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These formulas look di�erent at �rst sight, but this paper fouses on aseswhere the Taylor formula (2) takes the form (1) of a reprodution formulain I. It turns out that there is a variety of interesting kernels allowingthis identi�ation, i.e. roughly all kernels K(x, t) whih are power series in
xt with nonnegative oe�ients. Eah of these kernels de�nes a �native�Hilbert spae in whih it is reproduing via both (2) and (1), and allows theappliation of standard results onerning interpolation and approximationby spaes of the form

FX := Span {K(x, ·) : x ∈ X} . (3)for �xed �nite sets X := {x0, . . . , xn} ⊂ I. These spaes an onsist of expo-nentials, rationals, hyperboli osines, logarithms, and Bessel funtions, forinstane, depending on whih kernel is hosen. Thus we an derive resultson approximation and interpolation by those families from known resultson kernel�based interpolation and approximation. These inlude optimalityproperties and error bounds, the latter being partiularly interesting whenthey take the form of Bernstein�type theorems onerning spetral approxi-mation orders for approximations of analyti funtions. Suh theorems omeas speial ases of general results of [15℄ on power series kernels. The paperloses with some numerial examples.2 Taylor SpaesWe deal with Taylor spaes in the spirit of [8℄, and hope that there willbe no onfusion with the related Taylor spaes introdued by Calderon andZygmund [6℄. We �x a subset N of N := {0, 1, 2, . . .} and onsider funtions
f for whih the remainder�free Taylor formula

f(x) =
∑

j∈N

f (j)(0)

j!
xj, (4)is valid and allows reprodution of f via its derivatives at zero.If N is �nite and of the form N := {0, 1, . . . , n}, the admissible funtions

f form the spae Pn of polynomials of degree at most n. Other �nite sets
N lead to speial spaes of launary polyomials. If N is an in�nite subsetof N := {0, 1, 2, . . .}, we shall require (4) to be valid in a neighborhood ofthe origin with absolute onvergene. This suggests to work in the omplexplane C in all ases, allow omplex-valued funtions, and assume (4) to holdat least on some dis

DR := {x ∈ C : |x| < R}of a �nite radius R > 0 with absolute onvergene. But we an also onsiderases where (4) is absolutely onvergent in the full omplex plane, de�ningan entire funtion f there, and we shall refer to this ase via R = ∞.2



Before we take a loser look at spaes of funtions satisfying (4) forin�nite N , we onsider ways to turn (4) into a reprodution formula of theform (1). Here, we fous on a speial tehnique [12℄ using weighted seriesexpansions. We take positive weights λj for all j ∈ N satisfying
∑

j∈N

R2jλj

(j!)2
< ∞, R < ∞

∑

j∈N

λje
j

j!
√
j
< ∞, R = ∞

(5)noting that Stirling's formula implies the �rst ondition for all R > 0 if theseond is satis�ed. Then we form the weighted inner produt
(f, g) :=

∑

j∈N

f (j)(0)g(j)(0)

λj
(6)on the spae of all funtions f whih have all derivatives f (j)(0) for j ∈ N ,satisfy (4) and additionally also

‖f‖2 :=
∑

j∈N

|f (j)(0)|2
λj

< ∞. (7)We denote the ompletion of the spae of suh funtions under the aboveinner produt by F and all the resulting Hilbert spae a Taylor spae. Wedrop the dependene of F on the sets N and
Λ := {λj : j ∈ N}for the reader's onveniene, but note that the weight set Λ will in all asesdetermine the inner produt struture on F . Rewritten in power series form,the funtions in F are

f (z) =
∑

n∈N
anz

n with ∑

n∈N

n!2

λn
|an|2 < ∞with an = f (n)(0)/n!. The inequality above is equivalent to (7), and togetherwith (5) it implies that (4) is absolutely onvergent in DR for �nite R andin C for R = ∞. In fat, in DR we have

|f(z)|2 ≤
(

∑

n∈N

|an|2(n!)2
λn

)

