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e the theory of kernel�basedinterpolation and approximation is well�established, this leads to a varietyof results. In parti
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onvergent approximations to analyti
 fun
tions, generalizung the 
lassi
alBernstein theorem for polynomial approximation to analyti
 fun
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tions onsome domain Ω is well-known [4, 10℄, and there are plenty of appli
ationsin Numeri
al Analysis, Sto
hasti
s, and Ma
hine Learning [13℄. The usualreprodu
tion formula is
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These formulas look di�erent at �rst sight, but this paper fo
uses on 
aseswhere the Taylor formula (2) takes the form (1) of a reprodu
tion formulain I. It turns out that there is a variety of interesting kernels allowingthis identi�
ation, i.e. roughly all kernels K(x, t) whi
h are power series in
xt with nonnegative 
oe�
ients. Ea
h of these kernels de�nes a �native�Hilbert spa
e in whi
h it is reprodu
ing via both (2) and (1), and allows theappli
ation of standard results 
on
erning interpolation and approximationby spa
es of the form

FX := Span {K(x, ·) : x ∈ X} . (3)for �xed �nite sets X := {x0, . . . , xn} ⊂ I. These spa
es 
an 
onsist of expo-nentials, rationals, hyperboli
 
osines, logarithms, and Bessel fun
tions, forinstan
e, depending on whi
h kernel is 
hosen. Thus we 
an derive resultson approximation and interpolation by those families from known resultson kernel�based interpolation and approximation. These in
lude optimalityproperties and error bounds, the latter being parti
ularly interesting whenthey take the form of Bernstein�type theorems 
on
erning spe
tral approxi-mation orders for approximations of analyti
 fun
tions. Su
h theorems 
omeas spe
ial 
ases of general results of [15℄ on power series kernels. The paper
loses with some numeri
al examples.2 Taylor Spa
esWe deal with Taylor spa
es in the spirit of [8℄, and hope that there willbe no 
onfusion with the related Taylor spa
es introdu
ed by Calderon andZygmund [6℄. We �x a subset N of N := {0, 1, 2, . . .} and 
onsider fun
tions
f for whi
h the remainder�free Taylor formula

f(x) =
∑

j∈N

f (j)(0)

j!
xj, (4)is valid and allows reprodu
tion of f via its derivatives at zero.If N is �nite and of the form N := {0, 1, . . . , n}, the admissible fun
tions

f form the spa
e Pn of polynomials of degree at most n. Other �nite sets
N lead to spe
ial spa
es of la
unary polyomials. If N is an in�nite subsetof N := {0, 1, 2, . . .}, we shall require (4) to be valid in a neighborhood ofthe origin with absolute 
onvergen
e. This suggests to work in the 
omplexplane C in all 
ases, allow 
omplex-valued fun
tions, and assume (4) to holdat least on some dis


DR := {x ∈ C : |x| < R}of a �nite radius R > 0 with absolute 
onvergen
e. But we 
an also 
onsider
ases where (4) is absolutely 
onvergent in the full 
omplex plane, de�ningan entire fun
tion f there, and we shall refer to this 
ase via R = ∞.2



Before we take a 
loser look at spa
es of fun
tions satisfying (4) forin�nite N , we 
onsider ways to turn (4) into a reprodu
tion formula of theform (1). Here, we fo
us on a spe
ial te
hnique [12℄ using weighted seriesexpansions. We take positive weights λj for all j ∈ N satisfying
∑

j∈N

R2jλj

(j!)2
< ∞, R < ∞

∑

j∈N

λje
j

j!
√
j
< ∞, R = ∞

(5)noting that Stirling's formula implies the �rst 
ondition for all R > 0 if these
ond is satis�ed. Then we form the weighted inner produ
t
(f, g) :=

∑

j∈N

f (j)(0)g(j)(0)

λj
(6)on the spa
e of all fun
tions f whi
h have all derivatives f (j)(0) for j ∈ N ,satisfy (4) and additionally also

