Interpolation and Approximation in Taylor Spaces
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Abstract: The univariate Taylor formula without remainder allows to
reproduce a function completely from certain derivative values. Thus one
can look for Hilbert spaces in which the Taylor formula acts as a reproduc-
tion formula. It turns out that there are many Hilbert spaces which allow
this, and they should be called Taylor spaces. They have certain reproduc-
ing kernels which are either polynomials or power series with nonnegative
coefficients. Consequently, Taylor spaces can be spanned by translates of
various classical special functions such as exponentials, rationals, hyperbolic
cosines, logarithms, and Bessel functions. Since the theory of kernel-based
interpolation and approximation is well-established, this leads to a variety
of results. In particular, interpolation by shifted exponentials, rationals,
hyperbolic cosines, logarithms, and Bessel functions provides exponentially
convergent approximations to analytic functions, generalizung the classical
Bernstein theorem for polynomial approximation to analytic functions.
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1 Introduction

The theory of reproducing kernels K in Hilbert spaces H of functions on
some domain € is well-known [4, 10|, and there are plenty of applications
in Numerical Analysis, Stochastics, and Machine Learning [13]. The usual
reproduction formula is

f(z)=(f,K(z,-)g forallz € Q, f € H, (1)

but one of the most important reproduction formulas known otherwise is the
Taylor formula

f(z) = i f(j?'(o)wj, forallz eI, feF (2)
j=0

Vi

for functions in some space F' of analytic functions in some interval I around
the origin of R.
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These formulas look different at first sight, but this paper focuses on cases
where the Taylor formula (2) takes the form (1) of a reproduction formula
in I. It turns out that there is a variety of interesting kernels allowing
this identification, i.e. roughly all kernels K (z,¢) which are power series in
xt with nonnegative coefficients. Each of these kernels defines a “native”
Hilbert space in which it is reproducing via both (2) and (1), and allows the
application of standard results concerning interpolation and approximation
by spaces of the form

Fx :=Span{K(z,:) : z € X}. (3)

for fixed finite sets X := {zg,...,x,} C I. These spaces can consist of expo-
nentials, rationals, hyperbolic cosines, logarithms, and Bessel functions, for
instance, depending on which kernel is chosen. Thus we can derive results
on approximation and interpolation by those families from known results
on kernel-based interpolation and approximation. These include optimality
properties and error bounds, the latter being particularly interesting when
they take the form of Bernstein—type theorems concerning spectral approxi-
mation orders for approximations of analytic functions. Such theorems come
as special cases of general results of [15] on power series kernels. The paper
closes with some numerical examples.

2 Taylor Spaces

We deal with Taylor spaces in the spirit of [8], and hope that there will
be no confusion with the related Taylor spaces introduced by Calderon and
Zygmund [6]. We fix a subset N of N:={0,1,2,...} and consider functions
f for which the remainder—free Taylor formula

€) .
@) =3 0, (@)

JEN

is valid and allows reproduction of f via its derivatives at zero.

If AV is finite and of the form N := {0,1,...,n}, the admissible functions
f form the space P, of polynomials of degree at most n. Other finite sets
N lead to special spaces of lacunary polyomials. If N is an infinite subset
of N := {0,1,2,...}, we shall require (4) to be valid in a neighborhood of
the origin with absolute convergence. This suggests to work in the complex
plane C in all cases, allow complex-valued functions, and assume (4) to hold
at least on some disc

Dr:={z€C : |z| <R}

of a finite radius R > 0 with absolute convergence. But we can also consider
cases where (4) is absolutely convergent in the full complex plane, defining
an entire function f there, and we shall refer to this case via R = oc.