·
(

∑

n∈N

R2nλn

(n!)2

)

< ∞ (8)by the Cauhy�Shwarz inequality. 3



Theorem 2.1. If N is �nite, the Taylor spae F with respet to N onsistsof the span of the monomials xj for j ∈ N . If N is in�nite, and if weights
λj are hosen with (5), the Taylor spae F onsists of real�analyti funtionswith power series expansions around zero whih are absolutely onvergent in
DR. The spae will depend on Λ, onsist of all funtions f of the form (4)with (7) and arry the inner produt (6).We still have to turn (4) into a Hilbert spae reprodution formula

f(x) = (f,K(x, ·)) for all x ∈ DR, f ∈ F (9)with a suitable positive (semi�) de�nite reproduing kernel
K : DR ×DR → C.As is well�known, suh a kernel must exist and is uniquely de�ned.Theorem 2.2. The kernel

K(x, t) :=
∑

j∈N
λj

(tx)j

(j!)2
=: κ(tx), x, t ∈ I (10)is well�de�ned due to (5) and the series is absolutely onvergent for in�nite

N and for all x, t ∈ DR. It is positive (semi�) de�nite and reproduing in theTaylor spae, and the Taylor formula oinides with the reprodution formula(1).Proof: The �rst sentene follows from arguments we have used before. Nowwe evaluate
∂j

∂tj |t=0

K(x, t) = λj
xj

j!
and

(f,K(x, ·)) =
∑

j∈N

f (j)(0)

λj

λjx
j

j!
= f(x).This yields plenty of examples of kernels when starting from power series

κ(z) =

∞
∑

j=0

λj
zj

(j!)2whih represent omplex�analyti funtions in a neighborhood of the origin.The onnetion to kernels K(x, t) is via K(x, t) = κ(tx). It allows seletionsof λj whih grow like Rj(j!)2 for j → ∞ and arbitrary R > 0. Consequently,
4



there are surprisingly many spaes whih allow the Taylor formula for repro-dution. Table 1 gives some examples that we partially over later in moredetail. Many of these are speial instanes of hypergeometri funtions, i.e.
2F1(a, b; c, z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!

pFq(a1, . . . , ap; b1, . . . , bq, z) =
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!with the Pohhammer symbol
(a)n := a(a+ 1) · · · (a+ n− 1).

κ(z) =
∑

j∈N λj
zj

(j!)2
N λj

(1− z)−1, 0 ≤ |z| < 1 N (j!)2

(1− z2)−1, 0 ≤ |z| < 1 2N (j!)2

(1− z)−α, α ∈ N, 0 ≤ |z| < 1 N
(α+ j − 1)!j!

(α− 1)!

(1− z2)−α, α ∈ N, 0 ≤ |z| < 1 2N
(α+ j − 1)!j!

(α− 1)!

− log(1− z)

z
, 0 ≤ |z| < 1 N (−1)j+1 (j!)2

j + 1
exp(z) N j!

exp(z) N j!

sinh(z) 2N+ 1 j!

sinh(z)/z 2N j!
j+1

cosh(z) 2N j!

z−αIα(z) 2N
j!

2j+αΓ(j + α+ 1)Table 1: Some Kernels for Taylor SpaesOther and muh more general ases for multivariate power kernels areovered by [15℄. In omplex analysis, speial ases of Taylor kernels andtheir assoiated native spaes are well studied, see e.g., [11, 9, 3, 2℄.3 InterpolationIn what follows, we shall onsider interpolation at �nite sets
X := {x0, . . . , xn} ⊂ DR5



of pairwise di�erent nodes by funtions from the spae (3). Interpolation ofarbitrary data on X requires nonsingularity of the kernel matrix
AX := (K(xj, xk))0≤j,k≤n .It is hermitian and positive semide�nite beause it an be written as aGramian, but it is positive de�nite only if additional onditions are satis-�ed.Before we fous on suh onditions, we onsider the ase that the inter-polated data on X ome from a funtion f in the Taylor spae F for K. Forthese speial data, the system is always solvable. In fat, the Hilbert spaeprojetor ΠX from F to FX yields a funtion ΠX(f) = sf,X ∈ FX suh that

f −ΠX(f) is orthogonal to FX . By (1) this means that sf,X interpolates fin X.For heking positive de�niteness of the kernel matrix, let a ∈ C
n+1 bea vetor with