‖f‖2 :=
∑

j∈N

|f (j)(0)|2
λj

< ∞. (7)We denote the 
ompletion of the spa
e of su
h fun
tions under the aboveinner produ
t by F and 
all the resulting Hilbert spa
e a Taylor spa
e. Wedrop the dependen
e of F on the sets N and
Λ := {λj : j ∈ N}for the reader's 
onvenien
e, but note that the weight set Λ will in all 
asesdetermine the inner produ
t stru
ture on F . Rewritten in power series form,the fun
tions in F are

f (z) =
∑

n∈N
anz

n with ∑

n∈N

n!2

λn
|an|2 < ∞with an = f (n)(0)/n!. The inequality above is equivalent to (7), and togetherwith (5) it implies that (4) is absolutely 
onvergent in DR for �nite R andin C for R = ∞. In fa
t, in DR we have

|f(z)|2 ≤
(

∑

n∈N

|an|2(n!)2
λn

)

·
(

∑

n∈N

R2nλn

(n!)2

)

< ∞ (8)by the Cau
hy�S
hwarz inequality. 3



Theorem 2.1. If N is �nite, the Taylor spa
e F with respe
t to N 
onsistsof the span of the monomials xj for j ∈ N . If N is in�nite, and if weights
λj are 
hosen with (5), the Taylor spa
e F 
onsists of real�analyti
 fun
tionswith power series expansions around zero whi
h are absolutely 
onvergent in
DR. The spa
e will depend on Λ, 
onsist of all fun
tions f of the form (4)with (7) and 
arry the inner produ
t (6).We still have to turn (4) into a Hilbert spa
e reprodu
tion formula

f(x) = (f,K(x, ·)) for all x ∈ DR, f ∈ F (9)with a suitable positive (semi�) de�nite reprodu
ing kernel
K : DR ×DR → C.As is well�known, su
h a kernel must exist and is uniquely de�ned.Theorem 2.2. The kernel

K(x, t) :=
∑

j∈N
λj

(tx)j

(j!)2
=: κ(tx), x, t ∈ I (10)is well�de�ned due to (5) and the series is absolutely 
onvergent for in�nite

N and for all x, t ∈ DR. It is positive (semi�) de�nite and reprodu
ing in theTaylor spa
e, and the Taylor formula 
oin
ides with the reprodu
tion formula(1).Proof: The �rst senten
e follows from arguments we have used before. Nowwe evaluate
∂j

∂tj |t=0

K(x, t) = λj
xj

j!
and

(f,K(x, ·)) =
∑

j∈N

f (j)(0)

λj

λjx
j

j!
= f(x).This yields plenty of examples of kernels when starting from power series

κ(z) =

∞
∑

j=0

λj
zj

(j!)2whi
h represent 
omplex�analyti
 fun
tions in a neighborhood of the origin.The 
onne
tion to kernels K(x, t) is via K(x, t) = κ(tx). It allows sele
tionsof λj whi
h grow like Rj(j!)2 for j → ∞ and arbitrary R > 0. Consequently,
4



there are surprisingly many spa
es whi
h allow the Taylor formula for repro-du
tion. Table 1 gives some examples that we partially 
over later in moredetail. Many of these are spe
ial instan
es of hypergeometri
 fun
tions, i.e.
2F1(a, b; c, z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!

pFq(a1, . . . , ap; b1, . . . , bq, z) =
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!with the Po
hhammer symbol
(a)n := a(a+ 1) · · · (a+ n− 1).

κ(z) =
∑

j∈N λj
zj

(j!)2
N λj

(1− z)−1, 0 ≤ |z| < 1 N (j!)2

(1− z2)−1, 0 ≤ |z| < 1 2N (j!)2

(1− z)−α, α ∈ N, 0 ≤ |z| < 1 N
(α+ j − 1)!j!

(α− 1)!

(1− z2)−α, α ∈ N, 0 ≤ |z| < 1 2N
(α+ j − 1)!j!

(α− 1)!

− log(1− z)

z
, 0 ≤ |z| < 1 N (−1)j+1 (j!)2

j + 1
exp(z) N j!

exp(z) N j!

sinh(z) 2N+ 1 j!

sinh(z)/z 2N j!
j+1

cosh(z) 2N j!

z−αIα(z) 2N
j!