Before we take a closer look at spaces of functions satisfying (4) for
infinite A/, we consider ways to turn (4) into a reproduction formula of the
form (1). Here, we focus on a special technique [12] using weighted series
expansions. We take positive weights \; for all j € N satisfying

RY )\
Z < o0, R < >
= Y
)\jej (5)
Zj!\/j<oo, R=

JEN

noting that Stirling’s formula implies the first condition for all R > 0 if the
second is satisfied. Then we form the weighted inner product

() (4)
(f.g) == Z fP(0)g7(0) (6)

JEN )\j

on the space of all functions f which have all derivatives f)(0) for j € N,
satisfy (4) and additionally also

(M (0))2
=3 O oo M)
JEN J

We denote the completion of the space of such functions under the above
inner product by F' and call the resulting Hilbert space a Taylor space. We
drop the dependence of F' on the sets N and

A::{)\j ]EN}

for the reader’s convenience, but note that the weight set A will in all cases
determine the inner product structure on F'. Rewritten in power series form,
the functions in F are

12
f(z) = Z anz" with Z K—'\anF < 00

neN neN "

with a, = f(™(0)/n!. The inequality above is equivalent to (7), and together
with (5) it implies that (4) is absolutely convergent in Dpg for finite R and
in C for R = co. In fact, in Dr we have

an|2(n)? my
por < (D) (SR

neN n neN

by the Cauchy—-Schwarz inequality.



Theorem 2.1. If N is finite, the Taylor space F with respect to N consists
of the span of the monomials 7 for j € N. If N is infinite, and if weights
Aj are chosen with (5), the Taylor space F' consists of real-analytic functions
with power series expansions around zero which are absolutely convergent in
Dpg. The space will depend on A, consist of all functions f of the form (4)
with (7) and carry the inner product (6). O

We still have to turn (4) into a Hilbert space reproduction formula
f(z)=(f,K(x,-)) forall z € D, f € F 9)
with a suitable positive (semi-) definite reproducing kernel
K : Drx Dr — C.
As is well-known, such a kernel must exist and is uniquely defined.

Theorem 2.2. The kernel

_)2] =: k(tT), z, t €1 (10)

K(x,t) = Z Aj

JEN

(tz
(Y
is well-defined due to (5) and the series is absolutely convergent for infinite

N and for all x,t € Dg. It is positive (semi—) definite and reproducing in the
Taylor space, and the Taylor formula coincides with the reproduction formula

(1).

Proof: The first sentence follows from arguments we have used before. Now
we evaluate
o 7
o), = A o
FO0) A2
(K@) = S IEON o) o

A 0
i Aj 7!

This yields plenty of examples of kernels when starting from power series

k(z) = Z Aj Z'])2

]:0 (]‘

which represent complex—analytic functions in a neighborhood of the origin.
The connection to kernels K (x,t) is via K (z,t) = k(tx). It allows selections
of \; which grow like R7(j!)? for j — oo and arbitrary R > 0. Consequently,



there are surprisingly many spaces which allow the Taylor formula for repro-
duction. Table 1 gives some examples that we partially cover later in more
detail. Many of these are special instances of hypergeometric functions, i.e.

2F1(aab;caz) = 27

n=0 C)n n!
- (a1)n - (ap)n 2"
F ey, o0 b = —_—
pFylar, ... ap;by, ... by, 2) nZ% (b1)n -+ (by)n N
with the Pochhammer symbol
(@) :=ala+1)---(a+n—1).
2
K(2) = Y ien )\jW N Aj
1-2)"L0<|z] <1 N (41)?
1-2)"Lo< |z <1 2N (41)?
o (a+j—1DY!
(I-2"%aeN0<|z| <1 N (@—1)
2\—« ((X+]—1)']'
(1-2)"%aeN0<|z <1 2N (@1
log(1 — 1 (4)?
los(l=2) o< N (-1 U
z 7+1
exp(2) N j!
exp(z) N J!
sinh(z) 2N +1 J!
sinh(z)/z 2N %
cosh(z) 2N J!
_ J!
“I, 2 .
z (Z) N 2j+ar(j + o+ 1)

Table 1: Some Kernels for Taylor Spaces

Other and much more general cases for multivariate power kernels are
covered by [15]. In complex analysis, special cases of Taylor kernels and
their associated native spaces are well studied, see e.g., [11, 9, 3, 2].