0 = aTAXa

=
∑

m∈N

λm

(m!)2

∣

∣

∣

∣

∣

∣

n
∑

j=0

ajxj
m

∣

∣

∣

∣

∣

∣

2

.Positive de�niteness of the kernel matrix is guaranteed, if
0 =

n
∑

j=0

ajxj
m for all m ∈ Nimplies a = 0, i.e. i� the |N | × |X| Vandermonde matrix built from the

n + 1 = |X| points in X and the |N | exponents in N has rank n + 1. Inase N = {0, 1, . . . , N} with N ≥ n, the matrix is positive de�nite, but forother ases of �nite N , the above nondegeneray ondition is all we an sayhere. However, for N = N we have positive de�niteness for all point sets.The same holds for N = 2N if symmetry under squaring is avoided, i.e. ifall |xj|2 are di�erent.4 Properties of Interpolants(seProp) The existene of interpolants being settled to some extent, wean apply known results from the theory of sattered data interpolation [14℄to interpolation in Taylor spaes.The �rst type of results onerns optimality. The interpolant sf,X ∈ FXto some funtion f ∈ F on a disrete set X satis�es the norm�minimalityproperty
‖sf,X‖F ≤ ‖g‖F for all g ∈ F with g|X = f|Xand in partiular

‖sf,X‖F ≤ ‖f‖F .6



We now fous on error bounds and another optimality riterion. Considerall linear funtionals of the form
µa,x := f 7→ f(x)−

n
∑

j=0

ajf(xj)with arbitrary vetors a ∈ C
n+1 and points x ∈ DR. It is well�known in theontext of reproduing kernel Hilbert spaes that the solution of

min
a∈Cn+1

‖µa,x‖F ∗ =: PX(x) (11)exists and is attained at a vetor a = u(x) ∈ C
n+1 whih solves the system

K(x, xk) =
n
∑

j=0

uj(x)K(xj , xk), 0 ≤ k ≤ nwhih is solvable beause of K(x, ·) ∈ F . The solution is unique and satis�esLagrange onditions uj(xk) = δjk if the system is nonsingular, but in generalwe know only that the solution may be nonunique. But we now an de�nethe funtion
Lf,X(x) :=

n
∑

j=0

f(xj)uj(x) for all x ∈ DRand by onstrution we have the standard error bound
|f(x)− Lf,X(x)| ≤ PX(x)‖f‖F for all f ∈ F, x ∈ DR (12)with the power funtion PX(x) de�ned in (11). This funtion an be expli-itly alulated, sine we have

PX(x)2 = ‖µu(x),x‖2F ∗

= K(x, x)−
∑

j=0

uj(x)K(x, xj)−
∑

j=0

uj(x)K(xj, x)

+
n
∑

j,k=0

uj(x)uk(x)K(xj, xk).Note that PX is uniquely de�ned even if the interpolation problem is notuniquely solvable.Sine (11) implies that the optimal funtional µu(x),x must be orthogonalto all funtionals δxj , we know that Lf,X is an interpolant to f on X whihwill oinide with sf,X if the system is nonsingular. In any ase, the errorbound (12) is useful. For instane. one an generate new interpolationpoints by maximizing PX [7℄, or one an assess the quality of polynomialinterpolation on point sets whose ardinality is muh lower than the degree.We shall provide an example in the �nal setion.7