2j+αΓ(j + α+ 1)Table 1: Some Kernels for Taylor Spa
esOther and mu
h more general 
ases for multivariate power kernels are
overed by [15℄. In 
omplex analysis, spe
ial 
ases of Taylor kernels andtheir asso
iated native spa
es are well studied, see e.g., [11, 9, 3, 2℄.3 InterpolationIn what follows, we shall 
onsider interpolation at �nite sets
X := {x0, . . . , xn} ⊂ DR5



of pairwise di�erent nodes by fun
tions from the spa
e (3). Interpolation ofarbitrary data on X requires nonsingularity of the kernel matrix
AX := (K(xj, xk))0≤j,k≤n .It is hermitian and positive semide�nite be
ause it 
an be written as aGramian, but it is positive de�nite only if additional 
onditions are satis-�ed.Before we fo
us on su
h 
onditions, we 
onsider the 
ase that the inter-polated data on X 
ome from a fun
tion f in the Taylor spa
e F for K. Forthese spe
ial data, the system is always solvable. In fa
t, the Hilbert spa
eproje
tor ΠX from F to FX yields a fun
tion ΠX(f) = sf,X ∈ FX su
h that

f −ΠX(f) is orthogonal to FX . By (1) this means that sf,X interpolates fin X.For 
he
king positive de�niteness of the kernel matrix, let a ∈ C
n+1 bea ve
tor with

0 = aTAXa

=
∑

m∈N

λm

(m!)2

∣

∣

∣

∣

∣

∣

n
∑

j=0

ajxj
m

∣

∣

∣

∣

∣

∣

2

.Positive de�niteness of the kernel matrix is guaranteed, if
0 =

n
∑

j=0

ajxj
m for all m ∈ Nimplies a = 0, i.e. i� the |N | × |X| Vandermonde matrix built from the

n + 1 = |X| points in X and the |N | exponents in N has rank n + 1. In
ase N = {0, 1, . . . , N} with N ≥ n, the matrix is positive de�nite, but forother 
ases of �nite N , the above nondegenera
y 
ondition is all we 
an sayhere. However, for N = N we have positive de�niteness for all point sets.The same holds for N = 2N if symmetry under squaring is avoided, i.e. ifall |xj|2 are di�erent.4 Properties of Interpolants(se
Prop) The existen
e of interpolants being settled to some extent, we
an apply known results from the theory of s
attered data interpolation [14℄to interpolation in Taylor spa
es.The �rst type of results 
on
erns optimality. The interpolant sf,X ∈ FXto some fun
tion f ∈ F on a dis
rete set X satis�es the norm�minimalityproperty
‖sf,X‖F ≤ ‖g‖F for all g ∈ F with g|X = f|Xand in parti
ular

‖sf,X‖F ≤ ‖f‖F .6



We now fo
us on error bounds and another optimality 
riterion. Considerall linear fun
tionals of the form
µa,x := f 7→ f(x)−

n
∑

j=0

ajf(xj)with arbitrary ve
tors a ∈ C
n+1 and points x ∈ DR. It is well�known in the
ontext of reprodu
ing kernel Hilbert spa
es that the solution of

min
a∈Cn+1

‖µa,x‖F ∗ =: PX(x) (11)exists and is attained at a ve
tor a = u(x) ∈ C
n+1 whi
h solves the system

K(x, xk) =
n
∑

j=0

uj(x)K(xj , xk), 0 ≤ k ≤ nwhi
h is solvable be
ause of K(x, ·) ∈ F . The solution is unique and satis�esLagrange 
onditions uj(xk) = δjk if the system is nonsingular, but in generalwe know only that the solution may be nonunique. But we now 
an de�nethe fun
tion
Lf,X(x) :=

n
∑

j=0

f(xj)uj(x) for all x ∈ DRand by 
onstru
tion we have the standard error bound
|f(x)− Lf,X(x)| ≤ PX(x)‖f‖F for all f ∈ F, x ∈ DR (12)with the power fun
tion PX(x) de�ned in (11). This fun
tion 
an be expli
-itly 
al
ulated, sin
e we have

PX(x)2 = ‖µu(x),x‖2F ∗

= K(x, x)−
∑

j=0

uj(x)K(x, xj)−
∑

j=0

uj(x)K(xj, x)

