the integral in the �rst line needs

−1 < ν < 1/2 or 0 < d < 4in order to exist lassially. However, we shall later use the more general �nalline whih extends the �rst line by analyti ontinuation from the above valuesfor ν. Then we arrive at
f(t) = 2−m(−1)m−1[κ21/2, . . . , κ

2
m/2]zgν,z(t)

= 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]zf1,d,

√
2z(t).We now invert the transformation t = r2/2 and get

φ(r)
= f(r2/2)
= 2−m+1(−1)m−1[κ21/2, . . . , κ

2
m/2]zf1,d,

√
2z(r

2/2)

= 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]z

(
r√
2z

)1−d/2

K1−d/2(r
√
2z)



3 PROOFS 7whih is the �rst assertion of Theorem 2.1.The left�hand side, rewritten in the form (7), exists for all m and d ≥ 1with m > d/2, as well as the right�hand side. Sine the other parameters are�xed and positive, both sides are analyti funtions of the formal parameter d.Sine both sides allow all omplex values of d in an open subset of C ontainingthe real interval (1/2, 2m) , we get the above identity for m > d/2 by analytiontinuation with respet to d.We now want to exploit the fat that an m�th divided di�erene oinideswith an m�th derivative at some point and up to the fator m!. This requiresthat we take the derivatives with respet to z of
uν,t(z) :=

(√
2z√
2t

)ν

Kν

(√
2z

√
2t
)for ν = (d − 2)/2, using Kν = K−ν and t = r2/2. We set s := 2zt, i.e.√

2s =
√
2z

√
2t and rewrite the expression as

uν,t(z) :=

(√
2s

2t

)ν

Kν

(√
2s
)

= (2t)−ν
(√

2s
)ν

Kν

(√
2s
)

︸ ︷︷ ︸

=:yν(s)

.From [8℄ we get the derivative relation
yν(s)

′ = −yν−1(s),and then
dk

dzk
uν,t(z) = (2t)−ν(2t)k

dk

dsk
yν(s)

= (2t)−ν(2t)k(−1)kyν−k(s)

= (2t)k−ν(−1)k
(√

2s
)ν−k

Kν−k

(√
2s
)

= (2t)k−ν(−1)k
(√

2z
√
2t
)ν−k

Kν−k

(√
2z
√
2t
)

= (−1)k

(√
2t√
2z

)k−ν

Kk−ν

(√
2z

√
2t
)leading beause of k − ν = m− d/2 to

dk

dzk
uν,t(z) =

2−m+1

(m− 1)!

(
r√
2z

)m−d/2

Km−d/2

(

r
√
2z
)

. (8)Taking the divided di�erene in (5) at values zj = κ2j/2, we get the abovefuntion at some plae z = κ2/2 for some κ between the values κ1, . . . , κm. Thismeans that we get a suitably saled version of the standard kernel generatingSobolev spaeWm
2 (Rd), proving the seond assertion of Theorem 2.1. The thirdassertion is a reformulation of the seond, in terms of fundamental solutions ofdi�erential operators.
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Figure 1: m = 3, κ1 = 2.3, κ2 = 3, κ3 = 4.4. Numerial ExamplesIn this setion we show the 1D radial plots of (5) for m = 3 and d = 2. InFig. 1 we have set κ1 = 2.3, κ2 = 3, κ3 = 4, while in Fig. 2 we have κ1 = 9,
κ2 = 10, and κ3 = 15. We an observe the tension e�et as the values of κigrow.We have also omputed experimentally the sales κ for whih the onsideredfuntions agree with the form (4). In the �rst ase κ ≈ 3.0516 and with thisvalue the maximum absolute error (omputed on 151 equispaed points) between(5) and (8) is 3.3e − 5. In the seond ase κ = 11.1524 provides a maximumabsolute error equal to 1.8e− 7.[1℄ M. D. Buhmann. Radial Basis Funtions. Cambridge Monographs on Ap-plied and Computational Mathematis. Cambridge University Press, 2004.[2℄ St. De Marhi and R. Shabak. Nonstandard kernels and their applia-tions. Preprint Göttingen, to appear, 2010.[3℄ J. Duhon. Interpolation des fontions de deux variables suivant le prinipede la �exion des plaques mines. Rev. Française Automat. Informat. Reh.Opér. Anal. Numer., 10:5�12, 1976.[4℄ G. F. Fasshauer. Green's funtions: Taking another look at kernel approx-imation, radial basis funtions and splines. Approximation Theory XIII:San Antonio 2010, to appear.[5℄ A. Iske. Multiresolution methods in sattered data modelling, volume 37 ofLeture Notes in Computational Siene and Engineering. Springer-Verlag,Berlin, 2004.
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Figure 2: m = 3, κ1 = 9, κ2 = 10, κ3 = 15.[6℄ J. Kybi, T. Blu, and M. Unser. Generalized sampling: A variationalapproah� Part I: Theory. IEEE Trans. Signal Pro. Networks, 50:1965�1976, 2002.[7℄ C. Rabut and M. Rossini. Polyharmoni multiresolution analysis: anoverview and some new results. Numer. Algorithms, 48:135�160, 2008.[8℄ R. Shabak. Programming hints for kernel-based methods. Tehnialreport, 2009. Göttingen.[9℄ R. Shabak and Z. Wu. Operators on radial basis funtions. J. Comp.Appl. Math., 73:257�270, 1996.[10℄ L.L. Shumaker. Spline Funtions: Basi Theory. Wiley�Intersiene, 1981.[11℄ M. Unser and T. Blu. Cardinal exponential splines: Part I � Theory and�ltering algorithms. IEEE Trans. Signal Pro. Networks, 53:1425�1438,2005.[12℄ H. Wendland. Sattered Data Approximation. Cambridge University Press,2005.
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