If we are interested in asymptoti results for n → ∞, we have to on�neourselves to the ase of in�nite N . Furthermore, we restrit ourselves nowto interpolation and evaluation on intervals I := [−a, a] with a ≤ R andonsider only funtions f from F with real oe�ients in their power series,and we denote the resulting spae by FR. If we interpolate funtions f from
FR, we shall make use of the analytiity of f and apply results of [15℄ aftersome modi�ations. These error bounds will in all ases ome out to be ofspetral order in terms of the �ll distane

h := sup
x∈I

min
xj∈X

|xj − x|of X in I. Sine we shall later work with univariate funtions on bounded in-tervals only, we an assume h ≈ 1/n in ase of n quasi�uniformly distributeddata points, i.e. those with bounded mesh ratio in the sense used in splinetheory.5 Examples5.1 Hardy SpaeWe onsider the ase κ(z) = (1− z)−1 on the open unit dis D1. This yieldsthe Szegö kernel
S(ω, z) :=

1

1− zω
for all ω, z ∈ D1.The native Hilbert spae for this kernel is the well�known Hardy spae H

2whih onsists of those funtions analyti in the unit dis whose Taylor o-e�ients form a square-summable series. It is known (see, e.g., [3, 2℄) thatthe norm an also be realized as an integral
‖f‖2

H2 =
1

2π

∫ 2π

0

∣

∣

∣
f
(

eiθ
)∣

∣

∣

2
dθ .The reproduing formula then beomes the Cauhy formula. Thus the twomost interesting reprodution formulas agree in this ase and take the formof Hilbert spae reprodution formulas.When working in an interval I = [−a, a] with 0 < a < 1 and real-valuedfuntions, we getProposition 5.1. The native Hilbert spae FR for the rational kernel R(x, t) =

(1 − xt)−1 onsists of real-valued funtions whose omplex extensions lie inthe Hardy spae H
2.Interpolation in point sets X = {x0, . . . , xn} ⊂ I = [−a, a] with 0 < a <

1 using this kernel and the trial spae (3) will be in terms of rational funtions8



p/q with polynomials p and q of degree up to n and n+ 1, respetively, thedenominator polynomial q being �xed up to a multipliative onstant by itszeros in the points 1/xj , 0 ≤ j ≤ n. These lassial rational interpolants areeasy to alulate via polynomial interpolation of degree n.For interpolation in the orresponding native Hilbert spae, we obtain thefollowing onvergene results from [15℄:Theorem 5.2. 1. For eah 0 < a < 1 there are onstants c1, h0 > 0 suhthat for any disrete set X ⊂ I = [−a, a] with �ll distane h ≤ h0 andany funtion f ∈ FR, the error between f and its interpolant sf,X isbounded by
‖f − sf,X‖L∞[−a,a] ≤ e−c1/h ‖f‖NR

.2. Suppose n ∈ N and 0 < a < 1. Then there are onstants c2, h̃0 > 0suh that for all disrete sets X ⊂ I = [−a, a] with �ll distane h ≤ h̃0and any funtion f ∈ NR, the error between the n-th derivative of fand its interpolant sf,X is bounded by
∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞[−a,a]
≤ e−c2/

√
h ‖f‖NR

.Note that for quasi�uniform data sites we get spetral or exponentialonvergene with respet to n.5.2 Bergman SpaeSimilarly we an proeed for the Bergman kernel
BC (w, z) =

1

(1− zw)2on the unit dis. The native Hilbert spae for this kernel is the Bergmanspae B
2, whih onsists of those holomorphi funtions on the unit disthat are square-summable with respet to the planar Lebesgue measure m[2℄. The norm an be realized as

‖f‖
B2 =

1

π

∫

D

|f (z)|2 dm(z) .Note that the Bergman spae ontains the Hardy spae.When restriting everything to the real line and real�valued funtions,we getProposition 5.3. The native Hilbert spae FR for the rational kernel B(x, t) :=
(1 − xt)−2 on intervals I := [−a, a] with 0 < a < 1 onsists of real�valuedfuntions analyti in I whose omplex extensions lie in the Bergman spae
B