+
n
∑

j,k=0

uj(x)uk(x)K(xj, xk).Note that PX is uniquely de�ned even if the interpolation problem is notuniquely solvable.Sin
e (11) implies that the optimal fun
tional µu(x),x must be orthogonalto all fun
tionals δxj , we know that Lf,X is an interpolant to f on X whi
hwill 
oin
ide with sf,X if the system is nonsingular. In any 
ase, the errorbound (12) is useful. For instan
e. one 
an generate new interpolationpoints by maximizing PX [7℄, or one 
an assess the quality of polynomialinterpolation on point sets whose 
ardinality is mu
h lower than the degree.We shall provide an example in the �nal se
tion.7



If we are interested in asymptoti
 results for n → ∞, we have to 
on�neourselves to the 
ase of in�nite N . Furthermore, we restri
t ourselves nowto interpolation and evaluation on intervals I := [−a, a] with a ≤ R and
onsider only fun
tions f from F with real 
oe�
ients in their power series,and we denote the resulting spa
e by FR. If we interpolate fun
tions f from
FR, we shall make use of the analyti
ity of f and apply results of [15℄ aftersome modi�
ations. These error bounds will in all 
ases 
ome out to be ofspe
tral order in terms of the �ll distan
e

h := sup
x∈I

min
xj∈X

|xj − x|of X in I. Sin
e we shall later work with univariate fun
tions on bounded in-tervals only, we 
an assume h ≈ 1/n in 
ase of n quasi�uniformly distributeddata points, i.e. those with bounded mesh ratio in the sense used in splinetheory.5 Examples5.1 Hardy Spa
eWe 
onsider the 
ase κ(z) = (1− z)−1 on the open unit dis
 D1. This yieldsthe Szegö kernel
S(ω, z) :=

1

1− zω
for all ω, z ∈ D1.The native Hilbert spa
e for this kernel is the well�known Hardy spa
e H

2whi
h 
onsists of those fun
tions analyti
 in the unit dis
 whose Taylor 
o-e�
ients form a square-summable series. It is known (see, e.g., [3, 2℄) thatthe norm 
an also be realized as an integral
‖f‖2

H2 =
1

2π

∫ 2π

0

∣

∣

∣
f
(

eiθ
)∣

∣

∣

2
dθ .The reprodu
ing formula then be
omes the Cau
hy formula. Thus the twomost interesting reprodu
tion formulas agree in this 
ase and take the formof Hilbert spa
e reprodu
tion formulas.When working in an interval I = [−a, a] with 0 < a < 1 and real-valuedfun
tions, we getProposition 5.1. The native Hilbert spa
e FR for the rational kernel R(x, t) =

(1 − xt)−1 
onsists of real-valued fun
tions whose 
omplex extensions lie inthe Hardy spa
e H
2.Interpolation in point sets X = {x0, . . . , xn} ⊂ I = [−a, a] with 0 < a <

1 using this kernel and the trial spa
e (3) will be in terms of rational fun
tions8



p/q with polynomials p and q of degree up to n and n+ 1, respe
tively, thedenominator polynomial q being �xed up to a multipli
ative 
onstant by itszeros in the points 1/xj , 0 ≤ j ≤ n. These 
lassi
al rational interpolants areeasy to 
al
ulate via polynomial interpolation of degree n.For interpolation in the 
orresponding native Hilbert spa
e, we obtain thefollowing 
onvergen
e results from [15℄:Theorem 5.2. 1. For ea
h 0 < a < 1 there are 
onstants c1, h0 > 0 su
hthat for any dis
rete set X ⊂ I = [−a, a] with �ll distan
e h ≤ h0 andany fun
tion f ∈ FR, the error between f and its interpolant sf,X isbounded by
‖f − sf,X‖L∞[−a,a] ≤ e−c1/h ‖f‖NR

.2. Suppose n ∈ N and 0 < a < 1. Then there are 
onstants c2, h̃0 > 0su
h that for all dis
rete sets X ⊂ I = [−a, a] with �ll distan
e h ≤ h̃0and any fun
tion f ∈ NR, the error between the n-th derivative of fand its interpolant sf,X is bounded by
∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞[−a,a]
≤ e−c2/