3 Interpolation

In what follows, we shall consider interpolation at finite sets

X :={z9,...,x,} C Dp



of pairwise different nodes by functions from the space (3). Interpolation of
arbitrary data on X requires nonsingularity of the kernel matriz

Ax = (K((L‘j, xk))ogj,kgn :

It is hermitian and positive semidefinite because it can be written as a
Gramian, but it is positive definite only if additional conditions are satis-
fied.

Before we focus on such conditions, we consider the case that the inter-
polated data on X come from a function f in the Taylor space F' for K. For
these special data, the system is always solvable. In fact, the Hilbert space
projector IIx from F' to Fx yields a function IIx(f) = s¢ x € Fx such that
f —1IIx(f) is orthogonal to Fx. By (1) this means that sy x interpolates f
in X.

For checking positive definiteness of the kernel matrix, let a € C"*! be

a vector with
0 = aTAXE

D

_ _Am_ P

Z 12 I
meN (m!) j=0

2

Positive definiteness of the kernel matrix is guaranteed, if

0= Zajx_jm for all m e N
=0

implies a = 0, i.e. iff the |[M| x |X| Vandermonde matrix built from the
n+ 1 = |X| points in X and the |N| exponents in N has rank n + 1. In
case N ={0,1,..., N} with N > n, the matrix is positive definite, but for
other cases of finite N, the above nondegeneracy condition is all we can say
here. However, for A/ = N we have positive definiteness for all point sets.
The same holds for N' = 2N if symmetry under squaring is avoided, i.e. if
all |z;|? are different.

4 Properties of Interpolants

(secProp) The existence of interpolants being settled to some extent, we
can apply known results from the theory of scattered data interpolation [14]
to interpolation in Taylor spaces.

The first type of results concerns optimality. The interpolant s; x € Fx
to some function f € F on a discrete set X satisfies the norm-minimality
property

IsyxllF <llgllr for all g € F with g, = f|,

and in particular
sgxlle < ILf[lp-



We now focus on error bounds and another optimality criterion. Consider
all linear functionals of the form

fag = fr fl) =) a;f(x;)
§=0

with arbitrary vectors a € C**! and points « € Dg. It is well-known in the
context of reproducing kernel Hilbert spaces that the solution of

min ol =: Px(e) (11)

acCntl
exists and is attained at a vector a = u(x) € C**! which solves the system
n
K(z,xp) = Zuj(x)K(xj,xk), 0<k<n
j=0

which is solvable because of K (z,-) € F. The solution is unique and satisfies
Lagrange conditions uj(xy) = 0, if the system is nonsingular, but in general
we know only that the solution may be nonunique. But we now can define
the function

n
Lix(x):= Zf(w])u](x) for all z € Dg
j=0
and by construction we have the standard error bound
[f(z) = Lyx ()] < Px(z)|[f|[r for all f € F, € Dg (12)

with the power function Px(z) defined in (11). This function can be explic-
itly calculated, since we have

Px($)2 = H/‘u(z),af|%*

= K(z,2) =Y w@)K (@) = > ui(2)K ()
=0

J=0

+ Z wj(x)ug(z) K (24, xg).

J,k=0

Note that Px is uniquely defined even if the interpolation problem is not
uniquely solvable.

Since (11) implies that the optimal functional fi,(,) , must be orthogonal
to all functionals d,,, we know that Ly x is an interpolant to f on X which
will coincide with sy x if the system is nonsingular. In any case, the error
bound (12) is useful. For instance. one can generate new interpolation
points by maximizing Px [7], or one can assess the quality of polynomial
interpolation on point sets whose cardinality is much lower than the degree.
We shall provide an example in the final section.