2. 9



Now the kernel�based interpolation problem on n+1 points uses rationalfuntions p/q where q has the points 1/xj as double zeros and is of degree
2n + 2, while p is of degree at most 2n. For interpolation in FR for theBergman kernel we obtain the following onvergene results.Theorem 5.4. 1. For all 0 < a < 1 there are onstants c1, h0 > 0 suhthat for any disrete set X ⊂ [−a, a] with �ll distane h ≤ h0 andany funtion f ∈ FR, the error between f and its interpolant sf,X isbounded by

‖f − sf,X‖L∞[−a,a] ≤ e−c1/h ‖f‖NB
.2. Suppose n ∈ N and 0 < a < 1. Then there are onstants c2, h̃0 > 0suh that for all disrete sets X ⊂ [−a, a] with �ll distane h ≤ h̃0 andany funtion f ∈ NR, the error between the n-th derivative of f andits interpolant sf,X is bounded by

∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞(−a,a)
≤ e−c2/

√
h ‖f‖NB

.Proof:1. By [15, Thm. 3℄, it su�es to hek that
C̃(2k) := sup

x,y∈[−a,a]

∣

∣

∣

∣

D2k
y

1

(1− xy)2

∣

∣

∣

∣

≤ ckk!2holds for almost all k ∈ N with some onstant c independent of k,where Dℓ
y denotes the ℓ-th derivative with respet to the variable y.Indeed, we �nd indutively

C̃(2k) := sup
x,y∈[−a,a]

∣

∣

∣

∣

D2k
y

1

(1− xy)2

∣

∣

∣

∣

= sup
x,y∈[−a,a]

∣

∣

∣

∣

∣

(2k + 1)!x2k

(1− xy)2k+2

∣

∣

∣

∣

∣

≤ (2k + 1)!a2k

(1− a2)2k+2
≤
(

6a2

(1− a2)4

)k

k!2 .2. By [15, Thm. 6℄, it su�es to hek that
C(2k) := max

ℓ+m=2k
sup

x,y∈(−a,a)

∣

∣

∣
Dm

x Dℓ
yK (x, y)

∣

∣

∣
≤ eckk2kholds for some onstant c independent of k. By symmetry, we may

10



assume m ≤ ℓ. Expliit alulations yield
C(2k) = max

ℓ+m=2k
sup

x,y∈[−a,a]

∣

∣

∣

∣

∣

Dm
x Dℓ

y

∞
∑

n=0

(n+ 1) xnyn

∣

∣

∣

∣

∣

= max
ℓ+m=2k

sup
x,y∈[−a,a]

∣

∣

∣

∣

∣

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
xn−myn−ℓ

∣

∣

∣

∣

∣

= a−2k max
ℓ+m=2k

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
a2n .We laim that the maximum is attained for ℓ = m = k. Indeed, if

ℓ ≥ m+ 2, we �nd the term-wise bound
∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ)! (n−m)!
a2n ≤

∞
∑

n=ℓ

(n+ 1)!n!

(n− ℓ+ 1)! (n−m− 1)!
a2n

≤
∞
∑

n=ℓ−1

(n+ 1)!n!

(n− (ℓ− 1))! (n− (m+ 1))!
a2n ,whih implies that the maximum is attained for the symmetri situa-tion m = ℓ = k. Thus we have with the hypergeometri funtion (see[1, h. 15℄)

C(2k) = a−2k
∞
∑

n=k

(n+ 1)!n!

(n− k)!2
a2n =

∞
∑

n=0

(n+ k + 1)! (n+ k)!

n!2
a2n

= k! (k + 1)!F
(

k + 2, k + 1; 1; a2
)

= k! (k + 1)!
(

1− a2
)−2−k

F

(

2 + k,−k; 1;
a2

a2 − 1

)

[1, (15.3.4)]
= k! (k + 1)!