√
h ‖f‖NR

.Note that for quasi�uniform data sites we get spe
tral or exponential
onvergen
e with respe
t to n.5.2 Bergman Spa
eSimilarly we 
an pro
eed for the Bergman kernel
BC (w, z) =

1

(1− zw)2on the unit dis
. The native Hilbert spa
e for this kernel is the Bergmanspa
e B
2, whi
h 
onsists of those holomorphi
 fun
tions on the unit dis
that are square-summable with respe
t to the planar Lebesgue measure m[2℄. The norm 
an be realized as

‖f‖
B2 =

1

π

∫

D

|f (z)|2 dm(z) .Note that the Bergman spa
e 
ontains the Hardy spa
e.When restri
ting everything to the real line and real�valued fun
tions,we getProposition 5.3. The native Hilbert spa
e FR for the rational kernel B(x, t) :=
(1 − xt)−2 on intervals I := [−a, a] with 0 < a < 1 
onsists of real�valuedfun
tions analyti
 in I whose 
omplex extensions lie in the Bergman spa
e
B

2. 9



Now the kernel�based interpolation problem on n+1 points uses rationalfun
tions p/q where q has the points 1/xj as double zeros and is of degree
2n + 2, while p is of degree at most 2n. For interpolation in FR for theBergman kernel we obtain the following 
onvergen
e results.Theorem 5.4. 1. For all 0 < a < 1 there are 
onstants c1, h0 > 0 su
hthat for any dis
rete set X ⊂ [−a, a] with �ll distan
e h ≤ h0 andany fun
tion f ∈ FR, the error between f and its interpolant sf,X isbounded by

‖f − sf,X‖L∞[−a,a] ≤ e−c1/h ‖f‖NB
.2. Suppose n ∈ N and 0 < a < 1. Then there are 
onstants c2, h̃0 > 0su
h that for all dis
rete sets X ⊂ [−a, a] with �ll distan
e h ≤ h̃0 andany fun
tion f ∈ NR, the error between the n-th derivative of f andits interpolant sf,X is bounded by

∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞(−a,a)
≤ e−c2/

√
h ‖f‖NB

.Proof:1. By [15, Thm. 3℄, it su�
es to 
he
k that
C̃(2k) := sup

x,y∈[−a,a]

∣

∣

∣

∣

D2k
y

1

(1− xy)2

∣

∣

∣

∣

≤ ckk!2holds for almost all k ∈ N with some 
onstant c independent of k,where Dℓ
y denotes the ℓ-th derivative with respe
t to the variable y.Indeed, we �nd indu
tively

C̃(2k) := sup
x,y∈[−a,a]

∣

∣

∣

∣

D2k
y

1

(1− xy)2

∣

∣

∣

∣

= sup
x,y∈[−a,a]

∣

∣

∣

∣

∣

(2k + 1)!x2k

(1− xy)2k+2

∣

∣

∣

∣

∣

≤ (2k + 1)!a2k

(1− a2)2k+2
≤
(

6a2

(1− a2)4

)k

k!2 .2. By [15, Thm. 6℄, it su�
es to 
he
k that
C(2k) := max

ℓ+m=2k
sup

x,y∈(−a,a)

∣

∣

∣
Dm

x Dℓ
yK (x, y)

∣

∣

∣
≤ eckk2kholds for some 
onstant c independent of k. By symmetry, we may

10



assume m ≤ ℓ. Expli
it 
al
ulations yield
C(2k) = max

ℓ+m=2k
sup

x,y∈[−a,a]

∣

∣

∣

∣

∣

Dm
x Dℓ

y

∞
∑

n=0

(n+ 1) xnyn

∣

∣

∣

∣

∣

= max
ℓ+m=2k

sup
x,y∈[−a,a]

∣

∣

∣

∣

∣

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
xn−myn−ℓ

∣

∣

∣

∣

∣

= a−2k max
ℓ+m=2k

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
a2n .We 
laim that the maximum is attained for ℓ = m = k. Indeed, if

ℓ ≥ m+ 2, we �nd the term-wise bound
∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
a2n ≤

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ+ 1)! (n−m− 1)!
a2n

≤
∞
∑

n=ℓ−1

(n+ 1)!n!