If we are interested in asymptotic results for n — oo, we have to confine
ourselves to the case of infinite A/. Furthermore, we restrict ourselves now
to interpolation and evaluation on intervals I := [—a,a] with a« < R and
consider only functions f from F with real coefficients in their power series,
and we denote the resulting space by Fr. If we interpolate functions f from
Fr, we shall make use of the analyticity of f and apply results of [15] after
some modifications. These error bounds will in all cases come out to be of
spectral order in terms of the fill distance

h :=sup min |z; — x
:BEIIjGX‘ ! ‘

of X in I. Since we shall later work with univariate functions on bounded in-
tervals only, we can assume h &~ 1/n in case of n quasi—uniformly distributed
data points, i.e. those with bounded mesh ratio in the sense used in spline
theory.

5 Examples

5.1 Hardy Space

We consider the case k(z) = (1 —2)~! on the open unit disc D;. This yields
the Szegd kernel

S(w,z) := 1 for all w, z € Dy.

— zw

The native Hilbert space for this kernel is the well-known Hardy space H?
which consists of those functions analytic in the unit disc whose Taylor co-
efficients form a square-summable series. It is known (see, e.g., 3, 2|) that
the norm can also be realized as an integral

T i) |2
e =5 [ 7 ()] oo

The reproducing formula then becomes the Cauchy formula. Thus the two
most interesting reproduction formulas agree in this case and take the form
of Hilbert space reproduction formulas.

When working in an interval I = [—a, a] with 0 < a < 1 and real-valued
functions, we get

Proposition 5.1. The native Hilbert space Fr for the rational kernel R(z,t) =
(1 — zt)~! consists of real-valued functions whose complex extensions lie in
the Hardy space H?.

Interpolation in point sets X = {zg,...,z,} C I =[—a,a] with 0 < a <
1 using this kernel and the trial space (3) will be in terms of rational functions



p/q with polynomials p and ¢ of degree up to n and n + 1, respectively, the
denominator polynomial ¢ being fixed up to a multiplicative constant by its
zeros in the points 1/x;, 0 < j < n. These classical rational interpolants are
easy to calculate via polynomial interpolation of degree n.

For interpolation in the corresponding native Hilbert space, we obtain the
following convergence results from [15]:

Theorem 5.2. 1. For each 0 < a < 1 there are constants c1, hg > 0 such
that for any discrete set X C I = [—a,a] with fill distance h < hy and
any function f € Fr, the error between f and its interpolant sy x is

bounded by

6—01/h

1 = spxlly g < € 1l -

2. Suppose n € N and 0 < a < 1. Then there are constants co, ho > 0
such that for all discrete sets X C I = [—a, a] with fill distance h < hg
and any function f € Ng, the error between the n-th derivative of f
and its interpolant sy x is bounded by

< 6—02/\/ﬁ

|5 = 7% < 1l

‘Loo[fa,a}

Note that for quasi—uniform data sites we get spectral or exponential
convergence with respect to n.

5.2 Bergman Space

Similarly we can proceed for the Bergman kernel

1
Be(w,z) = ——
( ) (1- z@)2
on the unit disc. The native Hilbert space for this kernel is the Bergman
space B2, which consists of those holomorphic functions on the unit disc
that are square-summable with respect to the planar Lebesgue measure m
[2]. The norm can be realized as

Il == [ 1F @) )

Note that the Bergman space contains the Hardy space.
When restricting everything to the real line and real-valued functions,
we get

Proposition 5.3. The native Hilbert space Fr for the rational kernel B(x,t) :
(1 — xt)=2 on intervals I := [—a,a] with 0 < a < 1 consists of real-valued
functions analytic in I whose complex extensions lie in the Bergman space
B2



Now the kernel-based interpolation problem on n+1 points uses rational
functions p/q where ¢ has the points 1/xz; as double zeros and is of degree
2n + 2, while p is of degree at most 2n. For interpolation in Fgr for the
Bergman kernel we obtain the following convergence results.