(

1− a2
)−k−1

F

(

−k − 1, k + 1; 1;
a2

a2 − 1

)

[1, (15.3.3)] .We apply [1, (15.4.6)℄ with n = k + 1, α = 0 and β = −1, whih gives
C(2k) = (k + 1)!k!

(

1− a2
)−k−1

P
(0,−1)
k+1

(

a2 + 1

1− a2

)

.By the reurrene relation [1, (22.7.16)℄ for the Jaobi polynomials, we have
(k + 1)P

(0,−1)
k+1 (x) =

(

k +
1

2

)

(1 + x)P
(0,0)
k (x)− kP

(0,−1)
k (x) .Thus, we have with the Legendre polynomials Pk := P

(0,0)
k

∣

∣

∣
P

(0,−1)
k+1 (x)

∣

∣

∣
≤ |1 + x| |Pk (x)|+

∣

∣

∣
P

(0,−1)
k (x)

∣

∣

∣
≤ . . .

≤ |1 + x| (|Pk (x)|+ |Pk−1 (x)|+ · · ·+ |P0 (x)|) +
∣

∣

∣
P

(0,−1)
0 (x)

∣

∣

∣
.11



In [15, Proof of Lemma 5℄ it is shown that
|Pk (x)| ≤ (2 |x|+ 1)n .Hene,

∣

∣

∣
P

(0,−1)
k+1 (x)

∣

∣

∣
≤ |1 + x|

k
∑

n=0

(2 |x|+ 1)n + 1

≤ k |1 + x| (2 |x|+ 1)k ≤ ck ,where the onstant c depends only on x = −a2+1
a2−1

but not on k. Puttingthings together, we have
C(2k) = (k + 1)!k!

(

1− a2
)−k−1

P
(0,−1)
k+1

(

−a2 + 1

a2 − 1

)

≤ ckk! (k + 1)! ≤ ckk2kwith some onstant c independent of k.5.3 Dirihlet SpaeThere are also Taylor kernels of logarithmi type. A well known one is thekernel L (x, y) := − 1
xy log (1− xy), whih an be extended via

L (w, z) := − 1

zw
log (1− zw) .This kernel is the reproduing kernel for the Dirihlet spae D [2℄, whihonsists of those holomorphi funtions f on the unit dis D whose derivative

f ′ is in the Bergman spae.Proposition 5.5. The native Hilbert spae for the logarithmi kernel L on-sists of real�valued funtions analyti in [−a, a] whose omplex extensions liein the Dirihlet spae D.The interpolation on X := {x0, . . . , xn} ⊂ I = [−a, a] for 0 < a < 1 isnow arried out with linear ombinations of funtions
−1

t
log(1− txj) for xj 6= 0,

1 for xj = 0,whih is quite an unusual setting.The approximation orders due to [15℄ are the same as for the rationalase. Thus Theorem 5.2 an be reformulated exatly also for this kernel andfuntions from Dirihlet spae. 12



5.4 The exponential aseIn this setion we onsider a kernel of exponential type on R, namely
E (x, t) := exp (xt)whih arises when the entire funtion κ(z) = exp(z) is restrited to the realline. The native Hilbert spae beomes

NE :=

{

f : R → R

∣

∣

∣

∣

∣

f (z) =
∞
∑

n=0

anz
n with an ∈ R,

∞
∑

n=0

n!a2n < ∞
}and onsists of real�analyti funtions with entire omplex extensions. If aninterval I := [−a, a] is �xed, and if point sets X := {x0, . . . , xn} ⊂ I areused for interpolation, we have an interpolation with lassial exponentialsums, the xj being �xed frequenies. We shall remove this oupling betweenfrequenies and data points later.To haraterize funtions from NE more preisely, we reall some baside�nitions from [5, Chapters 1 and 2℄.De�nition 5.6. For an entire funtion f of a omplex variable z, we denoteby M (r) the maximum modulus of f(z) for |z| = r < ∞. We say that f isof order ρ if

lim sup
r→∞

log logM (r)

log r
= ρ .By onvention, a onstant funtion has order 0.Theorem 5.7. 1. The native Hilbert spae NE of the exponential ker-nel onsists of real-valued analyti funtions that have entire omplexextensions. In partiular, it ontains all polynomials.2. If an entire funtion f (z) =