(n− (ℓ− 1))! (n− (m+ 1))!
a2n ,whi
h implies that the maximum is attained for the symmetri
 situa-tion m = ℓ = k. Thus we have with the hypergeometri
 fun
tion (see[1, 
h. 15℄)

C(2k) = a−2k
∞
∑

n=k

(n+ 1)!n!

(n− k)!2
a2n =

∞
∑

n=0

(n+ k + 1)! (n+ k)!

n!2
a2n

= k! (k + 1)!F
(

k + 2, k + 1; 1; a2
)

= k! (k + 1)!
(

1− a2
)−2−k

F

(

2 + k,−k; 1;
a2

a2 − 1

)

[1, (15.3.4)]
= k! (k + 1)!

(

1− a2
)−k−1

F

(

−k − 1, k + 1; 1;
a2

a2 − 1

)

[1, (15.3.3)] .We apply [1, (15.4.6)℄ with n = k + 1, α = 0 and β = −1, whi
h gives
C(2k) = (k + 1)!k!

(

1− a2
)−k−1

P
(0,−1)
k+1

(

a2 + 1

1− a2

)

.By the re
urren
e relation [1, (22.7.16)℄ for the Ja
obi polynomials, we have
(k + 1)P

(0,−1)
k+1 (x) =

(

k +
1

2

)

(1 + x)P
(0,0)
k (x)− kP

(0,−1)
k (x) .Thus, we have with the Legendre polynomials Pk := P

(0,0)
k

∣

∣

∣
P

(0,−1)
k+1 (x)

∣

∣

∣
≤ |1 + x| |Pk (x)|+

∣

∣

∣
P

(0,−1)
k (x)

∣

∣

∣
≤ . . .

≤ |1 + x| (|Pk (x)|+ |Pk−1 (x)|+ · · ·+ |P0 (x)|) +
∣

∣

∣
P

(0,−1)
0 (x)

∣

∣

∣
.11



In [15, Proof of Lemma 5℄ it is shown that
|Pk (x)| ≤ (2 |x|+ 1)n .Hen
e,

∣

∣

∣
P

(0,−1)
k+1 (x)

∣

∣

∣
≤ |1 + x|

k
∑

n=0

(2 |x|+ 1)n + 1

≤ k |1 + x| (2 |x|+ 1)k ≤ ck ,where the 
onstant c depends only on x = −a2+1
a2−1

but not on k. Puttingthings together, we have
C(2k) = (k + 1)!k!

(

1− a2
)−k−1

P
(0,−1)
k+1

(

−a2 + 1

a2 − 1

)

≤ ckk! (k + 1)! ≤ ckk2kwith some 
onstant c independent of k.5.3 Diri
hlet Spa
eThere are also Taylor kernels of logarithmi
 type. A well known one is thekernel L (x, y) := − 1
xy log (1− xy), whi
h 
an be extended via

L (w, z) := − 1

zw
log (1− zw) .This kernel is the reprodu
ing kernel for the Diri
hlet spa
e D [2℄, whi
h
onsists of those holomorphi
 fun
tions f on the unit dis
 D whose derivative

f ′ is in the Bergman spa
e.Proposition 5.5. The native Hilbert spa
e for the logarithmi
 kernel L 
on-sists of real�valued fun
tions analyti
 in [−a, a] whose 
omplex extensions liein the Diri
hlet spa
e D.The interpolation on X := {x0, . . . , xn} ⊂ I = [−a, a] for 0 < a < 1 isnow 
arried out with linear 
ombinations of fun
tions
−1

t
log(1− txj) for xj 6= 0,

1 for xj = 0,whi
h is quite an unusual setting.The approximation orders due to [15℄ are the same as for the rational
ase. Thus Theorem 5.2 
an be reformulated exa
tly also for this kernel andfun
tions from Diri
hlet spa
e. 12