Theorem 5.4. 1. For all 0 < a < 1 there are constants ci, hg > 0 such
that for any discrete set X C [—a,a] with fill distance h < hy and
any function f € Fr, the error between f and its interpolant sy x is

bounded by

—c1/h
1 = s7x o < <" 1l -

2. Suppose n € N and 0 < a < 1. Then there are constants ca, ho > 0
such that for all discrete sets X C [—a,a) with fill distance h < ho and
any function f € Ng, the error between the n-th derivative of f and
its interpolant sy x is bounded by

=

. < e VR fllp -

‘Loo(fa,a)

Proof:

1. By [15, Thm. 3], it suffices to check that

CPR =  sup
z,y€[—a,a)

holds for almost all £ € N with some constant ¢ independent of k,
where Dﬁ denotes the ¢-th derivative with respect to the variable y.
Indeed, we find inductively

2k
é(Zk) = sup D;k 71 5 = sup 7(2]{: * 1);f 5
z,y€[~a,a] (1 - xy) z,y€|—a,al (1 — xy) +
< (2k + 1)!a?* < ( 6a> )k 1?2
- (1 _ a2)2k+2 — (1 o (Z2)4 o

2. By [15, Thm. 6], it suffices to check that

C®*) .= max sup
Grm=2k ¢ ye(~a.a)

D;nDiK (ﬂ:,y)‘ < ek 2k

holds for some constant ¢ independent of k. By symmetry, we may

10



assume m < {. Explicit calculations yield

o0
DD,y (n+1)a"y"
n=0
(n + 1)'“' n—myn—ﬁ
(n—20)!(n—m)!

c®® = max sup
Hm=2k x,ye[—a,a]

(e o]

= max sup
€+m:2k T,ye [_ava]

n=~_
o
n!
= a % max Z( (n+ Dln a®" .

- — D! (n—m)!
t+m=2k £= (n O (n—m)!

We claim that the maximum is attained for £ = m = k. Indeed, if
£ > m+ 2, we find the term-wise bound

oo

(n+1)n! om > (n+1)n! o
<
nzzz(n—ﬁ)!(n—m)!a = nzz(n—ﬁ—i—l)!(n—m—l)!a
. n+1)'n' 2n
<
= ngln— (=) (n—(m+1)"

which implies that the maximum is attained for the symmetric situa-

tion m = ¢ = k. Thus we have with the hypergeometric function (see
[1, ch. 15])

ok _ 72kz ”+1'n' 2n:§:(”+k+1)!(”+k)!a2n

12
n.:
n=0

= k!(k+1)!F(/<:+2,k+1;1;a2)

2
— BE+1)(1-a®)"F (2 +k, —k; 1 2“—1> [1,(15.3.4)]
a fe—
= K+ (1-a®) " P (k-1 Bttt [1,(15.3.3)]
— K ! ! ,(15.3.3)] .

We apply [1, (15.4.6)] withn =k + 1, « =0 and § = —1, which gives

2
2k) _ oy —k—1 50,—1) {a”+ 1
O = (k+ 1)k (1 —a®) " P, (1_a2) .
By the recurrence relation [1, (22.7.16)] for the Jacobi polynomials, we have
0, 1 0,0 0,1
(k+1) PV (2) = <k+§> (1+2) PV (2) = kP (@) .
Thus, we have with the Legendre polynomials Py := PIEO’O)

‘k-ﬁ-l \ < |1+x||Pk(x)|+‘P,§°’*”(x)(g...

< 2l (1P @)+ P (@) 4+ 1By (@)]) + | RO (@)

11



In [15, Proof of Lemma 5] it is shown that
|Pe (2)] < (2] +1)" .
Hence,
k
(p,ﬁ;” (x)‘ < 4l @]+ 1" +1

n=0

< k[t @+ )M < b

a’+
a?—1

where the constant ¢ depends only on =z = —
things together, we have

but not on k. Putting

2
—k—1 (0,1 a”+1
oK) — (k+ 1)lk! (1 - a2) P/§+1 ) <_ a2 — 1)

< FRN(E+1) < PR

with some constant ¢ independent of k.