∑∞
n=0 anz

n with real oe�ients an is oforder ρ < 2, then its restrition to R lies in NE.3. For any funtion from NE, the omplex extension is of order less thanor equal to 2.Proof:1. Assume f (x) =
∑∞

n=0 anx
n ∈ NE . Then the natural omplex exten-sion f̃ (z) =

∑∞
n=0 anz

n onverges in the whole omplex plane sine
lim
n→∞

n
√

|an| ≤
(

lim
n→∞

n

√

|an|2 n! · lim
n→∞

n

√

1

n!

)1/2

= 0 .

13



2. If an entire funtion f (z) =
∑∞

n=0 anz
n is of order ρ = 2 − 2ǫ with

1 > ǫ > 0, then by [5, Thm. 2.2.2℄,
lim
n→∞

n log n

log (1/ |an|)
= 2− 2ǫ ,where the expression on the right is to be taken as 0 if an = 0. Sine

a2nn! onverges to 0, there is an n0 ∈ N suh that for all n ≥ n0 wehave an ≤ 1. Then by de�nition of the lim sup, there exists an N ∈ Nsuh that for all n ≥ N ,
n log n ≤ (2− ǫ) log

(

1

|an|

)

.This implies |an| ≤ n− n
2−ǫ , and therefore

∞
∑

n=0

n!a2n ≤ C +
∞
∑

n=N

n!n− 2n
2−ǫ ≤ C +

∞
∑

n=N

n− 2ǫ
2−ǫ < ∞ .If f is of order 0,

lim
n→∞

n log n

log (1/ |an|)
= 0 ,whih yields that there is some N ∈ N suh that for all n ≥ N ,

n log n ≤ log

(

1

|an|

)

,and we an proeed as above, hoosing ǫ = 1.3. Assume f (x) =
∑∞

n=0 anx
n ∈ NE. Then there is a onstant C > 0,suh that a2n ≤ C/n!, i.e., by Stirling's formula

|an| ≤
C√
n!

≤ Cen/2

n
2n+1

4

.Thus,
lim
n→∞

n log n

log
(

1
|an|

) ≤ lim
n→∞

n log n
n
2 log n+ 1

4 log n− logC − n
2

= 2 .

Remark 5.8. Theorem 5.7 is sharp in the sense that there are funtions oforder ρ = 2 that lie in NE and some that do not. For instane f1 (x) =
∑∞

n=0
1

nn/2x
n and f2 (x) =

∑∞
n=0

1
n1+n/2x

n both are of order 2, and f1 ∈ NEwhile f2 /∈ NE. 14



Following [15, Cor. 1 and 2℄, we have the following approximation ordersfor lassial interpolation in NE .Theorem 5.9. 1. For all a > 0, there are onstants c1, h0 > 0 suh thatfor any disrete set X ⊂ I = [−a, a] with �ll distane h ≤ h0 andany funtion f ∈ NE, the error between f and its interpolant sf,X isbounded by
‖f − sf,X‖L∞[−a,a] ≤ ec1 log h/h ‖f‖NE

.2. Suppose n ∈ N andf a > 0. Then there are onstants c2, h̃0 > 0 suhthat for all disrete sets X ⊂ I = [−a, a] with �ll distane h ≤ h̃0 andany funtion f ∈ NE the error between the n-th derivative of f and itsinterpolant sf,X is bounded by
∥