5.4 The exponential 
aseIn this se
tion we 
onsider a kernel of exponential type on R, namely
E (x, t) := exp (xt)whi
h arises when the entire fun
tion κ(z) = exp(z) is restri
ted to the realline. The native Hilbert spa
e be
omes

NE :=

{

f : R → R

∣

∣

∣

∣

∣

f (z) =
∞
∑

n=0

anz
n with an ∈ R,

∞
∑

n=0

n!a2n < ∞
}and 
onsists of real�analyti
 fun
tions with entire 
omplex extensions. If aninterval I := [−a, a] is �xed, and if point sets X := {x0, . . . , xn} ⊂ I areused for interpolation, we have an interpolation with 
lassi
al exponentialsums, the xj being �xed frequen
ies. We shall remove this 
oupling betweenfrequen
ies and data points later.To 
hara
terize fun
tions from NE more pre
isely, we re
all some basi
de�nitions from [5, Chapters 1 and 2℄.De�nition 5.6. For an entire fun
tion f of a 
omplex variable z, we denoteby M (r) the maximum modulus of f(z) for |z| = r < ∞. We say that f isof order ρ if

lim sup
r→∞

log logM (r)

log r
= ρ .By 
onvention, a 
onstant fun
tion has order 0.Theorem 5.7. 1. The native Hilbert spa
e NE of the exponential ker-nel 
onsists of real-valued analyti
 fun
tions that have entire 
omplexextensions. In parti
ular, it 
ontains all polynomials.2. If an entire fun
tion f (z) =

∑∞
n=0 anz

n with real 
oe�
ients an is oforder ρ < 2, then its restri
tion to R lies in NE.3. For any fun
tion from NE, the 
omplex extension is of order less thanor equal to 2.Proof:1. Assume f (x) =
∑∞

n=0 anx
n ∈ NE . Then the natural 
omplex exten-sion f̃ (z) =

∑∞
n=0 anz

n 
onverges in the whole 
omplex plane sin
e
lim
n→∞

n
√

|an| ≤
(

lim
n→∞

n

√

|an|2 n! · lim
n→∞

n

√

1

n!

)1/2

= 0 .

13



2. If an entire fun
tion f (z) =
∑∞

n=0 anz
n is of order ρ = 2 − 2ǫ with

1 > ǫ > 0, then by [5, Thm. 2.2.2℄,
lim
n→∞

n log n

log (1/ |an|)
= 2− 2ǫ ,where the expression on the right is to be taken as 0 if an = 0. Sin
e

a2nn! 
onverges to 0, there is an n0 ∈ N su
h that for all n ≥ n0 wehave an ≤ 1. Then by de�nition of the lim sup, there exists an N ∈ Nsu
h that for all n ≥ N ,
n log n ≤ (2− ǫ) log

(

1

|an|

)

.This implies |an| ≤ n− n
2−ǫ , and therefore

∞
∑

n=0

n!a2n ≤ C +
∞
∑

n=N

n!n− 2n
2−ǫ ≤ C +

∞
∑

n=N

n− 2ǫ
2−ǫ < ∞ .If f is of order 0,

lim
n→∞

n log n

log (1/ |an|)
= 0 ,whi
h yields that there is some N ∈ N su
h that for all n ≥ N ,

n log n ≤ log

(

1

|an|

)

,and we 
an pro
eed as above, 
hoosing ǫ = 1.3. Assume f (x) =
∑∞

n=0 anx
n ∈ NE. Then there is a 
onstant C > 0,su
h that a2n ≤ C/n!, i.e., by Stirling's formula

|an| ≤
C√
n!

≤ Cen/2

n
2n+1

4

.Thus,
lim
n→∞

n log n

log
(

1
|an|

) ≤ lim
n→∞

n log n
n
2 log n+ 1

4 log n− logC − n
2

= 2 .