5.3 Dirichlet Space

There are also Taylor kernels of logarithmic type. A well known one is the
kernel L (z,y) := —xiy log (1 — zy), which can be extended via

1
L(w,z):= —%log(l —ZW) .

This kernel is the reproducing kernel for the Dirichlet space D [2]|, which
consists of those holomorphic functions f on the unit disc I whose derivative
/' is in the Bergman space.

Proposition 5.5. The native Hilbert space for the logarithmic kernel L con-
sists of real-valued functions analytic in [—a, a] whose complez extensions lie
in the Dirichlet space D.

The interpolation on X := {zg,...,z,} C I = [—a,a] for 0 < a < 1is
now carried out with linear combinations of functions

1
7 log(1 —tz;) for x; #0,
1 for x; =0,

which is quite an unusual setting.

The approximation orders due to [15] are the same as for the rational
case. Thus Theorem 5.2 can be reformulated exactly also for this kernel and
functions from Dirichlet space.

12



5.4 The exponential case
In this section we consider a kernel of exponential type on R, namely
E (z,t) := exp (xt)

which arises when the entire function x(z) = exp(z) is restricted to the real
line. The native Hilbert space becomes

o (o]
= Zanz" with a, € R, Zn!a% < oo}

Ng = {f :R—>R
n=0 n=0

and consists of real-analytic functions with entire complex extensions. If an
interval I := [—a,a] is fixed, and if point sets X := {zg,...,x,} C I are
used for interpolation, we have an interpolation with classical exponential
sums, the z; being fixed frequencies. We shall remove this coupling between
frequencies and data points later.

To characterize functions from Ng more precisely, we recall some basic
definitions from [5, Chapters 1 and 2].

Definition 5.6. For an entire function f of a complex variable z, we denote

by M (r) the maximum modulus of f(z) for |z| =r < co. We say that f is
of order p if

lim sup loglog M (r) (r) =p.

r—00 log r

By convention, a constant function has order 0.

Theorem 5.7. 1. The native Hilbert space Ng of the exponential ker-
nel consists of real-valued analytic functions that have entire complex
extensions. In particular, it contains all polynomials.

2. If an entire function f(z) = >_,° anz™ with real coefficients a, is of
order p < 2, then its restriction to R lies in Ng.

3. For any function from Ng, the complex extension is of order less than
or equal to 2.

Proof:

1. Assume f () = Y an2™ € Ng. Then the natural complex exten-
sion f(z) = > 7 yanz" converges in the whole complex plane since

1/2
. _ .
nh_)rrgo Vian| < (hm Ylan* n! nh_)rrgo >

13



2. If an entire function f(z) = > .77 janz™ is of order p = 2 — 2¢ with
1> € >0, then by [5, Thm. 2.2.2],
—— nlogn

=2-2
nsoolog (1/ [an|) ©

where the expression on the right is to be taken as 0 if a,, = 0. Since
a2n! converges to 0, there is an ng € N such that for all n > ng we
have a,, < 1. Then by definition of the lim sup, there exists an NV € N
such that for all n > N,

1
nlogn < (2 —¢)log (—) .

|an|

This implies |a,| < n~7-<, and therefore

o o0 5 o 9
Zn!ai < C’+Zn!n_2_—e§0+2n_2_—e<oo.
n=0 n=N n=N

If f is of order 0,

T nlogn
n—oclog (1/ |an|)
which yields that there is some N € N such that for all n > N,

1
nlogn < log (ﬁ) ,
G,

and we can proceed as above, choosing ¢ = 1.

:07

3. Assume f (z) = Y>> japz™ € Ng. Then there is a constant C' > 0,
such that a2 < C/n!, i.e., by Stirling’s formula

C Cen/?
lap| < —= <

\/m — n2n:1 ‘

Thus,

—— nlogn S nlogn
lim ————— < lim — T — =2
n_mOlOg(mln\) n—oo g logn + 7logn —logC — 3

O

Remark 5.8. Theorem 5.7 is sharp in the sense that there are functions of
order p = 2 that lie in N and some that do not. For instance fi(x) =
Yoo n,}/Q z™ and fo(x) => 07, nTln/Qx” both are of order 2, and f1 € Ng
while fo ¢ Ng.