∥

∥
f (n) − s

(n)
f,X

∥

∥

∥

L∞[−a,a]
≤ ec2 log h/

√
h ‖f‖NE

.Due to some simple alulational triks, similar results on spetral on-vergene hold when frequenies are somewhat deoupled from data points.We assume that frequenies µj are hosen with �ll distane h in some in-terval [α, β], and we want to work with these frequenies, but evaluate theapproximation error on [−a, a]. We then use the points
xj := ϕ(µj) := a+

µj − α

β − α
(b− a) ∈ [−a, a]for interpolation in [−a, a] using saled trial funtions exp(ctxj) as funtionsof t ∈ [−a, a]. Sine the above error bounds will also hold for saled kernels,we an take c = β−α

b−a to see that we have worked with funtions
exp(ctxj) = exp

(

ct
(

a+
µj−α
β−α (b− a)

))

= exp
(

ct
(

a− α
β−α(b− a)

))

exp
(

ct
(

µj

β−α(b− a)
))

= exp (t(ca− α)) exp (tµj)whih now have the desired frequenies. The given funtion, however, hasto be multiplied by exp (−t(ca− α)) before omputations start.6 Numerial ExamplesAll the subsequent �gures use four di�erent interpolants:
• the solid line for the Szegö kernel,
• the dotted line for the exponential kernel,15
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Figure 1: Errors for f(x) = sin(x)

• the - - line for the log kernel, and
• the - . line for the squared Szegö kernel.They di�er in the funtion f providing the data. In all ases, the arising ker-nel matries are severely ill�onditioned, but we did not apply any preon-ditioning tehniques. The ases with expansions into purely even or purelyodd terms are ignored and will be similar, provided that the symmetries aretaken into aount when setting up the problems. To allow omparisonsbetween kernels, we �xed 9 equidistant data loations on [−0.9,+0.9] in allases. Sine the salings of the �gures might be hard to read, we present the

L∞ errors in Table 2.Szegö exp log Szegö2
sin(x) 7.31e�04 6.53e�08 2.59e�04 2.30e�03

1/(1 + x2/25) 8.73e�06 8.76e�10 2.97e�06 2.83e�05
1/(1 + x2) 1.49e�02 1.11e�03 9.67e�03 2.48e�02

1/(1 + 25x2) 3.89e+00 9.07e�01 2.97e+00 5.38e+00
B�spline 1.23e+00 2.88e�01 9.36e�01 1.70e+00Table 2: L∞ errors for di�erent examples and kernelsIt is to be expeted that the loation of singularities of f outside theinterval will be of quite some in�uene on the error. For the entire funtion

sin(x), one an expet the best possible behavior, and the results are inFigure 1. We then have three examples of the Runge type, the singularitiesmoving loser from ±5i via ±i to ±0.2i, see Figures 2 to 4. The results get16
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Figure 2: Errors for f(x) = 1/(1 + x2/25)dramatially worse, and for the B�spline f(x) = 1− |x| they are disastrous,but this funtion is too far away from any of the native Hilbert spaes ofanalyti funtions.In all ases, the exponential kernel performed best, followed by the logkernel, the Szegö kernel, and the squared Szegö kernel.AknowledgementSpeial thanks go to Christian Rieger for many fruitful disussions. BZ waspartly funded by a postdotoral fellowship of the NSF under Grant No.DMS-0905778.Referenes[1℄ M. Abramowitz and I.A. Stegun. Handbook of Mathematial Funtions.Dover, New York, 1970.[2℄ J. Agler and J.E. MCarthy. Pik Interpolation and Hilbert FuntionSpaes. Graduate studies in Mathematis, volume 44. Amerian Math-ematial Soiety, Providene, Rhode Island, 2002.[3℄ D. Alpay. The Shur algorithm, reproduing kernel spaes and systemtheory. SMF/AMS Texts and Monographs, volume 5. Amerian Math-ematial Soiety, USA, 2001. 17
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Figure 3: Errors for f(x) = 1/(1 + x2)
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Figure 4: Errors for f(x) = 1/(1 + 25x2)
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