Remark 5.8. Theorem 5.7 is sharp in the sense that there are fun
tions oforder ρ = 2 that lie in NE and some that do not. For instan
e f1 (x) =
∑∞

n=0
1

nn/2x
n and f2 (x) =

∑∞
n=0

1
n1+n/2x

n both are of order 2, and f1 ∈ NEwhile f2 /∈ NE. 14



Following [15, Cor. 1 and 2℄, we have the following approximation ordersfor 
lassi
al interpolation in NE .Theorem 5.9. 1. For all a > 0, there are 
onstants c1, h0 > 0 su
h thatfor any dis
rete set X ⊂ I = [−a, a] with �ll distan
e h ≤ h0 andany fun
tion f ∈ NE, the error between f and its interpolant sf,X isbounded by
‖f − sf,X‖L∞[−a,a] ≤ ec1 log h/h ‖f‖NE

.2. Suppose n ∈ N andf a > 0. Then there are 
onstants c2, h̃0 > 0 su
hthat for all dis
rete sets X ⊂ I = [−a, a] with �ll distan
e h ≤ h̃0 andany fun
tion f ∈ NE the error between the n-th derivative of f and itsinterpolant sf,X is bounded by
∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞[−a,a]
≤ ec2 log h/

√
h ‖f‖NE

.Due to some simple 
al
ulational tri
ks, similar results on spe
tral 
on-vergen
e hold when frequen
ies are somewhat de
oupled from data points.We assume that frequen
ies µj are 
hosen with �ll distan
e h in some in-terval [α, β], and we want to work with these frequen
ies, but evaluate theapproximation error on [−a, a]. We then use the points
xj := ϕ(µj) := a+

µj − α

β − α
(b− a) ∈ [−a, a]for interpolation in [−a, a] using s
aled trial fun
tions exp(ctxj) as fun
tionsof t ∈ [−a, a]. Sin
e the above error bounds will also hold for s
aled kernels,we 
an take c = β−α

b−a to see that we have worked with fun
tions
exp(ctxj) = exp

(

ct
(

a+
µj−α
β−α (b− a)

))

= exp
(

ct
(

a− α
β−α(b− a)

))

exp
(

ct
(

µj

β−α(b− a)
))

= exp (t(ca− α)) exp (tµj)whi
h now have the desired frequen
ies. The given fun
tion, however, hasto be multiplied by exp (−t(ca− α)) before 
omputations start.6 Numeri
al ExamplesAll the subsequent �gures use four di�erent interpolants:
• the solid line for the Szegö kernel,
• the dotted line for the exponential kernel,15
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Figure 1: Errors for f(x) = sin(x)

• the - - line for the log kernel, and
• the - . line for the squared Szegö kernel.They di�er in the fun
tion f providing the data. In all 
ases, the arising ker-nel matri
es are severely ill�
onditioned, but we did not apply any pre
on-ditioning te
hniques. The 
ases with expansions into purely even or purelyodd terms are ignored and will be similar, provided that the symmetries aretaken into a

ount when setting up the problems. To allow 
omparisonsbetween kernels, we �xed 9 equidistant data lo
ations on [−0.9,+0.9] in all
ases. Sin
e the s
alings of the �gures might be hard to read, we present the

L∞ errors in Table 2.Szegö exp log Szegö2
sin(x) 7.31e�04 6.53e�08 2.59e�04 2.30e�03

1/(1 + x2/25) 8.73e�06 8.76e�10 2.97e�06 2.83e�05
1/(1 + x2) 1.49e�02 1.11e�03 9.67e�03 2.48e�02

1/(1 + 25x2) 3.89e+00 9.07e�01 2.97e+00 5.38e+00
B�spline 1.23e+00 2.88e�01 9.36e�01 1.70e+00Table 2: L∞ errors for di�erent examples and kernelsIt is to be expe
ted that the lo
ation of singularities of f outside theinterval will be of quite some in�uen
e on the error. For the entire fun
tion

sin(x), one 
an expe
t the best possible behavior, and the results are inFigure 1. We then have three examples of the Runge type, the singularitiesmoving 
loser from ±5i via ±i to ±0.2i, see Figures 2 to 4. The results get16
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Figure 2: Errors for f(x) = 1/(1 + x2/25)dramati
ally worse, and for the B�spline f(x) = 1− |x| they are disastrous,but this fun
tion is too far away from any of the native Hilbert spa
es ofanalyti
 fun
tions.In all 
ases, the exponential kernel performed best, followed by the logkernel, the Szegö kernel, and the squared Szegö kernel.A
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