14



Following [15, Cor. 1 and 2], we have the following approximation orders
for classical interpolation in Ng.

Theorem 5.9. 1. For all a > 0, there are constants c1, hg > 0 such that

for any discrete set X C I = |[—a,a] with fill distance h < hy and
any function f € Ng, the error between f and its interpolant sy x is
bounded by

logh/h
ILf— Sf,XHLoo[fa,a] <t / Hf”NE .

2. Suppose n € N andf a > 0. Then there are constants cs, ho > 0 such
that for all discrete sets X C I = [—a,a] with fill distance h < hg and
any function f € Ng the error between the n-th derivative of f and its
interpolant sy x is bounded by

<60210gh/\/EHfHN )
E

Hf(n) B ngn))( ‘Loo[fa,a} =

Due to some simple calculational tricks, similar results on spectral con-
vergence hold when frequencies are somewhat decoupled from data points.
We assume that frequencies p; are chosen with fill distance h in some in-
terval [a, 8], and we want to work with these frequencies, but evaluate the
approximation error on [—a,a]. We then use the points

733= plpy) = o+ =0 =) € [-aa]

for interpolation in [—a, a] using scaled trial functions exp(ctz;) as functions
of t € [—a,a]. Since the above error bounds will also hold for scaled kernels,
we can take c = Bb:—g‘ to see that we have worked with functions

exp(ctx;) = exp(ct{a+ %(b - a)))
= exp(ct(a— Biﬁ(b—a))) exp (ct <B‘i—ja(b—a)))
— exp (b(ea — ) exp (1)

which now have the desired frequencies. The given function, however, has
to be multiplied by exp (—t(ca — «)) before computations start.
6 Numerical Examples

All the subsequent figures use four different interpolants:
e the solid line for the Szeg6 kernel,

e the dotted line for the exponential kernel,

15



Figure 1: Errors for f(x) = sin(x)

e the - - line for the log kernel, and
e the - . line for the squared Szeg6 kernel.

They differ in the function f providing the data. In all cases, the arising ker-
nel matrices are severely ill-conditioned, but we did not apply any precon-
ditioning techniques. The cases with expansions into purely even or purely
odd terms are ignored and will be similar, provided that the symmetries are
taken into account when setting up the problems. To allow comparisons
between kernels, we fixed 9 equidistant data locations on [—0.9,+40.9] in all
cases. Since the scalings of the figures might be hard to read, we present the
L errors in Table 2.

‘ Szegod exp log SzegH?

sin(z) | 7.31e-04 6.53e-08 2.59e-04  2.30e-03
1/(1+22/25) | 8.73¢-06 8.76e-10 2.97e-06 2.83e-05
)
)

1/(1+2%) | 1.49e-02 1.11e-03 9.67e-03 2.48¢02
1/(1+ 2522) | 3.89e+00 9.07e-01 2.97e+00 5.38-+00
B-spline | 1.23¢+00 2.88¢-01  9.36e-01 1.70e+00

Table 2: L, errors for different examples and kernels

It is to be expected that the location of singularities of f outside the
interval will be of quite some influence on the error. For the entire function
sin(z), one can expect the best possible behavior, and the results are in
Figure 1. We then have three examples of the Runge type, the singularities
moving closer from +5¢ via £¢ to £0.27, see Figures 2 to 4. The results get
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Figure 2: Errors for f(x) = 1/(1 + 22/25)

dramatically worse, and for the B—spline f(z) = 1 — |z| they are disastrous,
but this function is too far away from any of the native Hilbert spaces of
analytic functions.

In all cases, the exponential kernel performed best, followed by the log
kernel, the Szegd kernel, and the squared Szegd kernel.
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